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Conclusions  
The presented method of determining the critical points is based on the graph theory and some features of the 
adjacency matrix, which represents graphs. Searching for critical points in computer networks, as it follows from 
the above researches is characterized with a large complexity and requires applying of a great computational 
performance. However, the main advantage of this method is a fact that is uses homogenous structures, and the 
computations itself are of the same type. Presented experiments were implemented and realized on the 
multiprocessor cluster and the results of these experiments are presented in the above table. Analyzing these 
experimental results, the conclusion may be drawn independently. 
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Introduction  
Operating speed of digital logic devices depends on type of silicon: PLD, Gate Array or ASIC. FPGAs are the 
lowest in risk, low in project budget but have the highest cost per unit. Gate Arrays utilize less custom mask 
making than standard cell and stand in the middle from all of three and fallen from wide use today. Cell based 
ASICs have the highest performance and lowest cost per unit in case of mass production, but they also have the 
longest and most expensive design cycle. Also, digital designs can be divided on CPU based systems on chip 
(SoC) and non-CPU logic devices. CPU as universal processing unit can solve broad spectrum of various tasks 
from all areas of human activity. Nevertheless, there exist bottlenecks where CPU can’t satisfy required 
performance. Usually it happens during implementation of mathematical tasks that require big number of 
iterations and hence big time expenses to obtain desired result with desired accuracy.  
To increase efficiency of solving of computational tasks there are used mathematical co-processors, which 
implement most efficient ways of computing equations, integrals, differential coefficients. It is obvious that after 
discovering of new methods of increasing computation accuracy and decreasing computation time it is necessary 
to re-implement mathematical co-processors or use new generation of IP-cores in PLD, Gate Array, ASIC 
designs. It is presented, easy to implement as IP-core, method of reduction of computation of certain types of 
series to exact function that is widely used during calculation of parameters of high radio frequency devices. 
Presented method decrease computation time of such tasks in tens and hundred times and its inaccuracy is 
equals to zero. 

Statement of the Problem 
The investigation is based on fundamental works of Aronzajn [1], Razmahnin, Yakovlev [2]. It develops the 
following research [10-12] on Series Summation in Reproducing Hilbert Space and their approbation [19-22]. 
Modern papers of Saitoh, Laslo Mate, Daubeshies and others [3-9] are used for revues and staying problem. 
Classical papers of Tranter, Doetsch, Ango, Titchmarch, Ahiezer [13-18] are used for inter-comparison of results.  
Mathematical models based on Reproducing Kernel Hilbert Space methods are used in Wavelets Analysis, 
namely: at Pattern Recognition, Digital Data Processing, Image Compression, Computer Graphics; and also in 
Learning theory: for example, at Exact Incremental Learning, in Statistical Learning theory, in Regularization 
theory and Support Vector Machines. In mentioned arias we have not deal with exact Series Summation because 
it isn’t necessary for considered cases. We use sum and finite summation, not series. But there are areas of 
scientific study where exact series summation it is necessary.  
For such problems Reproducing Transformations Method and its part – Series Summation Method in RKHS – 
can be useful [20, 22]. We are going to point out these areas. 
The purpose of the investigation is to originate a new Series Summation Method based on RKHS-theory and to 
demonstrate the new results which develop theoretical statements of Series Summation Method in RKHS. 
The research problems are: 

 Series Summation in RKHS 
 Applications of Series Summation in RKHS 
 Reproducing Transformations Method as a perspective of this research  

Base Theoretical Statements and Investigation Essence 
Reproducing Kernel Hilbert Space is a subspace of Hilbert space with Reproducing Kernel (RK). RK is a function 
Ker of two variables with two properties: 1) Tt∈∀  T)t,s(Ker ∈0 ; 2) Hf ∈∀  >=< )t,s(Ker),s(f)t(f , 
where <…> – inner (scalar) product can be represented as a series on selective values. There is an operator G, 
which transfers any function from Hilbert space 2L  into function from RKHS and leaves without change function 
from RKHS H. 
Thus, there is an operator G , which transfers any function from Hilbert space 2L  into function from RKHS and 
doesn’t change any function from RKHS H .  
For example, the functions with finite spectrum of cosine- and sine-transformations and Hankel-transformation 
form RKHS. The basic research of expansion problem on selective values was executed by К. Shannon and 
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V.А. Kotelnikov. There are statements determining particular cases RKHS. Thus, any function from RKHS can be 
represented as selective value expansion. If there is series where the common summand can be reduced to a 
standard form, – it means to extract reproducing kernel by equivalent transformations, – then for any series one 
can put in accordance a function from RKHS. In other words, a series can be summarized by known formulas.   
Thus, the main idea of proposed method is to obtain and to use the following relation: 

∑=
k

kk )t,s(Ker)t(f)s(f , 

in right-hand side of this relation we can see a series on selective values of function f(t); left-hand side represents 
value of function f in point s. 
 We use four base kinds of Reproducing Kernels, which originate four RKHS accordingly [21]: 
1. RKHS 1H  is a space of functions, which have finite Fourier-transformations. 
2. Space 2H  contains a class of functions with finite Hankel-transformation. 
3. Space 3H  consists of functions with finite sine-transformations. 
4. Space 4H  has all functions, those cosine-transformations are finite. 
For these spaces there are four Kernel Functions and Series on selective values accordingly [21]. 
Based RKHS-theory the new approach to definition of series sum is proposed. It is called Series Summation 
Method in RKHS. 
It allows analytically obtaining alternative representations for some kinds of series in the finite form [10].  
The new formulas for calculating the sum of series (including alternating) have been obtained by proving several 
theorems [10, 12].  
Reproducing Transformations Method are generalization and extension of Series Summation method in RKHS 
[20, 22]. It can be useful at solving mentioned problems and other important points. It needs further evolution and 
consideration.  
For example, we can see proving the following formula. 
Theorem 1. There is the following relation for alternating series  
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Proof. Let’s consider alternating series the common member of which contains the difference of powers in 
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2) For 2=n  the result obtained in [10]: 
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3) For 3=n  we can obtain result by recurrent way with accounting formula (2) and using the decomposition of 
difference of cubes: 

=
++−

−
=

−
− ∑∑

∞

=

∞

= 1
22

1
33

11
k

k

k

k

)kaka(
)k(F

)ka(
k)(

ka
)k(kF)( =

++

+

−

−
∑
∞

=1 2222
1

k

k

)kaka(
)k(F)ka(

)ka(
k)(  

)a(
asin)kaka(

)k(F)ka()k( Φ
π2

πΦ 22 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

+
==

asina
)a(F

a
)a(aF

asin π3
π

3
2

π2
π

2 == . 

4) For 4=n  we can obtain: 
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5) For 5=n  we can obtain with decomposition by difference of fifth powers the following result: 
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6) For 6=n  we can analogically obtain: 
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Thus, based on mentioned transformations we can conclude: 
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Thus, the theorem 1 has been proof. 
The following examples illustrate application of the theorem 1.  
Example 1. To proof of the following formula truth: 
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the residues theory is used in [23]. However, application of the theorem 1 gives the same result: 
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Example 2. To proof of the following identity truth Laplace transformation is used [24]. However application of the 
theorem 1 reduces to the same result but it is simpler solution: 
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Example 3. To proof of the following identity truth  
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we can apply the theorem 1. Also we can show numerically this result (see fig. 1, 2). On Fig. 1 there are two 
diagrams in the equal co-ordinates for parameter 52,a = . Graphs of function from right-hand side of (3) (the 
bold curve) and left-hand side (thin curve) of (3). Fig. 2 demonstrates the absolute uncertainty.  
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Fig. 1. Results comparison                                                  Fig. 2. Absolute error  

 

Conclusion  
Thus, we can direct the following areas for applications of new Series Summation Method: 
– Exact summation of series; 
– solving summatory equations and its systems; 
– solving integral equations and its systems; 
– solving integral-summatory equations and systems of complex form; 
– proving integral identities. 
Mentioned areas can be used at solving some problems of: antenna theory; diffraction theory; electrodynamics 
and can be useful at Software/Hardware implementations (See Fig. 3).  
The obtained results allow making the following conclusions:  
1) RKHS-theory can be used for summation of selected series. For this purpose, Series Summation Method in 

RKHS has been proposed.  
2) Advantages of this method consist of:  

–  application of equivalent transformations to the common member of a series, that enables to obtain the 
analytical solution for smaller quantity of steps;  

–  in absence of necessity to use the tables of integral transformations and to use the integration in 
complex area.  

3) The application of obtained results of RKHS-theory for solving the boundary electrodynamics problems 
gives possibility to simplify known methods and to receive on their basis the analytical solutions, that is 
represented as essential for the further numerical experiment;  

4) New mathematical results for solving the summatory and integral equations are obtained by proving some 
theorems. 
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5) The obtained results can be included into the reference mathematical library and implemented into 
Mathematics program products, MathCAD, Math Lab means. It can be useful for scientists, engineers, 
mathematics at solving the different problems.  
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Fig. 3. Application arias of Series Summation in RKHS 
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FUZZY SETS: ABSTRACTION AXIOM, STATISTICAL INTERPRETATION, 
OBSERVATIONS OF FUZZY SETS 

Volodymyr Donchenko 

Abstract: The issues relating fuzzy sets definition are under consideration including the analogue for separation 
axiom, statistical interpretation and membership function representation by the conditional Probabilities. 

Keywords: fuzzy sets, membership function, conditional distribution 
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Introduction 
Fussy sets introduced by Lotfi Zadeh [Zadeh, 1965] (see also [Kaufmann, 1982]) were considered on the one 
hand as the modeling method alternative to statistical ones which ought to realized the idea of uncertainty, 
vagueness in the situation under consideration, on the other – as the theory which should to generalize the 
classical Set theory.  
Such generalized pretensions syringed up on the fuzzy logic, which considered as the algebra with two binary 
operations namely max and min on the real numbers from the interval [0,1] for which all the properties of classical 
Boolean operations are valid excepting the low of excluded middle. Nevertheless nothing out of this frame in the 
fuzzy logic was considered. Particularly, such axiom of paramount importance known as abstraction [Stoll, 1960] 
or separation [Kuratovski K, Mostowski A.б 1967] principle was out of consideration. As is well known this 


