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RECOGNITION ON FINITE SET OF EVENTS: BAYESIAN ANALYSIS  
OF GENERALIZATION ABILITY AND CLASSIFICATION TREE PRUNING 

Vladimir Berikov 

Abstract: The problem of recognition on finite set of events is considered. The generalization ability of classifiers 
for this problem is studied within the Bayesian approach. The method for non-uniform prior distribution 
specification on recognition tasks is suggested. It takes into account the assumed degree of intersection between 
classes. The results of the analysis are applied for pruning of classification trees. 
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Introduction 
An important problem is the analysis of generalization ability of pattern classifiers. This problem arises from the 
need to find a decision function having good predictive power provided that the probability distribution is 
unknown, and learning sample has limited size.  
A number of different approaches to the solution of the problem can be formulated: experimental approach 
(based on one-hold-out procedure and its modifications), probabilistic approach (making preliminary evaluation of 
distribution law), multivariate statistical analysis, statistical learning theory, algorithmic approach, Bayesian 
learning theory. 
Experimental approach is extremely labor-consuming; within the framework of the probabilistic approach 
asymptotic quality evaluations are received as a rule. For the next approaches, the finiteness of sample is taken 
into account; however multivariate analysis requires rather bounded classes of distributions and types of 
decision functions. 
Statistical and algorithmic approaches are oriented basically on worst-case analysis. So the received 
performance estimates are powerfully lowered. Within the Bayesian approach, the average-case estimates are 
received. As it was shown in [1], these estimates are more fit to volumes of samples available in practical tasks. 
Regrettably, the expressions obtained within the Bayesian approach, as a rule, have unclosed form, are 
cumbersome and labor-consuming in calculating. Thus, a problem of finding more effectively calculated 
evaluations (possibly, approximate) is actual. These evaluations are to be applied as quality criteria in a learning 
step (for designing decision functions from the sample). 
The study of generalization ability undertaken in given work has the following particularities. Firstly, the Bayesian 
approach is applied. Secondly, the narrower class of recognition problems – the problems of recognition on finite 
set of events is considered. This type of problems is most suitable for analytical studies. On the other hand, the 
results can be extended on broadly used classes of decision functions – logical decision functions and 
decision trees. 

Main Definitions 
Let us consider a pattern recognition problem with K≥2 classes, input features X1,X2,…,Xn and output feature Y 
with domain DY={1,…,K}.  Denote Di as a set of values of feature Xi, i=1,…,n. Suppose that the examples from 

general sample are extracted by chance, therefore the features Y, Xi are casual. A function
1

n

i Y
i

f : D D
=

→∏  is 

called the decision function. A special kind of the decision function is a decision tree T. Consider binary trees: 
each node Tt∈ of the tree can be branched out into two branches. Each internal node is labeled with a feature 
and each branch corresponds to a subdomain of definition of that feature. To each leaf we assign the majority 
class of all examples of this leaf.  
Decision function is built by the random sample of observations of X and Y (learning sample). Let learning sample 
be divided into two parts. The first part is used to design decision tree T, and the second part to prune it. Let prT  
be a pruned decision tree. During the pruning process, one or more nodes of T can be pruned. By numbering the 
leaves of a tree, we can reduce the problem to one feature X. The values of this feature are coded by numbers 
1,…,j,…, M, where M is number of leaves (“events”, “cells”). Let i

jp  be the probability of joint event “X=j,Y=i”. 

Denote a priory probability of the i-th class as pi. It is evident that Σipi=1, Σjpij=pi. Let N be sample size, i
jn  be a 

frequency of falling the observations of i-th class into the j-th cell. Denote ),...,,,...,,( 1
21

2
1

1
1

K
M

K nnnnns = . 
K...i,M...j 11 == . Let N~  be a number of errors on learning sample for the given decision function.  

Let us consider the family of models of multinomial distributions with a set of parameters { }θ=Θ , where 
)p,...,p,p,...,p,p( K

M
K 1

21
2
1

1
1θ = , ,p,p

j,i

i
j

i
j ∑ =≥ 10  In applied problems of recognition, vector θ   (defining the 

distribution law of a recognition task) is usually unknown. We use the Bayesian approach: suppose that random 
vector Θ = 1 1

1 1 2( ,..., , ,..., )K K
MP P P P  with known priory distribution ( )p θ  is defined on the set of parameters. We 
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shall suppose that Θ is subject to the Dirichlet distribution (conjugate with the multinomial distribution): 
1

,

1( ) ( )
l
jdl

j
l j

p p
Z

θ −= ∏ ,  where l
jd > 0  are some given real numbers expressing a priori knowledge about 

distribution of Θ , l=1,… ,K , j=1,…, M , Z is normalizing constant. For instance, under 1l
jd ≡ we shall have 

uniform a priori distribution ( constp ≡)(θ ) that can be used in case of a priori uncertainty in the specification of 
a class of recognition tasks. 

Defining a Priori Distribution with Respect to Intersection between Classes 
In the given paragraph, for the simplicity, we consider the case of two classes: K=2.   
In practical problems of recognition, it is always possible to expect that variables describing the observed objects 
are not assigned accidentally, but possess certain information. So one may believe that the misclassification 
probability of optimum Bayesian classifier is not too great (for instance, not more than 0,1 – 0,15). This probability 
expresses a degree of “intersection” between classes. Let us show how the choice of Dirichlet parameters l

jd  
allows taking such a priori information into account. 
Let l

jd d≡  for all l,j, where d>0 is a parameter. Thus we assume that there is no a priori information on the 
preferences between cells, however a priori distribution is not uniform ( 1d ≠ ). For the fixed vector of 
parametersθ , the probability of error for the Bayesian classifier fB is: 1 2( ) min{ , }

Bf j j
j

P p pθ =∑ . Let us find the 

expected probability of error ( )
BfEP Θ , where the averaging is done over all random vectors Θ  with distribution 

density ( )p θ . 

Theorem.  0,5( ) ( 1, )
BfEP I d dΘ = + , where ( , )xI p q  is beta distribution function: 

1

( , )
( , )

( , )
x

x
B p q

I p q
B p q

= , 

( , )xB p q is incomplete beta function: 1 1

0
( , ) (1 )

x
p q

xB p q v v dv− −= −∫ . 

Proof: Consider an auxiliary lemma (see [5]): 
 

Lemma. Let p,q,r are real numbers and 1 1 1

1,
, 0, 0

( , , ) (1 )p q r

x y
y x x y

p q r x y x y dxdyχ − − −

+ ≤
< ≥ ≥

= − −∫ . 

Then 0,5( , , ) ( , ) ( , )p q r B p q r B q pχ = + . 
 

Proof of Lemma. Consider the following substitution: x=u(1–v), y=uv. We have: 
1 0.5 1 0.5

1 1 1 1 1 1 1 1 1

0 0 0 0
( , , ) (1 ) (1 ) (1 ) (1 )p p q q r p q r p qp q r du u v u v u udv u u du v v dvχ − − − − − + − − − −= − − = − − =∫ ∫ ∫ ∫

0,5( , ) ( , )B p q r B q p= + .  Lemma is proved. 
 

Let us calculate the expected probability of mistake:  

( )
BfEP Θ = 1 2 1

,

1 min{ , } ( )l d
j j r

j l r
p p p d

Z θ

θ−∑ ∏∫ =
1 2
1 1

1 2
1 1

1 2 1 1 2 1
1 1 1 1

, :
1

min{ , }( ) ( )d d

p p
p p

M p p p p
Z

− −

+ ≤

×∫

1 2
1 1

,

1

1: 1
1
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j
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2 2
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( ( ))min{ , }( ) ( )
(2 2 )
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Z Md d
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Γ
×
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1 2 2 2 1 1 2
1 1 1 1(1 ) Md dp p dp dp− −× − − . 

 

Since in the considered case a constant 
2( )

(2 )

MdZ
Md

Γ
=
Γ

, and  from Lemma, it follows that 

( )
BfEP Θ =

1 2 1 2
1 1 1 1

1 2
1 1

1 2 1
1 12

, :
1

2 (2 ) ( ) ( )
( ( )) (2 2 )

d d

p p p p
p p

M Md p p
d Md d

−

<
+ ≤

Γ

Γ Γ − ∫ 1 2 2 2 1 1 2
1 1 1 1(1 ) Md dp p dp dp− −− − = 

0,52
2 (2 ) (2 1,2 2 ) ( 1, )

( ( )) (2 2 )
M Md B d Md d B d d

d Md d
Γ

= + − +
Γ Γ −

. 

After transformations, we obtain: ( )
BfEP Θ = 0,5 0,5

(2 1) ( 1, ) ( 1, )
( ) ( 1)

d B d d I d d
d d
Γ +

+ = +
Γ Γ +

. 

The Theorem is proved. 
 

Figure 1 shows the dependency of ( )
BfEP Θ from the value d. 

Figure 1. 
 

Parameter d can be used for the definition of a priori distribution on recognition tasks: when this parameter 
reduces, the density of a priori distribution is changed so that classes are less intersected in average. For 
example, if it is assumed that the expected probability of error for optimal Bayesian classifier does not exceed 
0,15, then  the parameter d must not exceed value 0,38. 

Bayesian Estimate of Decision Function Performance and Decision Tree Pruning 
Hereinafter in the given work the case of uniform density constp =)(θ  is considered.  This assumption is 
defensible if a priory vagueness in choice of model is present. Let Y=f(X) be a decision function which has been 
found from sample s with the help of some deterministic algorithm. The probability of misclassification for this 
function equals to ∑−=

j

)j(f
jf P)(P 1Θ .  

The mean misclassification probability for decision function f is denoted as )|Θ(, sEPP fsf = . 
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Proposition 1: 
KMN

MKNP sf +
−+

=
)1(~

, . 

The value Pf,s will be called the Bayes estimate of misclassification probability for decision function f and 
sample s. 

Proposition 2. The variance of misclassification probability equals:   
1

1
++

−
=

KMN
)P(P

VP s,fs,f
s,f . 

The proofs are given in [2]. The mean and variance, Pf,s and VPF,s, can be used for calculation of tolerance 
interval for the value of misclassification probability [2]. 
 

Let us suppose we have an algorithm which can grow classification tree from the first part of the sample. The 
parameters of the algorithm should be chosen in such a way to get a large number of leaves. Next, we classify 
the examples from the second part of the sample to define how many examples of each class are assigned to 
each node. Consider arbitrary subtree T of the initial tree (T and initial tree have the same root). The set of leaves 
of T can be considered as a set of values of a discrete feature Х. The vector of the observed frequencies for all 
leaves can be considered as a vector of frequencies s. Note that subtree T does not depend on the vector s, 
because the observations from pruning set are not participated in the tree building.  
For subtree T, we can compute the Bayesian estimate of misclassification probability PT,s. This value can be used 
as criterion of quality for subtree. An optimization of the criterion gives the best complexity of the tree (i.e., the 
number of leaves).  
Now let us suppose that vector θ is fixed, but unknown parameter vector. In this case, the Bayesian estimate of 
misclassification probability for decision function is an approximation of the true unknown generalization error. It is 
possible to show that the Bayesian estimate is asymptotically unbiased. In the same time the empirical error 
estimate ( N

N~ ) is unbiased, however the variance of the Bayesian estimate is less than the variance of the 
empirical estimate. In this sense, the Bayesian estimate is more stable. 

Numeric Simulation 
For numeric experiments the breast cancer database [3] was used. For decision tree growing was used algorithm 
C4.5 [4]. The algorithm grows a large tree from learning sample. Then this tree is pruned by second part of 
learning sample. The “greedy” algorithm of optimal pruning variant search is applied. After the pruning, obtained 
decision tree is evaluated by test data set.  
Three different strategies of experiments were considered. 
1. The data set is divided into three parts: for decision tree growing (50%), pruning (30%) and testing (20%). 

Standard reduced error pruning method (REP) [4] was used for pruning.  
2. The data set divided in the same way as in first strategy. We used the Bayesian estimate of error probability 

for pruning.  
3. The data set is divided into two parts. The first one (80%) is used for tree growing and then for pruning and 

the second one (20%) for testing. The Bayesian estimate is used for pruning. It is known that if growing and 
pruning sets coincide, the effect of overtraining arises. The purpose of this experiment is to study the 
behavior of the decisions in this situation. 

All experiments were repeated 200 times. Before each experiment, the observations in data set were 
randomly mixed. 
The following results of computer modeling were obtained. For first and second strategy, the errors on test 
sample coincide (0.022 at average). For third strategy, REP could not prune the tree; the average error on test 
samples for the Bayesian pruning algorithm was 0,067. 
For the next experiment, artificially generated data table was used. This table was unbalanced: the frequencies of 
classes differ in a large degree (fist class represents 5% and second 95% of sample size of 1000 examples). The 
10-fold cross-validation technique was applied for quality estimation. It turned out that the Bayesian method 
accuracy was 7% better than the accuracy of REP. 
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Conclusion 
Within the framework of the Bayesian learning theory, we analyzed a classifier generalization ability for the 
recognition on finite set of events. It was shown that the obtained results can be applied for classification tree 
pruning. Numeric experiments showed that the Bayesian pruning has at least the same efficiency or better than 
standard reduced error pruning, and at the same time is more resistant to overtraining. 
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EXTREME SITUATIONS PREDICTION BY MULTIDIMENSIONAL HETEROGENEOUS 
TIME SERIES USING LOGICAL DECISION FUNCTIONS1 

Svetlana Nedel’ko 

Abstract: A method for prediction of multidimensional heterogeneous time series using logical decision functions 
is suggested. The method implements simultaneous prediction of several goal variables. It uses deciding function 
construction algorithm that performs directed search of some variable space partitioning in class of logical 
deciding functions. To estimate a deciding function quality the realization of informativity criterion for conditional 
distribution in goal variables' space is offered. As an indicator of extreme states, an occurrence a transition with 
small probability is suggested. 

Keywords: multidimensional heterogeneous time series analysis, data mining, pattern recognition, classification, 
statistical robustness, deciding functions. 
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