
International Journal "Information Theories & Applications" Vol.13

272

APPROACHES TO SEQUENCE SIMILARITY REPRESENTATION

Artem Sokolov, Dmitri Rachkovskij

Abstract: We discuss several approaches to similarity preserving coding of symbol sequences and possible
connections of their distributed versions to metric embeddings. Interpreting sequence representation methods
with embeddings can help develop an approach to their analysis and may lead to discovering useful properties.

Keywords: sequence similarity, metric embeddings, distributed representations, neural networks

ACM Classification Keywords: I.2.6 Connectionism and neural nets, E.m Miscellaneous, G.2.3 Applications

Introduction and Background
In various applications, it is necessary to search for similar sequences of data. Examples include (but are not
limited to) gene similarity search in biology, speech recognition, document database or Internet search,
comparison of network traffic flows in computer security systems or detecting dangerous deviations from normal
behavior of users by observing sequences of their actions.
There are many ways to formalize an intuitive notion of similarity ("looking the same") between strings1, e.g., by
edit distance. Given a set of edit operations, edit distance L(s,t) between string s and t is the minimum number of
edit operations needed to transform s into t. This definition benefits from being intuitive clear, simple to
understand, and is often motivated by applications (e.g. evolutionary arguments in biology).
The simplest edit distance is the Hamming distance that counts the number of positions where strings differ – or,
alternatively, the number of character changes needed to transform one string to another. Being simple (however,
very useful in some applications, e.g. error correction), it is not sufficient for many real-world symbol sequences.
A more general definition is the Levenshtein distance [Levenshtein, 1965], where operations are symbol changes,
insertions and deletions. Its exact value can be computed using dynamic programming algorithm in O(n2) time.
More flexible definitions extend the set of possible operations with block copies, moves, indels etc.
In applications, sequence length can be very large, especially in Internet and networking applications and/or
applications working with streaming data. Estimating their similarity requires fast algorithms, making time
consumption of exact algorithms prohibitive. For example, finding Levenshtein distance in quadratic time is not
fast enough. Finding minimum sequence of block edit operations is substantially harder – some versions of it
were proved to be NP-hard [Lopresti, Tomkins, 1997].
As representations allowing for a simple (element-wise) definition of similarity or distance, consider vector
representations of symbolic sequences. Let each element of a vector represent some item - e.g. some substring
of the input string. Depending on the chosen sets of substrings, we obtain representations known by different
names in literature. If items are all substrings of nearby symbols of length q and the vector contains their
occurrence numbers/frequencies, they are known as "q-grаms" [Ukkonen, 1992]. If the sequence is a text and
items are single words (i.e., q=1), we get a common “bag-of-words” representation often used in Vector Space
Models (VSM) for informational retrieval [Salton, 1989]. The latter case (q=1) does not take order of items into
account, but this can be regulated by setting q>1.
Such vector representations can be linked with edit distance through an observation that when two strings s and t
are within a small edit distance of each other, they share a large number of items. Vector representations of
strings can be used for (weakly) approximating edit distances.
A way to solve the problem of fast finding similar sequences is to look for approximate solutions. One research
area where such approximate solutions are sought is embedding techniques [Indyk, 2004]. They deal with

1 We consider sequences composed of symbols from finite alphabet Σ (e.g., letters, commands), i.e. strings, as
opposed to other types of sequences (e.g. speech, movements), where components are not so evident.

International Journal "Information Theories & Applications" Vol.13

273

mapping complex data to some “easier” space, which allows finding or approximating distances faster. “Easy”
spaces are usually vectors spaces; particularly interesting are Euclidean and Hamming ones. In those spaces,
efficient algorithms are often available for a specific task (like nearest neighbor search) and/or computing
similarity or distances between vectors can be done faster than in the original “complex” space.
The idea behind embeddings is that smaller parts of objects are often sufficient to approximate distances or
similarity, provided objects are partitioned in sufficiently random manner. In a number of interesting cases, this
happens because of the phenomenon known as concentration of measure. An excellent state-of-the-art review of
embeddings of general metrics as well as of special metrics such as edit distances is given in [Indyk, 2004].
Another research area where similar problems are considered is distributed representations that try to capture
brain’s way of representing complex objects [Thorpe, 2003; Arbib, 2003]. In distributed representations objects of
various complexity – from elementary to structured ones – are sought to be represented by patterns of activity
over pools of "neurons", which can be thought of as "codevectors" (e.g., [Rachkovskij, Kussul, 2001]). It is
believed that brain uses similar representations for an efficient recall and comparison of complex internal
representations of real-world objects.
It was commonly thought that distributed representations are suitable only for "bag-of”
representations [Feldman, 1989; Malsburg, 1986], however, the introduction of the so-called binding operations
changed the situation [Plate, 2003]. In contrast to the non-distributed representations described above, here
similarity of items is put into correspondence with the degree of correlation of their codevectors. Another property
is the possibility of composing "reduced representations" of complex objects from subsets of codevectors of their
parts as well as reconstructing full representations of parts from a reduced representation of the whole. Recursive
construction of reduced representation results in a codevector representing the whole complex object. Different
possibilities of combining components and reducing their representations give potential for constructing
representations that reflect some necessary application-specific notion of similarity. One can use e.g. dot
products or whatever for measuring similarity of codevectors – which are usually made of the same
dimensionality even for items of different complexity.
For sequences, goals for embeddings and distributed representations are similar at least in the following: both try
to find such a vector representation of sequences that preserves necessary application-specific similarity and
provides fast calculation of similarity or difference in the target space. In this paper, we describe some ways of
introducing order information into distributed representations, including those of binary sparse type; and their
connection to traditional sequence vector representations and embeddings. We show that some non-distributed
and distributed sequence-processing methods can be related through random embeddings (particularly, random
projections) and can be viewed in a coherent way. We think that connecting sequence representation methods
with embedding theory can help develop approach to their analysis and discover useful properties.

Vector Representation of Strings by q-grams
In this section, we mention some of non-distributed representations that can be characterized as bag-of
representation approaches and that allow some approximation of edit distance.
Consider a string s and a sliding window of q symbols on it. For each possible window content (q-gram) the
number of its occurrences in the string is recorded in a corresponding coordinate of the vector vq(s) (q-gram
vector). In case of q=1 it is just a vector with elements equal to the number of times a respective letter was met in
a sequence, equivalent to frequency vector in VSM. As it was noted in [Ukkonen, 1992], each edit operation
changes at most q q-grams, so if the edit distance is at most L, then

||vq(s)-vq(t)|| ≤ qL (2)

This method discards order of seen q-grams. Nevertheless, this gives a way for approximating edit distance from
below: L ≥ ||vq(s)-vq(t)||/q and thus can be used for filtering. Given a query string for which it is necessary to find
the nearest one from a set of strings, too distant strings can be filtered out using Manhattan distance between q-
gram vectors. Developed further, the idea of q-grams can be used to define such notions of similarity as
"resemblance" and "containment" of strings [Broder, 1997].
Another interesting application of q-grams is solving gapped edit distance problem [Bar-Yossef et al, 2004]. To
solve a k vs. m gapped edit distance problem is to be able to answer, given strings s and t, whether the edit

International Journal "Information Theories & Applications" Vol.13

274

distance between them is less than k or it is greater than m. In the algorithm, each string is divided into non-
intersecting regions of some length D. Then each q-gram is accompanied with a fingerprint that is equal to the
number of region it starts within, constituting a set of pairs (γ, i), where γ∈Σq. Pairs are considered equal only if
their q-grams are equal and they appear in the same region. So, identical q-grams, but starting far enough from
each other, receive different fingerprints and are different. Then Hamming distance is measured between vectors
corresponding to the sets of such pairs (γ, i). It turns out that it is possible to solve k vs. (kn)2/3 gapped edit
distance problem by measuring Hamming distance between characteristic vectors of sets of fingerprinted
q-grams. Second step in [Bar-Yossef et al, 2004] is to use dimensionality-reducing technique in Hamming space
from [Kushilevitz et al., 1998].

Distributed Sequence Coding
Let us consider some ideas of representing strings with distributed representations. Since symbols are
considered non-similar, they are assigned independent random binary codevectors. Here we consider non-
hierarchical version of order representation, that are designed for representation of short sequences – to
represent long strings it may be necessary to build representations in a hierarchical manner.
Distributed representation of strings by unordered substrings. We will consider a distributed version of q-
gram representation from the previous section. Let us allocate a random vector for each of the sequence
substrings and sum up (or take disjunction of) them to form a codevector of the sequence. Sequences containing
many identical elements are likely to receive close codes. This method takes information about order in the
sequence into account only to an extent captured by chosen substrings.
This method is somewhat similar to the Random Indexing (RI) and Random Labeling (RL) methods used in
semantic processing of texts, which are versions of vector space methodologies for producing distributed words’
representations using co-occurrence data [Kanerva et al., 2000; Karlgren, Sahlgren, 2001]. There a word can be
abstractly viewed as a set of contexts it is used in. Each context is a bag of words (either a text where the word
was met (RI) or a word’s neighborhood (RL)). Each element of a context (either a text or a word) is assigned a
random vector (with small number of +1 and -1). Context representation is a sum of those random vectors
corresponding to constituent words. Target word representation forms by adding those context vectors each time
this word appears in a corpus. As we will see in the following sections, this method can be interpreted
straightforwardly with embeddings.
The following methods are trying to merge information about position of an item within a sequence with the
representation of the item itself by modifying item’s representation in a position-dependent manner. In each of
following schemes vectors can be made binary (sums could be substituted by disjunctions), making dot product
(a common similarity measure) computation efficient.
Positional binding with permutations. Consider the so-called shift coding which exemplifies an attempt to
preserve information about ordering in a string. Vectors are modified by circularly shifting (or otherwise
permuting) item’s vector by the number of bits that depends on the position of the item. Code of the whole
sequence is formed by disjunction of codes of all constituent items.
Consider e.g. strings 'abc', 'abd', 'cba'. Each symbol is represented by a random vector: v(a), v(b), v(c), etc. Then
sequence codevectors are formed in this way:

v(abc) = (v(a) >> 1) ∨ (v(b) >> 2) ∨ (v(b) >> 3)
v(bca) = (v(b) >> 1) ∨ (v(c) >> 2) ∨ (v(a) >> 3),

where ∨ is bit disjunction, X>>y means codevector X shifted by y bits.
The intersection between obtained vectors for strings with no identical items in the same positions will be (in
expectation) negligible, provided the random vectors are sufficiently sparse and strings of short enough length.
Tthis coding scheme discards information about identical symbols in different positions. However, partial
permutation or shift may provide a way to fix that.
Positional binding with codevector. Here codevectors for positions are generated additionally to those for
substrings. To code a substring in a particular position, the codevector of the substring and the codevector of its
position are bound. In the binary case, binding is done by bit-wise conjunction and is called

International Journal "Information Theories & Applications" Vol.13

275

thinning [Rachkovskij, Kussul, 2001]. Other types of binding are also possible, both for binary
codevectors [Rachkovskij, Kussul, 2001; Kanerva, 1996] and codevectors with continuous elements [Plate, 2003].
If we encode substring as continuous codevectors and positions as binary codevectors, binding by element-wise
product is possible (see also Gayler's multiplicative binding for real-valued codevectors in [Plate, 2003]), which in
this case can be also considered as thinning. Thinning does not remove similarity of identical elements in different
positions, as the shift method does. Representations of positions may be correlated for nearby ordinal numbers.
Codevectors of symbol-position bindings are then combined by bit-wise disjunction or addition.
Binding an element with its context. Another option is to bind item’s vector with vectors of item’s from its
context. This may give way to build position-independent representation of items, where item’s contribution
depends only on its context and does not depend directly on the position in a sequence. As edit metrics is usually
also position-independent in the sense of counting edit operations independently of the place they were applied;
this may help to approximate them. Note an analogy with taking into account contexts by q-grams.

Embeddings and Representational Economy
In this section we discuss some results for embedding vector and sequence distances. Target spaces for
embedding are usually vectors spaces like lp (where ||x||p=(∑i=1,…,dxip)1/p), particularly interesting are Euclidean
spaces (p=2), l1 with Manhattan metrics (||x||1=∑i=1,…,d|xi|) or the Hamming space (ρ(x,y)=∑i=1,…,d[xi≠yi]).
The seminal result that we will use is the Johnson-Lindenstrauss reduction lemma [Johnson, Lindenstrauss,
1984]. Let the elements of matrix Rd’×d be from N(0,1) distribution. Let vectors v’=Rv. Then for every ε>0 and any
two vectors v1,v2 ∈ ld2:

(1-ε)||v1-v2||2 ≤ ||v’1-v’2||2 ≤ (1+ ε)||v1-v2||2 (3)

holds with probability exp(Ω(-d’/ε2)). In case of normal distribution of the vectors embedding into normed space is
due to 2-stability of the normal distribution. There exist embeddings of norms for lp using other p-stable
distributions for 0<p≤2 (see [Cormode et al, 2002] for a brief overview). Thus it is possible to logarithmically
reduce the input dimension while distorting mutual distance not too much. Note that instead of vector elements
distributed according to normal distribution we can use either binary {-1,1} or ternary {-1,0,1} elements (with
proper distribution) as proven in [Achlioptas, 2001].
Despite the progress in embedding “usual” metrics, embedding Levenshtein distance is a long-standing
problem [Indyk, 2001], and a negative result was proved recently that any such algorithm would not have
distortion smaller than 3/2 [Andoni et al., 2003]. However, it is possible to embed a relaxed version of edit
distance (with block moves) to l1 with approximately logarithmic distortion Õ(log(n)) by carefully selecting
substrings, which add to the characteristic vector of the sequence [Cormode et al, 2000]. This result is particularly
interesting because the exact calculation of this distance is NP-hard.

Connection between Distributed and Non-distributed Sequence Processing
In this subsection, we show how to interpret some distributed sequence coding methods with the help of
embedding theory. We consider continuous case, so elements of the used vectors are from R and operations are
usual summation and multiplication; as well as binary case, where operations are Boolean OR and AND.
Distributed representation of strings by unordered substrings According to it, a codevector v(s) for a string
s=s1,…,sn is defined as v(s)=Σi=1,…,n r(si), where r(s) is a random codevector corresponding to an item s. The
expression for v(s) can be rewritten as

v(s) = ∑i=1,…,n r(si) = ∑σ ∈Σ ∑i=1,…,n I[si=σ] = ∑σ ∈Σ r(σ) ns(σ), (4)

where ns(σ) is the number of times σ occurs in s.
Expression (3) is the same as projecting a bag-of-items vector nsT(σ)=(n1(σ),n2(σ),…,n|Σ|(σ)) by multiplying it by a
random matrix (d×|Σ|) with columns r(σ). Thus, this coding can be viewed as mapping from (e.g., VSM) space of
dimension |Σ| to Rd, where d can be made considerably lower then the number of all possible items |Σ|.
If both spaces are Euclidean, then, applying JL-lemma (1) and taking r(s) from normal distribution (or from certain
binary or ternary distributions, see [Achlioptas, 2001]) we obtain, that for a desired distortion 0<ε<1, it is possible

International Journal "Information Theories & Applications" Vol.13

276

to reduce dimension, while keeping ||v(s)-v(t)|| within the range (1±ε)||vq(s)-vq(t)|| with high probability. This is
what is done in RI (however, with sparse codevectors) appealing to “near orthogonality” of random vectors in high
dimensions (but, in the same time, dimension can be considerably lower than the number of all contexts). And so
using inequality (2), for the two strings within edit distance less then L the Euclidean distance between
corresponding codevectors is no more then (1+ε)qL. This provides an upper bound for distance between vectors,
and can be used for filtering purposes using representation vectors of low dimension instead of large (however,
sparse) q-gram vectors.
There are experimental evidences that taking into account only information about presence of words in texts, it is
possible to preserve similarity of texts to an extent sufficient for some applications [Grossman, Frieder, 1998].
Connection of the thinning coding to random sampling In this subsection we try to establish an analogy
between thinning coding and some of the edit distance approximation approaches. Consider the i’s element of
output vector v(s):

vi(s) = ∑k=1,…,n cki ri s[k] = ∑k=1,…,n cki ∑σ ∈Σ riσ I[sk=σ] = ∑σ ∈Σ ∑k=1,…,n riσ lσk cki. (4)

Then we can define V(s)=R·L(s)·C, where columns of matrix R are random codevectors ri assigned to the i’-th
symbol of Σ and rows of C are position codevectors Ci.. Elements of the indicator matrix L are: lσk=1 if the k’-th
substring (or symbol if q=1) of string s is σ and lσk=0 otherwise. That is, the element of the matrix shows where
symbols from the alphabet (symbols or substrings) in the string are situated.
Consider the product X=L(s)·C. If matrix C had contained only 1’s in each of its cells, then this product would
have just given columns of vector representation (e.g., q-gram) for the string. But, as C does contain zeros,
substring in not all of the positions is counted into the vector. So, columns of the resulting matrix X would become
an “incomplete” vector representations (q-gram representations, if Σ is all q-grams) of the input string s. Columns
of matrix C act as binary masks marking positions in s, from where symbols sum up to a particular q-gram vector,
e.g., the j’s column of C masks s to obtain a vector with the i’s element equal to ∑k=1,…,nlσkcki. So, while earlier
q-gram representations discarded order information in a sequence, here we introduced it with the help of
position vectors.
Above, it was noted that position codevectors (rows of C) can be made so that nearby ones have small Hamming
distance of each other and this distance grows as the distance between positions grows. Possible ways of
constructing such codevectors from for ordinal numbers are considered in [Rachkovskij et al, 2005] and can also
be implemented with a 2-state Markov chain with proper transition probabilities.
Different columns act as independent samplers. We note that similar approach has already led to even sublinear
approximation of edit distance in [Batu et al, 2004]. Their approach is similar to ours in that the approximation is
also achieved by randomly sampling input string and using the mentioned observation that strings within small
edit distance have many substrings in nearby positions.
Consider now the effect of multiplying X by matrix R. Each i-th element of the output vector v(s) is a dot product of
the random codevector ri by the corresponding “thinned” q-gram vector. We already saw such an operation
(projection on a random direction) when established analogy between unordered distributed encoding of strings
by assigning random codevectors to their substrings (q-grams). The difference is that there each of the q-grams
was projected to all random directions, but here different thinned q-gram vectors are projected along different
directions. However, if we look closer, we note that because of intersections between columns of C
“common parts” of masked (thinned) q-gram vector may undergo projection to different directions.
From expression (4):

vi(s) = ∑σ ∈Σ ∑k=1,…,n (cki·riσ)lσk = ∑k=1,…,n R(C(k))·lk. (4)

R(C(k)) is matrix R with only those rows left that correspond to those position codevectors that have 1s in position
k. So, we see that each vector lk undergoes projection to a respective random subspace, defined by those Cj that
cover position k. The farther are identical symbols (or q-grams) from each other, the less common random
directions they have, and so, the more distant are their projections.

International Journal "Information Theories & Applications" Vol.13

277

Conclusions
We believe that enriching distributed representations with ideas and methods of analysis from embeddings can
provide a more formal interpretation of distributed methods usually introduced in an ad-hoc manner. This may
help infer the similarity type they approximate or find modifications that will allow them to approximate some, and
help obtain bounds on the distortion of the proposed coding schemes, their complexity and limitations.
Here we have described approach to analysis of only few distributed schemes for coding sequences. We hope it
could be extended to other schemes for encoding sequences mentioned above, as well as to schemes for
distributed encoding of other types of data like numerical [Rachkovskij et al, 2005] or complex relational
structures [Rachkovskij, 2004]. Those schemes include binding by context-dependent thinning and hierarchical
representations [Rachkovskij, Kussul 2001].

Bibliography
[Achlioptas, 2001] D. Achlioptas, Database-friendly random projections. In Proceedings of PODS-01, pp. 274-281, 2001.
[Andoni et al., 2003] A. Andoni, M. Deza, A. Gupta, P. Indyk, S. Raskhodnikova, Lower Bounds for Embedding of Edit

Distance into Normed Spaces. In Proc. of the 14th Symposium on Discrete Algorithms, 2003
[Arbib, 2003] M. Arbib, The Handbook of Brain Theory and Neural Networks. – Cambridge, MA: The MIT Press, 2003
[Bar-Yossef et al, 2004] Z. Bar-Yossef, T.S. Jayram, R. Krauthgamer, R. Kumar: Approximating Edit Distance Efficiently.

FOCS, pp. 550-559, 2004
[Batu et al, 2004] T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, R. Sami. A sublinear algorithm for

weakly approximating edit distance, In Proc. 36th STOC, 2004
[Broder, 1997] A. Z. Broder. On the resemblance and containment of texts. In Proceedings of Compression and Complexity

of SEQUENCES, 1997
[Cormode et al, 2000] G. Cormode, M. Paterson, S. C. Sahinalp, U. Vishkin. Communication complexity of text exchange. In

Proc. of the 11th ACM-SIAM Annual Symposium on Discrete Algorithms, pp. 197--206, San Francisco, CA, 2000
[Cormode et al, 2002] G. Cormode, P. Indyk, N. Koudas, S. Muthukrishnan. Fast mining of tabular data via approximate

distance computations. In Proc. of the International Conference on Data Engineering, pp. 605–616, 2002
[Feldman, 1989] J. Feldman, Neural Representation of Conceptual Knowledge. In L. Nadel, L. Cooper, P. Culicover et al.

Neural Connections, mental computation - London, England: The MIT Press, pp. 68-103, 1989
[Grossman, Frieder, 1998] D.A. Grossman, O. Frieder, Information Retrieval: Algorithms and Heuristics, Kluwer, 1998
[Indyk, 2001] P. Indyk, Algorithmic Aspects of Geometric Embeddings, FOCS, 2001
[Indyk, 2004] P. Indyk, Embedded Stringology, talk at the Symposium on Combinatorial Pattern Matching 2004. Available at

http://theory.lcs.mit.edu/~indyk/cpm.ps
[Johnson, Lindenstrauss, 1984] W. Johnson, J. Lindenstrauss, Extensions of Lipschitz maps into a Hilbert space, Contemp.

Math., 26 , pp. 189-206, 1984
[Kanerva et al, 2000] P. Kanerva, J. Kristofersson, A. Holst. Random indexing of text samples for latent semantic analysis. In

Proc. of the 22nd Annual Conference of the Cognitive Science Society, p. 1036. Erlbaum, 2000
[Kushilevitz et al., 1998] E. Kushilevitz, R. Ostrovsky, Y. Rabani. Efficient Search for Approximate Nearest Neighbor in High

Dimensional Spaces. STOC, pp. 614-623, 1998
[Levenshtein, 1965] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals, Doklady

Akademii Nauk SSSR, 163(4):845-848, 1965 (Russian)
[Lopresti, Tomkins, 1997] D. P. Lopresti, A. Tomkins, Block Edit Models for Approximate String Matching. Theoretical

Computer Science, 181(1): 159-179, 1997
[Malsburg, 1986] C. von der Malsburg. Am I Thinking Assemblies? In Proc. of the Trieste Meeting on Brain Theory, pp.161-

176, 1986
[Plate, 2003] T. Plate, Holographic Reduced Representation: Distributed Representation for Cognitive Structures. - Chicago:

Center for the Study of Language and Information, 2003
[Rachkovskij et al, 2005] D.A. Rachkovskij, S.V. Slipchenko, E.M. Kussul , T.N. Baidyk, Sparse binary distributed encoding of

scalar values, (to be published) 2005
[Rachkovskij, 2004] D.A. Rachkovskij, Some approaches to analogical mapping with structure sensitive distributed

representations. Journal of Experimental and Theoretical Artificial Intelligence,16, №3, pp.125-145, 2004

International Journal "Information Theories & Applications" Vol.13

278

[Rachkovskij, Kussul, 2001] D.A. Rachkovskij, E.M. Kussul, Binding and Normalization of Binary Sparse Distributed
Representations by Context-Dependent Thinning. Neural Computation, 2, №13, pp.411-452, 2001

[Salton, 1989] G. Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by
Computer, Addison-Wesley, Reading, MA., 1989

[Thorpe, 2003] S. Thorpe, Localized Versus Distributed Representations. In Arbib M. The Handbook of Brain Theory and
Neural Networks - Cambridge, MA: MIT Press, pp. 643-646, 2003

[Ukkonen, 1992] E. Ukkonen. Approximate string-matching with q-grams and maximal matches. Theoretical Computer
Science, 92:191-211, 1992

Authors' Information
Artem M. Sokolov, Dmitri A. Rachkovskij – International Research and Training Center of Information
Technologies and Systems; Pr. Acad. Glushkova, 40, Kiev, 03680, Ukraine; e-mails: sokolov@ukr.net,
dar@infrm.kiev.ua

APPLICATION OF THE MULTIVARIATE PREDICTION METHOD TO TIME SERIES 1

Tatyana Stupina, Gennady Lbov

Abstract: An approach to solving the problem of heterogeneous multivariate time series analysis with respect to
the sample size is considered in this paper. The criterion of prediction multivariate heterogeneous variable is used
in this approach. For the fixed complexities of probability distribution and logical decision function class the
properties of this criterion are presented.

Keywords: the prediction of multivariate heterogeneous variable, multivariate time series, the complexity of
distribution.

ACM Classification Keywords: G.3 Probability and Statistics: Time series analysis

Introduction
Let certain object (process) is described by the set of random features n1 XXX ,...,= , changing on time. On the
base of analysis information, that presents features measurements in the consequent moments time series
(prehistory), it is necessary to predict a values of features set m1 YYY ,...,= at certain future time moment (in
particular, XY ⊆ . Distinguishing feature of considered below prediction problems is the measured features
heterogeneity: the variable set be able consist of binary, nominal and quantitative variables simultaneously. In this
case, multivariate time series presents itself a set of binary, symbol and numeric random sequences. Classical
methods are directed to the analysis of numeric sequences basically. Many methods allow analyse univariate
binary or symbol sequences. However the most of important applied problems number are concerned with need
to heterogeneous time series analyse. There is reason to suppose in some problems that time series is the
realization of random processes, in which probabilistic characteristics (distribution) are saved on a time. At other
times such suggestions to do it is impossible under the matter of problem (probabilistic characteristics of process
are changed on time). There is possible to offer a different depending on specified suggestions targets setting
and the different methods of their decision accordingly. The methods of heterogeneous time series analysis for
different targets setting, including the logical deciding functions class for heterogeneous variable are considered
in work [Lbov G.S., 1994].

1 This work was financially supported by RFBR-04-01-00858

