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APPLICATION OF THE MULTIVARIATE PREDICTION METHOD TO TIME SERIES !

Tatyana Stupina, Gennady Lbov

Abstract: An approach to solving the problem of heterogeneous multivariate time series analysis with respect to
the sample size is considered in this paper. The criterion of prediction multivariate heterogeneous variable is used
in this approach. For the fixed complexities of probability distribution and logical decision function class the
properties of this criterion are presented.

Keywords: the prediction of multivariate heterogeneous variable, multivariate time series, the complexity of
distribution.
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Introduction

Let certain object (process) is described by the set of random features X = X;,..., X,,, changing on time. On the

base of analysis information, that presents features measurements in the consequent moments time series
(prehistory), it is necessary to predict a values of features set Y =Y,,...,Y,, at certain future time moment (in
particular, Y < X . Distinguishing feature of considered below prediction problems is the measured features
heterogeneity: the variable set be able consist of binary, nominal and quantitative variables simultaneously. In this
case, multivariate time series presents itself a set of binary, symbol and numeric random sequences. Classical
methods are directed to the analysis of numeric sequences basically. Many methods allow analyse univariate
binary or symbol sequences. However the most of important applied problems number are concerned with need
to heterogeneous time series analyse. There is reason to suppose in some problems that time series is the
realization of random processes, in which probabilistic characteristics (distribution) are saved on a time. At other
times such suggestions to do it is impossible under the matter of problem (probabilistic characteristics of process
are changed on time). There is possible to offer a different depending on specified suggestions targets setting
and the different methods of their decision accordingly. The methods of heterogeneous time series analysis for
different targets setting, including the logical deciding functions class for heterogeneous variable are considered
in work [Lbov G.S., 1994].
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The Target Setting

One is considered the n — measured heterogeneity random process G ={X,(t),..., X;(t),.... X, (t)}. Let it set
of predictable characteristic is Y, =X, j=1,..,n. Fix some consequent moments of the time, T<R<N.

Denote the value random variable X; at a moment of the time t,, x{ €Dy, as this x{,and x° is the value

n

random variable of X , x? e Dy, Dy = HDX/ . The problem consist of that, it is necessary to predict the values
j=t

R+1

set y=(Yssr¥jren¥,) @t certain future moment of the time tz,,, where y,=x;" using the data,

characterizing prehistory, bz{x;’}, j=1,.,n,d=1..R.Itis necessary to build decision function, allowing
predict a set of values y = (y;,..., ¥;,.-.,¥,) on prehistory b.
The set of every possible all prehistory, that have line measure R denote as B, and the set of every possible all

sets y denote as D,, beB, yeDy,, D, :HDY, . Let us understand a prediction decision function as a f
j=

mapping of the B set on the D, set, i.e. f:B— D, . At the building decision functions f is used following
hypothesis: It is supposed that conditional distribution P(y/b) does not depend on the shift on the time, i.e.
distribution is specified for moments of the time t,,...,t5,tz,, is contemporized with distribution for moments of
the time t, £+ AT,...,tx £ AT,t;,., £ AT . If the conditional distribution P(y /b) is known, then it is possible to
find optimum prediction decision function f,. Since specified distribution is unknown, decision function shall be
constructed on the base of multivariate time series analysis.

Let the features X;,..., X;,..., X, are measured at consequent moments of the time with the gap At=t, —t,
for the random process G . Denote this set of moments as T ={t,,...,t,,...,ty}. Thus, the empirical information

is presented by n — measured heterogeneity time series q ={xf},j:1,...,n,k =1,..,N. The set of values

X = (X x0) will s called prehistory with the number o, correlated with a moment of the time
t,, k=R+1,.,N. The prehistory with line measure R for a specified moment of the time t, is denoted as a
table b* ={x*}, d =1,...,R. Note that univariate symbol sequence for R =1 is the realization of simple
Markoff process with the transfer probability matrix P(y/x), x€A, ye A, A —-an alphabet of symbols.

Decision function f, constructed on the base of set prehistory analysis with line measure R, is named sample
decision function of prediction.

It is necessary to construct the sample decision function on the small sample in the multivariate heterogeneous
space, so the most proper class is a class of logical decision functions [Lbov G.S., Starceva N.G, 1999]. Methods
of time series analysis propose to decision of problem in two stages: It is constructing decision function for fixed
prehistory with the number d (d =1,...,R) it is constructing the generalise logical decision function (mapping

f:B— D, ). The first stage is consist of decision the prediction multivariate variable problem Y on other
multivariate variable X, i. e. for each prehistory d we have two data tables {x*“}, {y*}, k=R +1,...,N, on
base which necessary to construct the sample decision function (mapping D, — D, ). Below it is considered a
decision of this problem, in which is used criterion, introduced in work [Lbov G.S., Stupina T.A., 2002].

The Performance Criterion of Prediction

In the probabilistic statement of the problem, the value (x,y) is a realization of a multidimensional random variable
(X,Y) on a probability space < Q2,B,P >, where Q =D, xD, is u-measurable set (by Lebeg), B is the borel

o -algebra of subsets of Q, P is the probability measure (probability distribution) on B, D, is heterogeneous
domain of under review variable, dimD, =n, D, is heterogeneous domain of objective variable, dimD, =m .
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Definition 1. The strategy of nature is ¢={p(x,y)=p(x)p(y/x))}, where a conditional probability p(y/x) is specified for
any elementson B.

Let us put @, is a given class of decision functions. Class @ is u -measurable functions that puts some subset

of the objective variable £, < D to each value of the under review variable x € Dy, i.e. ®, ={f:D, — 273,

This class of decision function is more total than class of logical decision functions [Lbov G.S., Starceva N.G,
1999]. In this paper, we will consider criterion for decision function from total class ®, . So criterion was

considered for logical decision functions in work [Lbov G.S., Stupina T.A., 2002]. But here we will achieve that
class of logical decision functions is a universal class about relative to criterion.

The quality F(c,f) of a decision function f € ®@_ under a fixed strategy of nature ¢ is determined as follows.
F(e.f) = [(P(E, (x)]x) = p(E, (x)))dP(x),
D,

X

where E (x)=f(x) is a value of decision functions in x, P(y € E,(x)/x) is a conditional probability of event
{y €E,} under a fixed x, u(E,(x)) is measurable of subset E, . Note that if u(E,(x)) is probability

measure, than criterion F(c,f) is distance apart distributions. If the specified probability coincides with equal
distribution than such prediction does not give no information on predicted variable (entropy is maximum). The

p(0y) ‘,E! u®,)

taking into account the type of the variable. The measure u(E, (x)) is measure of interval, if we have a variable

measure u(E, (x)) = is the normalized measure of the subset £, and it is introduced with

with ordered set of values and it is quantum of set, if we have a nominal variable (it is variable with finite non-
ordering set of values). Clearly, the prediction quality is higher for those E, whose measure is smaller (accuracy

is higher) and the conditional probability P(y € E, (x)/x) (certainty) is larger.

For a fixed strategy of nature c¢, we define an optimal decision function f,(x) as function for which
F(c,f,) =sup;., F(c.f),where @ is represented above class of decision functions.

As a rule, the strategy of nature is unknown; for this reason, a decision function is constructed from a training

sampling decision function and N is the size of the training sample. The sampling criterion F(f ) is empirical risk
of the criterion F(c,f).

When we solve this problem in practice the size of sample is very smaller and type of variables different. In this
case is used class of logical decision function. The logical decision function f is assigned the pair <a,f >,

where a € ¥, and B € R,,. The class P, is the set of partitions a ={E! ...,E",...,E¥} of the space D, into

disjoint subsets for which E' =]'ﬂ[E§/_ , E, =Dy, E, #@ and E, €Wy, where W, is the set of all possible

intervals if X; is a variable withI::)rdered set of values and W, is the set of arbitrary subsets of D if X; is a

nominal variable, i.e. a variable with a finite unordered set of values; we have E' e W, , where W, =]£[WX/_ .
i=1

The class R, is the set of decisions (arbitrary subset of the space Dy ) B={E,.....E}....,.E}'} for which

m
E; :gEt; ,E;’ cD,, E;,- =@ and E;, # @, where W, is defined so as W, . The decision function is

presented in simple form for understanding: if XEE; than yeE;. The subsets Ei and E; represented as
above can be described in terms of conjunctions of simple predicates. Such a coarsening of the decision function
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is caused by the necessity to construct solutions from small samples. The class of logical decision function @,,
can be represented as ¥\, xR, .

Under the assumptions made, the complexity of the class ®,, is only determined by the M parameter:
v(®d,,) =M. Thus, the larger the number M, the more complex the class @, . We achieve important property of
this class by theorem.

Theorem. For a fixed type of the predicate, the class ®,, of logic decision functions is a universal class in the

problem of prediction multivariate heterogeneous value by criterion F(c,f), i.e. for any strategy of nature ¢ and any
€ >0 there exists a number M (M=1,2,3,...) and for some logical decision function fe ®,, (it is represented in

the form of decision tree on M vertices) such that |F(c,f)—F(c,fG)|££, where f, is optimal function in
class @, .

The proof of this theorem readily follows from the property of u -measurability and P-measurability of space D
and its projections on the space D, , D, correspondingly.

The proof for the case where Y is a discrete variable is given in [Lbov G.S., Starceva N.G, 1994]. The proof for
the case where Y'is a continuous variable is given in [Berikov V.,1995].

We can introduce a complexity of distribution (strategy of nature c) using the class logical decision function. It is
necessary for solving statistical stability problem of decision function.

Statement 1. For any nature strategy ¢ the quality criterion F(c,f) (risk function) of logical decision function f
belonging to ®,, is presented by following expression:
M
Fle.f)= [ [(1=L(y.FC)p(x,y)dxdy =3 p, (1 — 1),
Dy Dy t=1
p, yeB

: ., p, =M(EYY, B=f(a),aeP,.
1ip,yp p, =H(Ey), B=f(a),ae¥)

where the loss function L(y,f) suchas L(y,f) ={

Proof. F(c.f)= [(P(E, (x)/x) — H(E, (x))dP(x) = z{ J [p(x.y)dxdy —p, Ip(x)dx} -
Ex

b, Sy

S| [ [otxy)dxay + [ | (—pc,)p(x,y)dxdy} :

t=1| ELE} EY Dy

% [ [ =p)p(x,y)dxdy + [ [ (=p,)p(x.y)dxdy - [ [ (—po)p(x,y)dxdy} =
t=1| £ ) EL Dy ES Ey

2 [] [@=p)px y)dxdy+ | (_po)p(x,y)dxdy} [ Ja=Lty, £09)p(x, y)dxdy.

EY| EV Dy Dy
Definiton 2. To each subclass @&, we put in correspondence the  subset
LM)={c:3f D, ,|F(c,f) - F(c,f0)| < g} of nature strategies; ¢ is an arbitrarily small number determining an
admissible error level of this subset of strategies, where £, is optimal function in class @, .
The complexity measure of each subset L, (M) is defined as the complexity measure of the corresponding
subclass of decision functions: v(L,(M)) =v(®,,) =M . Accordingly, the nature strategy ¢ belonging to L, (M)

has complexity measure M. The important statement follows from this theorem and definition.
Statement 2. The set of all possible strategies can be ordered according to complexity, i.e.

L(Ncl(@c..cL,M)c..cL,, and e¥" <" where v(L,(M)) =M is the complexity and " is the
admissible error level of the strategy class v(L, (M)) .
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Proof. For an arbitrary M, let us prove the embedding L, (M) = L,(M +1) i.e. show that VceL, (M),
3f e d,,,, such that |F(c,f) - F(c,fo)| < ¢ . The definition of the class L, (M) implies that 3g € ®,, such that

|F(c q) - F(c f)|<e". Since CDM c ®,,,,, we can obtain ffrom g by partitioning some subset E}, into two

a —{E’, E;,Eﬁg, ,EM/E; :E” Eﬁg} g’ —{E’, LEYEY ... EM/E‘Y =Ey UEZY}, where

H(ES) = p(ES) + p(ES) and p(Ey) = u(EY) + u(EY) . Therefore, |F(c,f) - F(c.f,)|<e =" <& itis
followed from the definition F(c,f).
We can suppose that the true (optimal) decision function belongs to @,, it is followed from this statement 1.
Definition 3. Define a nature strategy c,, (generated by logical decision function f e ®d,, ) such as set of
parameters satisfying the following conditions:

M
1Y pl=1,
t=1
2) P(Ey 1E) =p},, (conditional distribution is same for any x € £}, and y e Ey),
3) P(EyIE})=1-pys
where E} ca, E| €8, <a,B>~f e®d,,. The complexity of this strategy is M, i.e. v(c,) =M . Note that c,,

generated by logical decision function belongs to class L, (M) . Clearly, the decision function that generated this
strategy is optimal function in class @, .

Statement 3. For a fixed nature strategy c,, € L, (M) of complexity M the quality criterion F(c,,, F) (risk function)

of logical decision function fe ®,, of complexity M"is presented in following form:

Fley.f)=F(@)= ;pxp —pr(pm uy),
t t
where p! =P(x eEL) = Z ‘M,
= pEY)
u(E‘ﬁE‘x)( p(Ey NEY)
= uEy) t”* p(EY)

Proof. Since the decision function 7 belongs to class ®,, than there exists partition @ ={E},...,EL,...E} of

ety _ (Bt t
+(1—p§,,x)IJ(EY) IJ(EymEY)J_

S U
P =t 1— H(EL)

space D, and according to it the set of subsets § ={E",...,E!,....EM} of space D, . The expression of the
~ Mo , — ~,
criterion F(c,f)="py (b,,, — &) follows from statement 1, where p; =P(x €Ey),
t'=1

Py =P(ye E!'Ix EL). Since the strategy ¢ =c,,, ¢,, L, (M) is generated by logical decision function
f~<a,B>c®,,thereis a partition a ={E},....E....Ex} of space D, and according to it the set of
subsets 8 ={E! o EY . EY'} of space Dy , the sets of parameters p' =P(E}), py,x =P(E} /E}) as

provided by definition 3. Late for simplicity we will not write the mark ‘e’ and ‘"’ in view of the events. Express
the p; and p,,, by way of p; and p},,, take account of the event distribution is inside of subsets Ej, Ey, :

B =P(EL) = P(LELEL) = S PELPEL IEL) = z ’“("zEE;),
t=1

P(E EX) 1

By =P(Ey 1EY) = =P(EJEY),

X
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~ ~ ~ ., M ~ M -~ e~
P(EyEy) =P(DEyEy) =P(UE,D,EyEy) = ZP(EQDyEiED = Z(P(E§E$E$E>’<) +P(EXEYEVEX)),

P(EYELEIEL) = P(ELEL)P(ELEL IELEL) =p!, HUEKEY) 0 (EXEY)) _

H(EXEY)
_p HEED o HEE))
pEYD) T uEY)
P(ELELELEL) = P(ELEL)P(ELE! IELEL) =
ELEL) ~ (ELE! ELE ELE!
=Pi(7—P§/x)u(( X Z;tE(t)X v)) —p! IJ((E ))()( _ ;/X)IJIS(ZB;)'
Y
whereU(EE) HED - IJ(I::E)andE' =D, \E} .
u(Ey) 1-u(Ey)

Remark. If the nature strategy c,, such that some subset E}, coincides with the space D, , than

z tU(Et NEY) t .U(Et r\E)
py o uEY) T pEY)

Itis followed from that py,x =P(D, /E}) =1, u(D,)=1.

~p
py/x -

Consequence 1. If the decision function f belonging to ®,, coincides with the function f belonging to ®,,,
than F(c,f) =F(c,f).

Consequence 2. For the decision function f belonging to @,, we have the expression P(E}' / E)‘(') =1 —Eyt',x.

U(ELEY)  W(E,) - u(ELEY)

Really, it is follows from the statement 3, where = n
H(EY) H(Ey)

u(l::yt_'lzté) 1-p(Ey) - p(Ey )+u(EE)

H(Ey) 1-p(Ey)
Consequence 3. If we have M=1 and the optimal function f generating c, such that EJ,:DY , than
F(c,,f)=0.

M
Really, for the express of criterion we have F(c,f) = Z(P(E;Ef,) -P, (Ef()): P,(D,D,)-P,(D,)=0.
t=1

It means that we have the event distribution in D for the nature strategy of the complexity M=1. It is case when the
entropy is maximum.

Consequence 4. If we have M=1 and the optimal function f generating ¢, such that E} =D, , than for any

decision function f e @, the criterion F(c,, )7) =0.

Really, p1), = ML:DD))P (O, IDy) = p(EL) . B = “%’; )P, (D) = u(EL).
X

-~ M , ) -~
Fef) =Y MENWEY) - p(ES)) =0.
t'=1
Consequence 5. If the decision function Fbelongs to ®, and E; =D, , than we have F(cM,F) =0 for any
complexity M > 1.

p(D E) ~ ool + Dy \t/) t 1_H(DYE\t()
Really, we have p, =Y p! =X2X2 -1 5 =%"p!| p! +(=py)—— - | =1,
z u(EY) e = 2P P D) " - p(Ey)
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As stated above when the nature strategy is unknown the problem of statistical stability of sample decision
functions is appeared. The quality F(c,f)of sample decision function depends on the size N of the sample, the
complexity M of the distributions, and the complexity M’ of the class of functions @,, used by the algorithm

Q(v) and empirical criterion F(f) for constructing sample decision functions f . The empirical criterion F(f)
(empirical risk function) is presented by expression:

a1 WNED(NEEY)
F) = 20-L0 v = =0 N

sample spots belonging to the corresponding subset *, [ = u(E\’() f~< E,E >ed,, .

M
:UtJZZlai(ﬁ;/X — '), where N(+) is a number of
t=1

On the one hand, if the constraints on the class of decision functions are too strong, then this class may be
inadequate to the true distribution, and the higher the degree of inadequacy, then poorer the quality of the
decision function. On the other hand, using a complex class of functions on small samples also lowers the quality
for the decision function.

At present time there are two well-known approaches solving this problem. The Vapnik -Chervonenkis approach
uses the principle of uniform convergence [Vapnik V.N., Chervonenkis A.Ya, 1970]: the quality criterion
F(c,f) depends on VC-complexity of the decision function class @ and the level of empirical risk F(f). In the

case of one discrete variable prediction was provided results [Nedelko V.M., 2004]. When the nature strategy ¢
belongs to even probability distribution class such problem was decided by the method of statistical modeling for
the case of several heterogeneous variable prediction [Lbov G.S., Stupina T.A., 2003]. It is the particular case of

our problem. Really, we can provide the biased estimator of criterion (risk function) Eey =E, F(c,f) —F(f)‘ by
the statistical modeling method for any nature strategy ¢ belonging to the class L(M) . It is follows from the

consequence 1-4 that we have the expression Ee, = EVNF(f) for ceL(?).

Another (Bayesian) approach to solving this problem consists in the construction of the evaluation EF(c,f) that

is obtained by averaging over all samples of N-size. Raudys in [Raudis Sh.Yu.,1976] used that (Bayesian)
approach to solving pattern recognition problem that is admitted small samples, but is imposed a fairly strong
constraint on the form of the distribution.

When the nature strategy is unknown, the quality of decision function is assigned by the expectation ECEF(c,f)
of criterion EF (c,f), which is obtained by averaging over all distributions. This problem was solved for pattern

recognition problem in the case of one discrete variable prediction [Startseva N.G.,1995], [Berikov V.B., 2002]
and for regression analysis in the case of one real variable prediction [Lbov G.S., Stupina T.A., 1999].
The problem concerned at this paper generalizes the problem of pattern recognition and the problem regression

analysis. From the presented above properties of the quality criterion is followed that we can use both
approaches solving statistical stability problem.

Conclusion

An approach to solving the problem of heterogeneous multivariate time series analysis with respect to the sample
size was considered in this paper. The solution of this problem was assigned by means of presented criterion.
The universality of the logical decision function class with respect to presented criterion makes the possible to
introduce a measure of distribution complexity and order all possible distributions (nature strategies) according to
this measure. The logical decision function class allows us to introduce such orderings in the space of
heterogeneous multivariate variables. For the fixed complexities of probability distribution and logical decision
function class, the properties of this criterion are presented by means of theorem, statements and consequences.
The approaches to the solution of the statistical stability sampling decision function problem were considered.
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RECOGNITION ON FINITE SET OF EVENTS: BAYESIAN ANALYSIS
OF GENERALIZATION ABILITY AND CLASSIFICATION TREE PRUNING

Vladimir Berikov
Abstract: The problem of recognition on finite set of events is considered. The generalization ability of classifiers
for this problem is studied within the Bayesian approach. The method for non-uniform prior distribution
specification on recognition tasks is suggested. It takes into account the assumed degree of intersection between
classes. The results of the analysis are applied for pruning of classification trees.
Keywords: classifier generalization ability, Bayesian learning, classification tree pruning.
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