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RANDOMIZED PARALLELIZATION – A NEW METHOD FOR SOLVING 
HARD COMBINATORIAL PROBLEMS 

Arkadij Zakrevskij 

Abstract: A new method for solving some hard combinatorial optimization problems is suggested, admitting a 
certain reformulation. Considering such a problem, several different similar problems are prepared which have 
the same set of solutions. They are solved on computer in parallel until one of them will be solved, and that 
solution is accepted. Notwithstanding the evident overhead, the whole run-time could be significantly reduced due 
to dispersion of velocities of combinatorial search in regarded cases. The efficiency of this approach is 
investigated on the concrete problem of finding short solutions of non-deterministic system of linear logical 
equations.  
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Introduction 
There exist some hard combinatorial optimization problems that could be solved on computer by many different 
ways, and it is practically impossible to say in advance which of these ways will lead to the solution quicker. 
Moreover, the run-times for these ways may differ very much, in tens, hundreds, thousands and more times. 
Unfortunately, we do not know beforehand, which of them is better for the concrete input data.  
In such a case, it would be more profitable to use several competing ways simultaneously and organize parallel 
computations looking for the solution, terminating them as soon as one of the competitors will find the solution.  
In other words, a problem under solution could be changed for a selection of other problems solved in parallel. 
These new problems could seem quite different, but nevertheless they should be equivalent to the initial problem, 
that means they will have the same set of solutions. The overhead expenses for constructing these sets of new 
problems and dealing with them can be compensated with interest by the essential acceleration of the search for 
solution of the considered problem. 
That idea is demonstrated below by the problem of finding a short solution of an undefined system of linear 
logical equations.  
 

Solving Linear Logical Equations 
Let us regard a system of m linear Boolean equations with n variables 
 

   a11x1 ⊕ a12x2 ⊕ …⊕ a1nxn = y1 ,  
    a21x1 ⊕ a22x2 ⊕ …⊕ a2nxn = y2 ,       (1) 
      … 
   am1x1 ⊕ am2x2 ⊕ …⊕ amnxn = ym , 
 

where ai j are the Boolean coefficients of the system, xj – unknown variables (ai j, xj ∈ {0, 1}, i = 1, 2, …, m, 
j = 1, 2, …, n),  ⊕  is the EXOR operator.  
This system can be represented in the compact matrix form: 
 

     A x  =  y ,       (2) 
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where A is a Boolean m×n coefficient matrix,  x = (x1, x2, …, xn)  and  y = (y1, y2, …, ym) – Boolean vectors. AND 
operator is used as an internal one, and EXOR as the external one for the matrix multiplication.  
 

       n 
     ⊕ ai j xj  = yi .      (3) 
                      j = 1 
 

Solutions (roots) of this system are the sets of variable values, for which all equations will be satisfied. In this 
case EXOR sum of the columns of matrix A, corresponding to the component-wise sum by modulo 2 of the 
columns of A, which correspond to the variables having value 1, should be equal to the column y. The system 
can be deterministic (defined, having the single solution), non-deterministic (undefined, several solutions exist) or 
contradictory (over-defined), where there are no solutions [1, 2]. Let us assume below that  n > m  and all rows of 
A  are linearly independent, so the system is non-deterministic. Then the number of possible solutions is equal   
to  2n−m.  
A great property of the linear equations is that they can be solved in regard of any variable. An effective Gauss 
method of variable exclusion is based on this property [3] and allows finding the only solution for a deterministic 
system or the set of all possible solutions for a non-deterministic one. But it is not sufficient when some optimal 
solution should be selected from that set which could be very large. 
For instance, solving a non-deterministic system of linear logical equations A x  =  y, it is necessary sometimes to 
find a solution with minimum number of unknown variables  x1, x2, …, xn  taking value 1 – such a solution is called 
shortest. That is important in many practical cases, for instance, when logic circuits in AND/EXOR basic are 
synthesized [4-6] or when some problems of information security are considered.    
 

Looking for Short Solutions of Systems of Linear Logical Equations 
Evidently, a shortest solution could be found by means of selecting from matrix A one by one all different 
combinations of columns, consisting first of 1 column, then of 2 columns, etc. and examining each of them to see 
if their sum equals vector y. As soon as it happens, the current combination is accepted as the sought-for 
solution. That moment could be forecasted. If the weight of the shortest solution (the number of 1s in vector x) is  
w, the number N of checked combinations is defined approximately by the following formula, where Cni  is the 
number of i-element subsets taken from a set of n elements:  
 

        w 

            N  = Σ Cni .       (4) 
       I=0 
 

It could be very large, as is demonstrated below. 
It was shown [7], that the expected weight γ of the shortest solution of an SLLE with parameters m and n can be 
estimated before finding the solution itself. We represent this weight as a function γ (m, n). First we find the 
mathematical expectation α (m, n, k) of the number of solutions with weight  k. We assume that the considered 
system was randomly generated, which means that each element of A takes value 1 with the probability 0.5 and 
any two elements are independent of each other. Then the probability that a randomly selected column subset in 
matrix A is a solution equals 2-m (the probability that two randomly generated Boolean vectors of size m are 
equal). Since the number of all such subsets having k elements equals  Cnk = 

!)!(
!

kkn
n

−
, we get: 

 

    α (m, n, k) = Cnk 2-m.            (5) 
 

Similarly, we denote as β (m, n, k) the expected number of the solutions with weight not greater than k:  
 

            k 
    β (m, n, k) = Σ Cni 2-m.                                 (6) 
           i=0  
 

Now, the expected weight γ of the shortest solution can be estimated well enough by the maximal value of k, for 
which β (m, n, k) < 1: 
 

   γ (m, n) = k,       where β (m, n, k) < 1 ≤ β (m, n, k+1).                      (7) 
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For example, for a system of 40 equations with 70 variables the expected weight γ equals 10, and reaches 31 
when m = 100 and n = 130.  
In the last case, the described above simple algorithm should check about 1030 combinations, according to 
formula (4) in which w = γ. Examining them with the speed of one million combinations per second we need about 
30 000 000 000 000 000 years to find the solution. Practically impossible! 
A great acceleration can be achieved by using Gaussian method of variables exclusion [3] developed for solving 
systems of linear equations with real variables and adjusted for Boolean variables [5]. It enables to avoid 
checking all subsets of columns from A which have up to w columns, when only one of 2n-m regarded 
combinations presents some roots of the system.   
Its main idea consists in transforming the extended matrix of the system (matrix A with the added column y) to 
the canonical form. A maximal subset of m linear independent columns (does not matter which one) is selected 
from A and by means of equivalent matrix transformations (adding one row to another) is transformed to I-matrix, 
with 1s only on the main diagonal. That part is called a basic, the rest n − m columns of the transformed matrix A 
constitute a remainder. The column y is changed by that, too. 
According to this method the subsets of the remainder are regarded, i.e. combinations selected from the set 
which has only n – m columns (not all n columns!). It is easy to show that every of these combinations enables to 
get a solution of the considered system (any sum of its elements can be supplemented with some columns from 
matrix I to make it equal to y). When we are looking for a shortest solution using this method, we have to consider 
different subsets of columns from the remainder, find the solution for each such subset and select a subset, which 
leads to the shortest solution. If it is known that the weight of the shortest solution is not greater than w, then the 
level of search (the cardinality of inspected subsets) is restricted by w. Note that if w ≥ n – m, then all 2n–m subsets 
must be searched through.  
Now, for the same example (m = 100 and n = 130), N ≅ 109, which means that the run-time of Gaussian method 
is about only 17 minutes.  
Unfortunately (for practical application), it rises very quickly when increasing parameters m and n. For example, 
when m = 625 and n = 700, the number of checked combinations reaches 275 and the run-time surpasses one 
milliard years.  
It could be significantly reduced when we know that there exists a short solution with weight w less than γ. For 
example, the following situation could be imagined. A random matrix A is generated, then w columns are selected 
by random, and their component-wise modulo 2 sum is defined as vector y.  
In that case the search (checking different solutions one by one in order to find a shortest one) could be 
interrupted as soon as the weight  v  of the current solution satisfies the inequality  v < γ, and we may conclude 
that the sought-for solution is found. This idea lies in the base of the recognition method [8, 9]. 
 

The Level of Search and its Dispersion 
Suppose, a short solution exists presented by w columns of matrix A (their sum equals vector y). Let p of them 
belong to the remainder. Then this solution will be found when such subsets of columns from the remainder are 
checked which have exactly p elements. In other words, the solution will be found on the level of search L when 
this one equals p.  
That quantity depends, first, on the regarded example (how matrix A was generated) and, second, on the way of 
getting the remainder - how m linearly independent columns were selected from initial matrix A, splitting that 
matrix into two parts, basic and remainder.  
Chances to discover a solution with weight w on the low search level L = k can be estimated as follows. Let us 
regard an m-component Boolean vector a having n-component subvector a*. There exist Cmw different values of 
vector a with w ones. Suppose all of them are equiprobable. The number of those which have exactly k ones in 
subvector a* (by that k ≤ n) is estimated by formula  Cnk Cm-nw-k. So, this number comes to 100 Cnk Cm-nw-k / Cmw 
percent of the number of values of vector a with w ones. 
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An experiment was conducted, where 10 different Boolean matrices A were generated at random with 
parameters n  500 and m = 430. In each of them 30 different subsets of linearly independent columns were 
selected and corresponding canonical forms were constructed, which produced 300 variants of the remainder. 
A set of 75 columns was chosen from A by random constituting a short solution - their sum was accepted as 
vector y. 
All intersections of that set with remainders were found. The cardinalities of these intersections (numbers of 
columns in them) define the level of search L on which the considered short solution will be found. The values of 
L for all 300 variants are shown in Table 1. Its columns correspond to different examples (i) of system and the 
rows correspond to different remainders in them (j) selected at random.  

Table 1. Dispersion of level L in space of examples and remainders 
j \ i 1 2 3 4 5 6 7 8 9 10 
1 10 13 12 12 16 11 13 10 12 13 
2 8 9 13 9 9 10 11 10 7 9 
3 10 10 11 9 11 13 11 10 12 14 
4 10 8 11 11 10 8 12 10 13 11 
5 10 11 14 6 11 8 17 15 10 6 
6 12 6 7 10 12 11 11 12 8 16 
7 9 11 8 9 10 12 8 9 8 17 
8 8 15 6 13 14 16 15 12 12 12 
9 10 13 9 5 14 11 13 6 16 10 
10 14 15 9 8 11 10 8 6 13 12 
11 14 12 10 12 6 10 12 15 13 9 
12 8 9 12 16 16 7 18 11 9 12 
13 9 11 6 13 15 9 9 10 10 9 
14 14 12 9 14 6 9 7 13 11 13 
15 9 5 13 12 11 10 7 13 9 16 
16 13 16 6 15 10 7 4 10 11 13 
17 6 10 15 13 11 11 13 11 9 12 
18 9 9 10 11 10 6 14 8 10 12 
19 5 15 7 11 10 16 9 12 9 13 
20 11 11 7 8 7 7 11 9 13 10 
21 8 12 10 8 8 13 9 6 12 8 
22 15 8 11 8 16 6 12 11 15 5 
23 10 12 7 14 11 12 13 13 9 9 
24 10 9 10 12 4 10 12 11 10 10 
25 9 11 10 10 11 11 14 9 7 19 
26 11 14 8 10 11 5 14 8 12 10 
27 11 12 14 9 10 7 14 11 11 8 
28 18 12 13 12 6 8 8 10 12 11 
29 12 12 7 9 14 12 7 8 9 12 
30 10 7 6 11 13 8 11 15 11 18 

 

As one can see from the table, the level of search L is subjected to a great dispersion, varying from 4 up to 19. 
But this dispersion is surpassed in many times by the dispersion of the corresponding run-times, as is 
shown below.  
The values of run-time for the same examples were obtained, using PC COMPAC Presario, 1000 MH, and  
presented in Table 2, being measured in seconds (s), minutes (m), hours (h), days (d) and years (y). 
The distribution of levels is shown on the right side of the table, N indicating the number of entries with value L in 
Table 1.  
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Note that fulfilled experiments were virtual ones: the run-time was not measured directly but was calculated by 
the method suggested in [10] and ensuring a rather good approximation. 
 

Table 2. Dependence of run-time T on level L 

L T N  
4 1.6s 2 11 
5 22s 5 11111 
6 4m 16 1111111111111111 
7 38m 16 1111111111111111 
8 5h 27 111111111111111111111111111 
9 1.5d 36 111111111111111111111111111111111111 
10 10d 44 11111111111111111111111111111111111111111111 
11 55d 44 11111111111111111111111111111111111111111111 
12 280d 39 111111111111111111111111111111111111111 
13 3.6y 27 111111111111111111111111111 
14 15y 16 1111111111111111 
15 59y 12 111111111111 
16 214y 10 1111111111 
17 713y 2 11 
18 2213y 3 111 
19 6394y 1 1 

 

Method of Randomized Parallelization 
It logically follows from the tables 1 and 2 that efficient algorithms for finding short solutions may be constructed 
which use the presented great dispersion of values L and T on the sets of examples and remainders. 
These are algorithms of randomized parallelization, which instead of one canonical form of the system (A, y) use 
q canonical forms of the same system with different basics selected at random (and remainders defined by 
them)..Using these forms one by one, such an algorithm consecutively increases the cardinality of checked 
combinations of columns. That means that it looks for the short solution at first on level  L = 0, then on level  L = 
1, then on level  L = 2, etc., until a solution with weight w will be found in some form, which satisfies inequality  
w < γ . In that case the algorithm terminates.  
 

Experiments 
Some results of the program virtual implementation of that algorithm for different values of q are shown in 
Table  3. Thirty examples of random systems with parameters n = 1000, m = 900 and the weight of the short 
solution w  = 100 have been generated and solved. The following denotation is used in the table:  

No  is the number of the regarded example, 
N  is the number of form where the short solution was found, 
L  is the level at which it was found, and  
T  is the time spent for it.   

Note that value 1 of parameter q corresponds to the pure Gaussian method dealing with only one canonical form 
of the system. Changing it for pseudo-parallel algorithm on the base of 300 forms we accelerate finding the short 
solution on an average in 46 million times.  
The immense acceleration! 
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Table 3.  Results of solving non-deterministic systems of linear logical equations with parameters  
n = 1000,  m = 900,  w = 100. 

  q = 1  q = 10  q = 30  q = 300 
No  N L T  N L T  N L T  N L T 
1  1 8 7d  9 6 16h  9 6 18h  33 4 19m 
2  1 9 69d  8 6 14h  16 5 2h  254 2 4m 
3  1 10 2y  7 7 7d  28 6 2d  234 2 4m 
4  1 13 776y  3 6 5h  3 6 8h  117 3 5m 
5  1 3 4s  1 3 4s  1 3 5s  1 3 4m 
6  1 10 2y  5 7 5d  26 5 3h  56 2 4m 
7  1 12 112y  9 4 3m  9 4 3m  57 3 5m 
8  1 8 7d  10 5 1h  10 5 1h  106 3 5m 
9  1 12 112y  10 5 1h  28 4 10m  141 3 6m 

10  1 9 69d  2 6 4h  2 6 6h  95 2 4m 
11  1 13 776y  7 8 82d  15 4 5m  50 2 4m 
12  1 13 776y  9 8 104d  14 5 2h  117 3 5m 
13  1 10 2y  8 6 14h  8 6 16h  35 3 4m 
14  1 6 58m  1 6 2h  1 6 4h  39 3 4m 
15  1 6 58m  1 6 2h  11 5 1h  134 3 6m 
16  1 14 4954y  2 8 27d  28 4 10m  205 3 7m 
17  1 6 58m  1 6 2h  14 5 2h  49 3 4m 
18  1 10 2y  2 7 2d  27 5 3h  285 2 4m 
19  1 13 776y  8 7 8d  8 7 9d  84 3 5m 
20  1 10 2y  2 6 4h  2 6 6h  203 4 1,3h 
21  1 8 7d  7 5 45m  7 5 52m  93 4 39m 
22  1 7 13h  10 6 17h  27 4 9m  190 3 6m 
23  1 12 112y  2 5 13m  16 2 4s  16 2 4m 
24  1 15 29185y  4 7 4d  24 6 2d  226 2 4m 
25  1 10 2y  2 6 4h  2 6 6h  46 3 4m 
26  1 13 776y  9 7 9d  16 5 2h  112 4 45m 
27  1 10 2y  6 8 71d  16 4 6m  281 3 8m 
28  1 12 112y  7 8 82d  18 6 1d  87 3 5m 
29  1 12 112y  6 4 2m  6 4 2m  254 2 4m 
30  1 12 112y  7 8 82d  22 6 2d  31 4 18m 

The sum:    38704y    1,3y    20d     5,3h 
 

Conclusion 
A new approach to solving hard combinatorial optimization problems is suggested, demonstrated on the problem 
of finding a short solution of a non-deterministic system of linear logical equations. Its idea is in changing the 
regarded problem for a set of other similar problems equivalent to the given one and solving them in parallel. The 
run-time could be considerably reduced by that, possibly in many millions times, as some results of computer 
experiments show.  
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THE BOUNDARY DESCRIPTORS OF THE n-DIMENSIONAL UNIT CUBE SUBSET 
PARTITIONING1 

Hasmik Sahakyan,  Levon Aslanyan 

Abstract: The specific class of all monotone Boolean functions with characteristic vectors of partitioning of sets of 
all true-vertices to be minimal is investigated. These characteristic vectors correspond to the column-sum vectors 
of special (0,1)-matrices – constructed by the interval bisection method. 

Keywords: monotone Boolean functions, (0,1)-matrices. 
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1. Introduction 

The problem of general quantitative description of vertex subsets of n  dimensional unit cube nE , through their 
partitions, the existence problem and composing algorithms for vertex subsets by the given quantitative 
characteristics of partitions are considered. Each of these sub-problems has its own theoretical and practical 
significance. The existence and composing problems are studied intensively [BI, 1988; C, 1986; S, 1986], but the 
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