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GENERALIZED SCALARIZING PROBLEMS GENS AND GENSLEX  
OF MULTICRITERIA OPTIMIZATION1 

Mariyana Vassileva 

Abstract: Generalized scalarizing problems, called GENS and GENSLex, for obtaining Pareto optimal solutions 
of multicriteria optimization problems are presented in the paper. The basic properties of these scalarizing 
problems are described. The existence of single-criterion problems with differentiable objective functions and 
constraints, which are equivalent to GENS and GENSLex scalarizing problems, are pointed out. 
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Introduction 

Various real problems can be modelled as multicriteria optimization problems. In multicriteria optimization 
problems several criteria are simultaneously optimized in the feasible set of alternatives. In the general case, 
there does not exist one alternative, which optimizes all the criteria. There is a set of alternatives however, 
characterized by the following: each improvement in the value of one criterion leads to deterioration in the value 
of at least one other criterion. This set of alternatives is called a set of the Pareto optimal alternatives (solutions). 
Each alternative in this set could be a solution of the multicriteria optimization problem. In order to select one 
alternative, it is necessary to have additional information set by the so-called decision maker (DM).  

                                                           
1 This paper is partially supported by the National Science Fund of Bulgarian Ministry of Education and Science 
under contract № I–1401\2004 "Interactive Algorithms and Software Systems Supporting Multicriteria Decision 
Making". 
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The information that the DM provides reflects his/her global preferences with respect to the quality of the most 
preferred alternative.  
The general problem of multicriteria optimization (MO) can be represented in the following way: 

    max { ( ) Kkxfk ∈, } 

subject to: x∈X 
where:  

• ( )xf k , k∈K={1,2,…,p} are different criteria (objective functions) of the type kf : nR →R , which must 
be simultaneously maximized;  

• ),...,,...,( 1 nj xxxx =  is the vector of variables, belonging to the non-empty feasible set nRX ⊂ ;  

• Z=f(X) pR⊂  is the feasible set of the criteria values. 
 

The scalarizing approach is one of the main approaches in solving MO problems. The basic representatives of 
the scalarizing approach ([Wierzbicki, 1980], [Sawaragi, Nakayama and Tanino, 1985], [Steuer, 1986], [Narula 
and Vassilev, 1994], [Buchanan, 1997], [Miettinen, 1999], [Vassileva, 2004], [Ehrgott and Wiecek, 2004]) are the 
interactive algorithms. The MO problem in these algorithms is treated as a decision-making problem and the 
emphasis is placed on the real participation of the DM in the process of its solution. Each interactive algorithm 
consists of two procedures in the general case – an optimization one and an evaluating one, which are cyclically 
repeated until the stopping conditions are satisfied. During the evaluating procedure the DM estimates the current 
Pareto optimal solution obtained, either approving it as the final (the most preferred) one, or setting his/her 
preferences in the search for a new solution. On the basis of these preferences a scalarizing problem is formed 
and solved in the optimization procedure and a new Pareto optimal solution is obtained with its help, which is 
presented to the DM for evaluation and choice. The main feature of each scalarizing problem is that every optimal 
solution is a Pareto optimal solution of the corresponding MO problem. The scalarizing problem is a single-
criterion optimization problem, which allows the application of the theory and methods of single-criterion 
optimization. A number of scalarizing problems and a set of interactive algorithms developed on their basis have 
been proposed up to now. The different algorithms offer different possibilities to the DM in the control or in 
stopping the process of the final solution finding. On its hand, this searching process can be divided into two 
phases. In the first phase (the learning phase), the DM usually defines the region, in which he expects to find the 
most preferred solution, whereas in the second phase (the concluding phase) he is looking for this solution 
namely in this region. 
The present paper describes generalized scalarizing problems, called GENS and GENSLex. They are extensions 
of the generalized scalarizing problem GENWS [Vassilev, 2004] and enables the obtaining of Pareto optimal 
solutions. Almost all scalarizing problems known up to now can be obtained from GENS and GENSLex problems, 
as well as new scalarizing problems with different properties can be generated from these problems. 

Generalized Scalarizing Problems GENS and GENSLex 

For easier description of the topic further on, the following definitions will be introduced:  
Definition 1: The solution x∈X is called a Pareto optimal solution of the multicriteria optimization problem, if 
there does not exist another solution Xx∈ , satisfying the following conditions: 

( ) ( )xfxf kk ≥ , k∈K and ( ) ( )xfxf kk >  for at least one index k∈K. 
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Definition 2: The vector ( ) ( )( )Tp xfxfxfz ,...,)( 1== ∈ Z is called a Pareto optimal solution in the criterion 

space, if x∈X is a Pareto optimal solution in the decision variable space. 

Definition 3: The current preferred solution T
pk fffz ),...,,...,( 1=  ∈ Z is a Pareto optimal solution in the 

criterion space, selected by the DM at the current iteration.  
Definition 4: The most preferred solution is the current preferred solution, which satisfies the DM to the highest 
extent. 
Definition 5: The criteria classification is called the implicit division of the criteria into classes, depending on the 
alterations in the criteria values at the current solution, which the DM wishes to obtain. 
 

In order to obtain Pareto optimal solutions starting from the current preferred solution, GENS scalarizing problem 
is proposed. It has the following type:  

 
Minimize 
 

(1)   T(x)=max ( ( )( ) ( )( ) ( )( ) 33
2

22
1

11 maxmaxmax kkk
Kk

kkk
Kk

kkk
Kk

GxfFRGxfFRGxfF −−−
<≤≥ ∈∈∈

 

                       ( )( ) )44
3 max kkk

Kk
GxfFR −

>∈
( )( )∑

∈

+−+
0

55

Kk
kkk GxfF  

                       ( )( ) ( )( ) ( )( )∑ ∑ ∑
≥ ≤ <∈ ∈ ∈

+−+−+−+
Kk Kk Kk

kkkkkkkkk GxfFGxfFGxfF 332211(ρ  

                       ( )∑
>∈

−+
Kk

kkk GxfF 44 )( ( ) )6∑
><=∪∈

−
KKk

kk Gxf , 

subject to:  

(2)   => ∪∈≥ KKkfxf kk ,)(  

(3)   ≤∈−≥ KkDfxf kkk ,)(  

(4)   ><− ∈−≥ Kktfxf kkk ,)(  

(5)   ><+ ∈+≤ Kktfxf kkk ,)(  

(6)   x∈X 
 

where: 

- K   is the set of all the criteria;  

- 54321 ,,,, kkkkk GGGGG  are scaling, normalizing or weighting positive coefficients, Kk∈ ; 

- 54321 ,,,, kkkkk FFFFF  are parameters, connected with aspiration, current or other levels of the criteria 

values, Kk∈ ;  

- 321 ,, RRR  are equal to the arithmetic “+” or to a separator “ , ”; 

- кD  is the value, by which the DM agrees the criterion with an index ≤∈Kk  to be deteriorated ( кD > 0); 
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- −
kt  and +

kt  are the lower and upper bound of the feasible for the DM interval of alteration of the criterion 

with an index ><∈Kk  ( −
kt  > 0; +

kt  > 0); 

- kf  is the value of the criterion with an index Kk∈ in the current solution obtained;  

- ≥K  is the set of criteria, the current values of which the DM wishes to be improved up to desired by him/her 
levels 1

kF ; 

- >K  is the set of the criteria, the current values of which the DM wishes to be improved;  

- ≤K  is the set of the criteria, for which the DM agrees their current values to be deteriorated up to set by 
him/her feasible levels 2

kF , but not more than certain values кD  ( кD >0); 

- <K  is the set of criteria, for which the DM agrees their current values to be deteriorated;   

- =K  is the set of criteria, for which the DM agrees their current values not to be deteriorated;   

- ><K  is the set of the criteria, for which the DM agrees their values to alter in defined intervals;  

- 0K  is the set of criteria, for which the DM does not set explicit preferences concerning the change of their 
values;   

- ρ is a small positive number. 
The constraints (2) - (6) define a subset of X, containing Pareto optimal solutions. 
 

Theorem 1: The optimal solution of GENS scalarizing problem is a Pareto optimal solution of the multicriteria 
optimization problem.   
Proof : 

Let ≥K  ≠  Ø and/or >K  ≠  Ø, or KK =0  and let *x X∈  be an optimal solution of GENS scalarizing 
problem. Then the constraints (2) - (6) are satisfied for *x X∈ , together with the following condition: 

(7) )()( * xТxТ ≤ , x∈X. 

Let us assume that *x X∈  is not a Pareto optimal solution of the multicriteria optimization problem. Then, 
another 'x ∈X must exist, for which the constraints (2) – (6) are satisfied, as well as the conditions given below:  

(8) )()( *' xfxf kk ≥ , k∈K     and      )()( *' xfxf kk >  for at least one index k ∈K. 

Inequality (8) follows from the definition of a Pareto optimal solution. 

Using constraint (8) and the definitions of 321 ,, RRR , the objective function Т(x ) of scalarizing problem GENS 
can be transformed, obtaining the following inequality:  

(9) )'(xТ =max ( ( )( ) ( )( ) 2'2
1

1'1 maxmax kkk
Kk

kkk
Kk

GxfFRGxfF −−
≤≥ ∈∈

 

                                ( )( ) ( )( ) )+−−
>< ∈∈

4'3
3

3'3
2 maxmax kkk

Kk
kkk

Kk
GxfFRGxfFR  

                                ( )( )∑
∈

+−+
0

5'5

Kk
kkk GxfF  
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         ( )( ) ( )( ) ( )( )∑∑ ∑
<≥ ≤ ∈∈ ∈
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kkkkkk GxfFGxfFGxfF 3'32'21'1(ρ  
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( )( ) ( )( ) ( )( ) +−+−+−+ ∑ ∑ ∑
≥ ≤ <∈ ∈ ∈Kk Kk Kk

kkkkkkkkk GxfFGxfFGxfF 3*32*21*1(ρ   

        ( )( ) ( ) )=−−+ ∑∑
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6*4*4
k

KKk
k

Kk
kkk GxfGxfF  

                      ( )*xT= . 
 

It follows from (9) that ( ) ( )*' xTxT < , which contradicts to (7). Hence, x*∈X is a Pareto optimal solution of the 
multicriteria optimization problem.  
 

The scalarizing problem GENS guarantees that Pareto optimal solutions are generated. The common drawback 
[Miettinen, 1999] is how to select the coefficient ρ . An alternative way is to use a lexicographic approach. The 
following GENSLex problem in two phases is a lexicographic variant of scalarizing problem GENS.  
The first problem GENSLex1 to be solved is the following: 
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Minimize 

(10)  )(1 xT =max ( ( )( ) ( )( ) ( )( ) 33
2

22
1

11 maxmaxmax kkk
Kk

kkk
Kk

kkk
Kk

GxfFRGxfFRGxfF −−−
<≤≥ ∈∈∈

 

                             ( )( ) ) ( )( )∑
∈

∈
−+−

>
0

5544
3 max

Kk
kkkkkk

Kk
GxfFGxfFR  

subject to: 

(11)   => ∪∈≥ KKkfxf kk ,)(  

(12)   ≤∈−≥ KkDfxf kkk ,)(  

(13)   ><− ∈−≥ Kktfxf kkk ,)(  

(14)   ><+ ∈+≤ Kktfxf kkk ,)(  

(15)    x∈X 
 

Let us denote the optimal objective function value of (10) by *
1T . The final solution is obtained by solving the 

following problem GENSLex2: 
 

Minimize 

(16)   )(2 xT = ( )( ) ( )( ) ( )( )∑ ∑ ∑
≥ ≤ <∈ ∈ ∈

+−+−+−
Kk Kk Kk

kkkkkkkkk GxfFGxfFGxfF 332211  

                    ( )( ) −−+ ∑
>∈Kk

kkk GxfF 44 ( ) )6∑
><=∪∈ KKk

kk Gxf  

subject to: 

(17)   )(1 xT =max ( ( )( ) ( )( ) ( )( ) 33
2

22
1

11 maxmaxmax kkk
Kk

kkk
Kk

kkk
Kk

GxfFRGxfFRGxfF −−−
<≤≥ ∈∈∈

 

                                ( )( ) ) ( )( )∑
∈

∈
−+−

>
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5544
3 max

Kk
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Kk
GxfFGxfFR ≤  *

1T  

and constraints (11) - (15). 
 

Theorem 2: The optimal solution of GENSLex scalarizing problem is a Pareto optimal solution of the multicriteria 
optimization problem.  
Proof : 

Let ≥K  ≠  Ø and/or >K  ≠  Ø, or KK =0  and let *x X∈  be an optimal solution of GENLex scalarizing 
problem. Then the constraints (11) - (15) are satisfied for *x X∈ , together with the following conditions: 

)()( 1
*

1 xTxT ≤  and )()( 2
*

2 xTxT ≤ , x∈X. 

Let us assume that *x X∈  is not a Pareto optimal solution of the multicriteria optimization problem. Then there 
must exist another 'x ∈X, for which the constraints (11) – (15) are satisfied, as well as the condition given below:  

(18) )()( *' xfxf kk ≥ , k∈K 

          and    )()( *' xfxf kk >  for at least one index k ∈K. 
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It is clear that independently of defined values of 321 ,, RRR  and from (18) and (10 - 17) follows that:  

     )()( *
1

'
1 xTxT ≤   and  )()( *

2
'

2 xTxT <  

         or 

    )()( *
1

'
1 xTxT <  and  )()( *

2
'

2 xTxT ≤ , 

which contradicts with *x being an optimal solution of GENLex scalarizing problem. 
 

Scalarizing problem GENS is in the general case an optimization problem with a non-differentiable objective 
function. Every GENS scalarizing problem (defined values of 321 ,, RRR ) can be reduced to an equivalent 
optimization problem with a differentiable objective function on the account of additional variables and constraints. 
The equivalency of each pair of optimization problems is in relation to the obtained values of the objective 
functions (criteria) and the main variables. Different types of equivalent problems are obtained at different values 
of 321 ,, RRR .  

Every equivalent problem can be presented as follows:  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ ∑∑

∈∈ 00 \

min
KKk

k
Kk

k yy ρμ  

and satisfies two groups of constraints.  
The first group of constraints is equal for all types of equivalent problems and has the following form:  

(19) (( )) ≥∈−≥ KkGxfF kkk ,11α   

(20) (( )) ≤∈−≥ KkGxfF kkk ,22β   

(21) (( )) <∈−≥ KkGxfF kkk ,33γ   

(22) Ω (( )) >∈−≥ KkGxfF kkk ,44   

(23) ( )( ) ≥∈=− KkyGxfF kkkk ,11   

(24) ( )( ) ≤∈=− KkyGxfF kkkk ,22   

(25) ( )( ) <∈=− KkyGxfF kkkk ,33   

(26) ( )( ) >∈=− KkyGxfF kkkk ,44   

(27) ( )( ) 055 , KkyGxfF kkkk ∈=−  

(28) ( ) ><= ∪∈=− KKkyGxf kkk ,6   

(29) ( ) => ∪∈≥ KKkfxf kk ,   

(30) ( ) ≤∈−≥ KkDfxf kkk ,   

(31) ( ) ><− ∈−≥ Kktfxf kkk ,   

(32) ( ) ><+ ∈+≤ Kktfxf kkk ,   

(33) x∈X  
 α , β , γ , Ω, Kkyk ∈/  - arbitrary. 
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The second group of constraints has different type and number of constraints depending on the values of 

321 ,, RRR . The constraints from the second group for one equivalent problem of scalarizing problem GENS, 

which is obtained when R1 is equal to the separator “,”, 2R  and 3R  are equal to the arithmetic operation “+”, 
have the following form:  
(34) αμ ≥   

(35) ++≥ γβμ Ω 

 μ  - arbitrary. 
 

The constraints from the second group in the other equivalent problems can be stated in a similar way. 
 

Scalarizing problems GENSLex1 and GENSLex2 are in the general case optimization problems with a non-
differentiable objective functions and constraints. Every scalarizing problem of both types GENSLex1 and 
GENSLex2 (defined values of 321 ,, RRR ) can be reduced to an equivalent optimization problems with a 
differentiable objective functions and constraints on the account of additional variables and constraints.  
 

Different types of equivalent problems of scalarizing problem GENSLex1 are obtained at different values of 

321 ,, RRR . Each equivalent problem can be presented as follows:  

(36) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∑

∈ 0

min
Kk

kyμ , 

satisfying two groups of constraints. The first group of constraints is equal for all types of equivalent problems and 
has the following form:  

(37) (( )) ≥∈−≥ KkGxfF kkk ,11α   

(38) (( )) ≤∈−≥ KkGxfF kkk ,22β   

(39) (( )) <∈−≥ KkGxfF kkk ,33γ  

(40) Ω (( )) >∈−≥ KkGxfF kkk ,44   

(41) ( )( ) 055 , KkyGxfF kkkk ∈=−  

(42) ( ) => ∪∈≥ KKkfxf kk ,   

(43) ( ) ≤∈−≥ KkDfxf kkk ,   

(44) ( ) ><− ∈−≥ Kktfxf kkk ,   

(45) ( ) ><+ ∈+≤ Kktfxf kkk ,   

(46) x∈X  

 α , β , γ , Ω, 0/ Kkyk ∈  - arbitrary. 
 

The second group of constraints has different type and number of constraints depending on the values of 

321 ,, RRR . The constraints from the second group for one equivalent problem of scalarizing problem 



International Journal "Information Theories & Applications" Vol.13 
 

 

 

119

GENSLex1, which is obtained when R1 is equal to the separator “,”, 2R  and 3R  are equal to the arithmetic 
operation “+”, have the following form:   
(47) αμ ≥   

(48) ++≥ γβμ Ω 

 μ  - arbitrary. 

Different types of equivalent problems of scalarizing problem GENSLex2 are obtained at different values of 

321 ,, RRR . Each equivalent problem can be presented as follows:  

(49) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∑
∈ 0\

min
KKk

ky  

and satisfies two groups of constraints.  
The first group of constraints is equal for all types of equivalent problems and has the following form:  

(50) ( )( ) ≥∈=− KkyGxfF kkkk ,11  

(51) ( )( ) ≤∈=− KkyGxfF kkkk ,22  

(52) ( )( ) <∈=− KkyGxfF kkkk ,33   

(53) ( )( ) >∈=− KkyGxfF kkkk ,44  

(54) ( ) ><= ∪∈=− KKkyGxf kkk ,6  

(55) ( ) => ∪∈≥ KKkfxf kk ,  

(56) ( ) ≤∈−≥ KkDfxf kkk ,  

(57) ( ) ><− ∈−≥ Kktfxf kkk ,  

(58) ( ) ><+ ∈+≤ Kktfxf kkk ,  

(59) x∈X 

 o
k KKky \/ ∈  - arbitrary. 

The second group of constraints has different type and number of constraints depending on the values of 

321 ,, RRR . The constraints from the second group for one equivalent problem of scalarizing problem 

GENSLex2, which is obtained when R1 is equal to the separator “,”, 2R  and 3R  are equal to the arithmetic 
operation “+”, have the following form:  

(60) (( )) ≥∈−≥ KkGxfF kkk ,11α   

(61) (( )) ≤∈−≥ KkGxfF kkk ,22β   

(62) (( )) <∈−≥ KkGxfF kkk ,33γ   

(63) Ω (( )) >∈−≥ KkGxfF kkk ,44   
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(64) ( )( ) 055 , KkyGxfF kkkk ∈=−  

(65) αμ ≥   

(66) ++≥ γβμ Ω 

(67) ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∑

∈ 0Kk
kyμ *

1T  

 α , β , γ , Ω, μ , 0/ Kkyk ∈  - arbitrary. 

Conclusion 

The interactive algorithms solving different types of multicriteria optimization problems use different scalarizing 
problems. The features of each scalarizing problem are defined by the possibilities offered to the decision maker 
to set his/her preferences, as well as by the quality of the Pareto optimal solutions obtained. Altering the 
parameters of the generalized scalarizing problems GENS and GENSLex, a great part of the already known 
scalarizing problems can be obtained and also new scalarizing problems can be generated. In connection with 
this, generalized interactive algorithms with alterable scalarization and parameterization can be designed, which 
expand to a great extent the possibilities of the decision-maker in describing his/her preferences.  
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