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 THE DEVELOPMENT OF THE GENERALIZATION ALGORITHM  
BASED ON THE ROUGH SET THEORY 

Marina Fomina,  Alexey Kulikov,  Vadim Vagin 

Abstract: This paper considers the problem of concept generalization in decision-making systems where such 
features of real-world databases as large size, incompleteness and inconsistence of the stored information are 
taken into account. The methods of the rough set theory (like lower and upper approximations, positive regions 
and reducts) are used for the solving of this problem. The new discretization algorithm of the continuous attributes 
is proposed. It essentially increases an overall performance of generalization algorithms and can be applied to 
processing of real value attributes in large data tables. Also the search algorithm of the significant attributes 
combined with a stage of discretization is developed. It allows avoiding splitting of continuous domains of 
insignificant attributes into intervals. 
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algorithm. 
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1. Introduction 
Many enterprises in the various areas create and maintain huge databases with information about their activity. 
However without the productive analysis and generalization such streams of the "raw" data are useless. Due to 
the application of methods for information generalization in decision making systems, the construction of the 
generalized data models and processing of large arrays of experimental data are possible. There are sources of 
such large dataflows in many areas. Application domains of methods for generalization include marketing, 
medicine, the space researches and many others. Common for these data is that they contain a great many of 
the hidden regularities, which are important for the strategic solutions making. However, the discovery of these 
regularities lays outside the human possibilities mainly because of large and permanently increasing size of the 
data. Therefore the methods for generalization and computer systems implementing these methods are used to 
derive such regularities. 
Concept generalization problem under redundant, incomplete or inconsistent information is very actual. The 
purpose of this paper is to consider opportunities of the using the rough set theory for solution of a problem of 
generalization, and to propose the methods improving work of known algorithms. The new discretization 
algorithm of continuous attributes and the search algorithm of the significant attributes which essentially increase 
an overall performance of algorithms for generalization will be proposed. 

2. Statement of the Generalization Problem 
For the description of object we will use features a1, a2, …, ak , which are further called attributes. Each object х is 
characterized by a set of given values of these attributes: х={v1, v2, …,vk}, where vi is value of the i-th attribute. 
Such description of an object is called feature description. For example, the attributes may be a color, a weight, a 
form, etc.  
Let we have a training set U of objects. It contains both the positive examples (which are concerning to interesting 
concept) and the negative examples. The concept generalization problem is the construction of the concept 
allowing the correct classifying with the help of some recognizing rule (decision rule) of all positive and negative 
objects of training set U. Here the construction of the concept is made on the basis of the analysis of a 
training set.  
Let's introduce the following notions related with set U. Let U = {x1, x2, …, xn} is a non-empty finite set of objects. 
A = {a1, a2, …, ak} is a non-empty finite set of attributes. For each attribute the set Va is defined which refers to 
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the value set of attribute a. We will denote given value of attribute a for object x∈U by a(x). At the decision 
of a generalization problem often it is necessary to receive the description of the concept, which is specified 
by value of one of the attributes. We will denote such attribute d and call it decision or decision attribute. The 
attributes which are included in A are called conditional attributes. The decision attribute can have some values 
though quite often it is binary. The number of possible values of a decision attribute d is called the rank of the 
decision and is designated as r(d). We will denote the value set of the decision by Vd ={ 1 2 ( ), ,...,d d d

r dv v v }. The 
decision attribute d defines the partition of U into classes Сi = {x∈U: d(x)= d

iv }, 1≤i≤r(d).   
Generally the concept generated on the basis of training set U is an approximation to concept of set X, where the 
closeness degree of these concepts depends on the representativeness of a training set, i.e. how complete the 
features of set X are expressed in it. 

3. Basic Notation of the Rough Set Theory 
The rough set theory has been proposed in the beginning of 80th years of the last century by the Polish 
mathematician Z. Pawlak. Later this theory was developed by many researchers and was applied to the decision 
of various tasks. We will consider how the rough set theory can be used to solve concept generalization problem 
(also see [1-8]).  
In Pawlak’s works [1, 9] the concept of an information system has been introduced. An information system is 
understood as pair =S ( , )U A , where U = {x1, x2, …, xn} is a non-empty finite set of objects named training set or 
universe, and A = {a1, a2, …, ak} is a non-empty finite set of attributes. A decision table (or decision system) is 
an information system of the form = ∪S ( , { })U A d , where d∉A is a distinguished attribute called decision or 
decision attribute, A is a set of conditional attributes. 
Let us introduce the indiscernibility or equivalence relation on the training set U: ⊆ ×( )IND A U U . We will say, 
that if (x, y) ∈ ( )IND A  then x and y are indiscernible by values of attributes from A. A set of equivalence classes 
of relation IND(A) is denoted by { 1

AX 2
AX  , …, A

mX }. Then we can approximately define set X using attribute 
values by the constructing of the lower and upper approximations of X, designated by AX  and AX  respectively. 
As a lower approximation of set X we will understand the union of equivalence classes of an indiscernibility 
relation which belongs to X, i.e. = ⊆U { | }A A

i iAX X X X . And as an upper approximation of set X we will 
understand the union of equivalence classes which part of objects belongs to X, i.e. 

= ∩ ≠∅U { | }A A
i iAX X X X . The set \U AX will consist of negative objects for X. A set 

POSA(d) = AC1∪…∪ACr(d) includes objects, which are guaranteed concerning to one of the decision classes, 
and this set is called positive region of the decision system S . 
Rough set X is formed by pair < >,AX AX . If upper and lower approximations of X are equal then X is an 
ordinary set. 
The equivalence relation can be associated not only with the full set of conditional attributes A but also with 
any attribute subset B⊆A. Further this relation is denoted as IND(B) and is called a B-indiscernibility 
relation. Formally the B-indiscernibility relation is defined as follows: IND(B) = {(x, y) ∈ U×U: ∀a∈B (a(x) = 
a(y))}. 
Thus two objects belong to same equivalence class, if they cannot be discerned by the given subset of attributes. 
The concepts of B-upper and B-lower approximations based on IND(B) are similarly introduced. 
Since it is not always possible to find a single-valued decision for all objects of a decision system, we will 
introduce notion of a generalized decision. We will define function ∂B: U→P(Vd) which is called a generalized 
decision of S  on a set of attributes B⊆A, as follows: ∂ = ∈ ∃ ∈ ∧ =( ) { : '  ( ' ( )   ( ') )}B dx v V x U x IND B x d x v . The 
generalized decision ∂A of a system S  is simply called the generalized decision of S . Instead of ∂A we also 
will write ∂S . The decision table S  is consistent, if |∂A(x)|=1 ∀x∈U, otherwise S  is inconsistent. 
Since not all conditional attributes are equally important, some of them can be excluded from a decision table 
without loss of the information contained in the table. The minimal subset of attributes B⊆A which allows to keep 
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the generalized decision for all objects of a training set, i.e. ∂B(x) = ∂A(x) ∀ ∈x U , is called a decision-relative 
reduction of a table = ∪S ( , { })U A d . In the sequel, when considering decision tables, instead of a decision-
relative reduction we will use a reduction. 
Now let us consider the methods for concept generalization. 

4. Methods of the Rough Set Theory 
Generally a work of the algorithm based on a rough set theory consist of the following steps: search of 
equivalence classes of the indiscernibility relation, search of upper and lower approximations, search of a 
reduction of the decision system and constructing a set of decision rules. Moreover discretization is applied to 
processing attributes with a continuous domain. In the case of the incomplete or inconsistent input information the 
algorithm builds two systems of decision rules, one of them gives the certain classification, the second gives the 
possible one. Further we will consider the most labour-consuming steps: search of reduction and 
discretization making. 

4.1. The Problem of Search of Reduction 
Let's consider the process of search of a reduction that is very important part of any method used the rough set 
approach. Quite often an information system has more than one reduction. Each of these reductions can be used 
in procedure of decision-making instead of a full set of attributes of original system without a change of 
dependence of the decision on conditions that is characteristic for original system. Therefore the problem of a 
choice of the best reduction is reasonable. The answer depends on an optimality criterion related to attributes. If it 
is possible to associate with attributes the cost function which expresses complexity of receiving attribute values 
then the choice will be based on criterion of the minimal total cost. Otherwise as a rule the shortest reduction is 
chosen. However the complexity of a search of such reduction consists in that the problem for checking whether 
exist a reduction, which length is less than some integer s, is NP-complete. The problem of searching for a reduction 
with minimal length is NP-hard [10]. 
Thus the problem of a choice of relevant attributes is one of the important problems of machine learning. There 
are several approaches based on rough set theory to its decision. 
One of the first ideas was to consider as the relevant attributes those attributes which contain in intersection of all 
reductions of an information system. 
Other approach is related to dynamic reductions [2], i.e. conditional attribute sets appearing "sufficiently often" as 
reductions of sub-samples of an original decision system. The attributes belonging to the "most" of dynamic 
reductions are considered as relevant. The value thresholds for "sufficiently often" and "most" should be chosen 
for a given data. 
The third approach is based on introduction of the notion of significance of attributes that allows by real values 
from the closed interval [0,1] to express how important an attribute in a decision table. 

4.2. Discretization Making 
The stage of discretization is necessary for the most of modern algorithms for generalization. The discretization is 
called a transformation of continuous domain of attributes in a discrete one. For example, the body temperature 
of the human being which is usually measured by real numbers can be divided into some intervals, corresponding 
to the low, normal, high and very high temperature. The choice of suitable intervals and partition of continuous 
domains of attributes is a problem, whose complexity grows in exponential dependence on the number of 
attributes to which discretization should be applied. 
Let's give formal definition of a considered discretization task. Let = ∪S ( , { })U A d  is a consistent decision 
system. We will assume that the domain of any attribute ∈a A  is a real interval, i.e. = ⊂[ , )a a aV l r R . Any pair of 
the form pa = (a, c) where ∈a A  and ∈c R , we will call cut on areas Va. For each attribute ∈a A  a set Pa = 
{ +0 1 1 2 1[ , ),[ , ),...,[ , )

a a

a a a a a a
s sc c c c c c } where sa is some integer, la = 0

ac  < 1
ac <… < 

a

a
sc < +1a

a
sc  = ra and Va 

= +∪ ∪ ∪0 1 1 2 1[ , ) [ , ) ... [ , )
a a

a a a a a a
s sc c c c c c , we will call partition of a domain Va. It is easy to notice, that the partition Pa is 
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uniquely defined by Ca = { 1
ac 2

ac , …, 
a

a
sc }, which is called set of cuts of Va. Therefore in the sequel we often will 

name Pa by a set of cuts and write down as Pa = ×{ } aa C = 1 2{( , ),( , ),...,( , )}
a

a a a
sa c a c a c . Then full set of cuts P can 

be presented as P =
∈

×U { } a
a A

a C . 

Any set of cuts P on the basis of an original decision system = ∪S ( , { })U A d  determines a new decision system 
= ∪S ( , { })P PU A d , where AP={aP: a∈A} and aP(x)=i ⇔  a(x)∈ +1[ , )a a

i ic c  for any object x∈U and i∈{0, …, sa}. A 
decision table SP  is called P-discretization of the table S . Our purpose is that during discretization to construct 
such set of cuts P. 
It is obvious, that is possible to construct many of sets of cuts. Therefore there is a question how among them to 
find set with the minimal number of elements. For this purpose we will introduce the following concepts. 
Two sets of cuts P  and 'P  we will regard as equivalent, if SP = S 'P . We will say that set of cuts P is consistent 
with S , if generalized decisions of systems S  and SP  are equal, i.e. ∂ =S ( )x ∂

S
( )P x  ∀ ∈x U . The consistent 

set of cuts Pirr is irreducible in S  if any its own subset is not consistent with S . Finally, the consistent set of cuts 
Popt we will call optimal in S  if it has the minimal cardinality among sets of cuts which are consistent with S . 
The problem of finding optimal set of cuts P for the given decision system S  is NP-complete [11]. This fact 
clearly speaks about importance of development of effective heuristic algorithms for search of suboptimal 
set of cuts. 
The general approach of the most of discretization algorithms is based that any irreducible set of cuts of a 
decision table S  is a reduction of other decision table = ∪S* ( *, * { *})U A d constructed on a basis of S  
as follows [11]. 
Let = ∪S ( , { })U A d  be an original decision table. An arbitrary attribute ∈a A  defines sequence 

< < <1 2 ...
a

a a a
nv v v , where 1 2{ , ,..., }

a

a a a
nv v v  = { ( ) :a x ∈ }x U  and ≤an n .  Objects of new decision table S *  are all 

pairs of objects of S  with different decisions, and the set of conditional attributes is defined as cuts of attribute 
domains of an original decision table, i.e. A* = {

∈

=U : ( , ),a a a
i i i

a A
p p a c  where }+= + ≤ ≤ −1( ) 2,  1 1a a a

i i i ac v v i n . 

These attributes are binary. Set A* is named an initial set of cuts. We will speak, that the cut = ( , )a a
i ip a c  

discerns objects x and y of different decision classes, if min(a(x), a(y)) < a
ic  < max(a(x), a(y)). A value of the new 

attribute corresponding to a cut a
ip  for pair (x, y) is equal to 1 if objects x and y are discerned by this cut, and 0 

otherwise. Moreover a new object ⊥  for which all conditions and the decision d* are 0 is added to the objects of 
a new decision table. For all other objects of a new decision table the new decision value is equal to 1. 
Reductions of a new decision table S *  determine all irreducible sets of cuts of an original decision table S . 
On the basis of this general layout the heuristic algorithms finding a suboptimal set of cuts are developed. Often 
the discretization algorithm based on straightforward implementation of Jonson's strategy [8,12] is used. 
Computational complexity of this algorithm is equal to O(|P|⋅kn3). It does its inapplicable for processing large 
databases. Thus, the main problem of  discretization stage of continuous attributes is its high computational 
complexity. Now we propose the effective modification that solves this problem. 

4.3. The Modification of the Discretization Algorithm 
Our algorithm is directed towards the decreasing of time and memory consumption. It is based on the Jonson's 
strategy and extension of idea of iterative calculation of number of pairs of objects, discerned by a cut. This idea 
has been offered in [4], however, originally, it is applicable only when some restrictions on the decision table are 
imposed. This idea is based on assumption that there is a close relation between two consecutive cuts. So, for 
example, it is possible to notice, that in each row of the table S *  all the cells with value 1 are placed successively 
within one attribute. Therefore some pairs of objects are discerned by both consecutive cuts, and changes in the 
number of discernible pairs of objects can be only due to objects which attribute values lay between two these 
cuts. In [4], the situation, when no more than one object lies in this interval, is considered. We generalize this idea 
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on a case of the arbitrary number of such objects. Thus, our algorithm extends idea of iterative calculating 
number of pairs of objects discerned by a cut to an arbitrary decision table. 
For some cut = ∈( , ) *a a

t tp a c A  for the attribute a where ∈a A  and ≤ ≤1 at n , and some subset ⊆X U  we 
introduce the following notation: ( )X a

tW p  is a number of pairs of objects from X discerned by a cut a
tp ; ( )X a

tl p  
and ( )X a

tr p  is the number of objects from X, which have a value of the attribute a less (more) than a
tc ; 

( )X a
q tl p and ( )X a

q tr p  is the number of objects from X, which have a value of the attribute a less (more) than a
tc  

and belong to the q-th decision class, where q = 1, …, r(d); +1( , )X a a
t tN p p  is the number of objects from X, values 

of the attribute a which lay in an interval +1( , )a a
t tc c ; +1( , )X a a

q t tN p p  is the number of objects from X, values of 
attribute a which lay in an interval +1( , )a a

t tc c  and belonging to the q-th decision class, where q = 1, …, r(d). 
Now we formulate two our theorems which underlie proposed discretization algorithm. The first theorem will allow 
us to derive value +1( )X a

tW p  from ( )X a
tW p , where a

tp  and +1
a
tp  are two consecutive cuts of a domain of the 

attribute a.  
Theorem 1. Let set ⊆X U  consists of +1( , )X a a

t tN p p  objects which values of the attribute a belongs to an interval 

+1( , )a a
t tc c . Then 
(a)  + =1( )X a

q tl p ++ 1( ) ( , )X a X a a
q t q t tl p N p p ∀ = 1,..., ( )q r d ; 

(b)  + =1( )X a
q tr p +− 1( ) ( , )X a X a a

q t q t tr p N p p ∀ = 1,..., ( )q r d ; 

(c)  + =1( )X a
tW p ( )++ ⋅ − −1( ) ( , ) ( ) ( )X a X a a X a X a

t t t t tW p N p p r p l p  

( ) ( )+ +
= =

− ⋅ − + −∑ ∑
( ) ( ) 2

1 1
1 1

( , ) ( ) ( ) ( , )
r d r d

X a a X a X a X a a
i t t i t i t i t t

i i
N p p r p l p N p p ( )+

2
1( , )X a a

t tN p p . 

Let's consider a case when during discretization we have a set of cuts ⊆ *P A  that defines equivalence classes 
X1, X2, …, Xm of the indiscernibility relation IND(AP) of table SP , and also two consecutive cuts a

tp  and +1
a
tp  of 

the attribute a. Then we can calculate value +1( )a
P tW p  from ( )a

P tW p  as follows: 

Theorem 2. Let there are K equivalence classes α α α1 2
, ,...,

K
X X X  to each of which belongs α

+ ≥1( , ) 1iX a a
t tN p p  

objects which values of attribute a are within an interval +1( , )a a
t tc c . Then  

+ = +1( ) ( )a a
P t P tW p W p ( )α α α

+
=

⎡ ⋅ − −⎣∑ 1
1

( , ) ( ) ( )i i i

K
X X Xa a a a

t t t t
i

N p p r p l p ( )α α α
+

=

⋅ − +∑
( )

1
1

( , ) ( ) ( )i i i

r d
X X Xa a a a
q t t q t q t

q
N p p r p l p

( )α
+

=

−∑
( ) 2

1
1

( , )i

r d
X a a
q t t

q
N p p ( )α

+
⎤
⎥⎦

2

1( , )iX a a
t tN p p . 

Now we present steps of our algorithm. We will name its GID (Generalized Iterative algorithm for Discretization). 
Algorithm 1. Algorithm GID. 
Input: The consistent decision table S . 
Output: Suboptimal set of cuts P. 
Used data structures: P is a suboptimal set of cuts, L = [IND( PA )] – the set of equivalence classes of an 
indiscernibility relation of the table SP ; A* - a set of possible cuts. 

1. P :=∅ ;  L := {U};  A*: = initial set of cuts; 
2. For each attribute ∈a A  do: 

begin 
=0( ) : 0a

PW p ; 
For each ∈iX L  do: 
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=:iX
ir X ;  =: 0iXl ; 

for q = 1,…, r(d) assign = ∈ =: { : ( ) }iX d
q i qr x X d x v ; =: 0iX

ql ; 

For each cut = ∈( , ) *a a
j jp a c A  do:  

For all classes α i
X  which objects have a value of attribute a from an interval −1( , )a a

j jc c  to 

calculate αiXN  and αiX
qN . 

Find ( )a
P jW p  according to the theorem 2. 

Count values α α,i iX Xr l  and α α,i iX X
q qr l  under the theorem 1. 

end; 
3. Assume as pmax the cut with maximal value ( )PW p  among all cuts p from A*. 
4. Assign = ∪ max: { }P P p ; = max* : * \{ }A A p ; 
5. For all ∈X L  do: if  pmax divides the set X into X1 и X2 then remove X from L and add to L two sets X1 

and X2. 
6. If all sets from L consist of the objects belonging to same decision class then Step 7 otherwise go to the 

Step 2. 
7. End. 

Let's estimate computational complexity of offered algorithm. The most labour-consuming steps of algorithm are 
the second and the fifth. 

On step 2, during calculation of number of pairs of objects discerned by a cut = ( , )a a
j jp a c  values αiXr , α iXl , 

αiXN  and αiX
qr , α iX

ql , αiX
qN  are changed, where q = 1, …, r(d). These operations are carried out only for those 

equivalence classes α i
X , even which one object satisfies to the condition of belonging of value of attribute a to 

interval ( −1,
a a
j jc c ). For one such equivalence class it will be executed 3 ⋅ r(d)+3 described operations. We will 

designate this number as α . It does not depend on the number of objects n and the number of attributes k. The 
number of such equivalence classes cannot exceed the number nj of objects which belong to them and which 
value of attribute a are in interval ( −1,

a a
j jc c ). Hence, during calculation ( )a

P jW p  for one cut a
jp  it is carried out no 

more than α ⋅ jn  operations. Therefore during processing all cuts of one attribute it will be executed 

α
−

=

⋅ ≤∑
1

1

n

j
j

n α ⋅n  operations. For processing the cuts of all k attributes it is required α ⋅kn  operations. The 

second step repeats |P | times. It means, that its total computational complexity is equal to O(|P| ⋅ kn). 
On step 5 splitting equivalence classes is carried out. We take the worse case when finally any class consists of 
exactly one object. Since there are n objects then during work of the algorithm it will be executed n-1 splitting 
operations. Hence, computational complexity of the fifth step is O(n). 
Thus total computational complexity of the proposed discretization algorithm is equal to O(|P| ⋅ kn) + O(n) = 
O(|P| ⋅ kn). It is less on two orders than computational complexity of Jonson's algorithm. 
Also we estimate the space complexity of our algorithm. It should be noticed that it does not build the auxiliary 
table S * . It is required only k(n-1) memory cells for a storing set of possible cuts from A*, n cells for designating 
an equivalence class to which belongs each of the objects, and no more than α ⋅n  cells for storing numbers iXr , 

iXl , iXN  and iX
qr , iX

ql , iX
qN  for all equivalence classes ∈iX L  where ≤i n  and q = 1,…, r(d) and the value α  

does not depend on k and n. Hence the space complexity of our discretization algorithm is equal to O(kn). It is 
less on the order than space complexity of Jonson's algorithm. For more details about our algorithm see [5, 6]. 
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4.4. The Modification of Algorithm for Searching the Significant Attributes 
In the majority of the algorithms which are based on the rough set theory and carrying out splitting of continuous 
attribute domains into finite number of intervals, the stage of discretization is considered as preparatory before 
search of significant attributes. And consequently at a stage of discretization there is a splitting of the domains of 
all continuous attributes, including insignificant. In this work the combined implementation of discretization with 
the search of a reduction is offered to make discretization only for those quantitative attributes which appear to be 
significant during search of a reduction. 
Besides, as significant attributes we will consider the attributes which are included in approximate reductions with 
sufficiently high quality. The concept of an approximate reduction [8] represents generalization of concept of the 
reduction considered earlier. Any subset B of set A can be considered as an approximate reduction of set A, 
and value  

( )( , )
( , ) ( , ) ( , )1

( , ) ( , )A d
dep A d dep B d dep B dB

dep B d dep A d
ε −

= = −  

is named a reduction approximation error. Here the value dep(B, d) represents a measure of dependence 
between ⊆B A  and d: dep(B, d) = |POSB(d)|/|U|. The reduction approximation error shows how precisely the set 
of attributes B approximates whole set of conditional attributes A (relatively d). Application of approximate 
reductions is useful while processing inconsistent and noisy data.  
Thus, the developed algorithm for search of significant attributes is based on two ideas: 1) combination of 
discretization of quantitative attributes with the search of significant attributes, 2) search for an approximation of a 
reduction, but no for reduction itself. Let's name it as Generalized Iterative algorithm based on the Rough Set 
approach, GIRS. 

4.5. Results of the Experiments 
The realized experiments show that the developed algorithm allows reducing time for search of significant 
attributes essentially, due to combination with discretization stage and use of proposed algorithm GID. 
The results of the experiments executed on 11 data sets from a well known collection UCI Machine Learning 
Repository [7] of the University of California are given in Table 1. 

 

Classification accuracy Data set ID3 C4.5 MD Holte-II GIRS 
Monk-1 81.25 75.70 100 100 100 
Monk-2 65.00 69.91 99.70 81.9 83.10 
Monk-3 90.28 97.20 93.51 97.2 95.40 
Heart 77.78 77.04 77.04 77.2 78.72 
Hepatitis n/a 80.80 n/a 82.7 84.51 
Diabetes 66.23 70.84 71.09 n/a 81.00 
Australian 78.26 85.36 83.69 82.5 88.71 
Glass 62.79 65.89 66.41 37.5 70.10 
Iris 94.67 96.67 95.33 94.0 96.24 
Mushroom 100 100 100 100 100 
Soybean 100 95.56 100 100 100 
Average 81.63 83.18 88.67 85.3 88.89 

Table 1. Comparison of classification accuracy of the developed algorithm  
with other known generalization algorithms. 

For all data sets taken into the comparison, the developed algorithm has shown classification accuracy that not 
concedes to other generalization algorithms, and in some cases surpasses it. Average accuracy of classification 
is approximately 88.9 %. It is necessary to note, that the classification accuracy received by our algorithm is much 
above that the classification accuracy achieved by methods of an induction of deciding trees (ID3, ID4, ID5R, 
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C4.5) at the solving the majority of the problems. It is explained by the impossibility of representation of the 
description of some target concepts as a tree. Moreover it is possible to note that combining of search of 
significant attributes and discretization procedure is very useful. Most clearly it is visible from the results received 
at the decision of the Australian credit task. It is possible to explain by the presence in these data the attributes 
both with continuous and with discrete domains. The modification of search procedure of significant attributes is 
directed namely to processing of such combination. 

Conclusion 
We have considered the concept generalization problem and the approach to its decision based on the rough set 
theory. The means provided by this approach have been shown. They allow solving the problem of processing of 
real-world data arrays. The heuristic discretization algorithm directed towards the decreasing of time and memory 
consumption has been proposed. It is based on Jonson's strategy and extension of idea of iterative calculating 
number of pairs of objects discerned by a cut. Computational and space complexities of the proposed algorithm 
have linear dependence on the number of objects of decision table. Also the search algorithm of the significant 
attributes combined with a stage of discretization is developed. It allows avoiding splitting into intervals of 
continuous domains of insignificant attributes. 
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