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EVALUATING MISCLASSIFICATION PROBABILITY USING EMPIRICAL RISK1 

Victor Nedel’ko 

Abstract: The goal of the paper is to estimate misclassification probability for decision function by training 
sample. Here are presented results of investigation an empirical risk bias for nearest neighbours, linear and 
decision tree classifier in comparison with exact bias estimations for a discrete (multinomial) case. This allows to 
find out how far Vapnik–Chervonenkis risk estimations are off for considered decision function classes and to 
choose optimal complexity parameters for constructed decision functions. Comparison of linear classifier and 
decision trees capacities is also performed. 

Keywords: pattern recognition, classification, statistical robustness, deciding functions, complexity, capacity, 
overtraining problem. 
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Introduction 
One of the most important problems in classification is estimating a quality of decision built. As a quality measure, 
a misclassification probability is usually used. The last value is also known as a risk. There are many methods for 
estimating a risk: validation set, leave-one-out method etc. But these methods have some disadvantages, for 
example, the first one decreases a volume of sample available for building a decision function, the second one 
takes extra computational resources and is unable to estimate risk deviation. So, the most attractive way is to 
evaluate a decision function quality by the training sample immediately. 
But an empirical risk or a rate of misclassified objects from the training sample appears to be a biased risk 
estimate, because a decision function quality being evaluated by the training sample usually appears much better 
than its real quality. This fact is known as an overtraining problem. 
To solve this problem in [Vapnik, Chervonenkis, 1974] there was introduced a concept of capacity (complexity 
measure) of a decision rules set. The authors obtained universal decision quality estimations, but these VC–
estimations are not accurate and suggest pessimistic risk expectations. 
For a case of discrete feature in [Nedel’ko, 2003] there were obtained exact estimations of empirical risk bias. 
This allows finding out how far VC–estimations are off. 
The goal of this paper is to extrapolate the result on continuous case including linear and decision tree classifiers. 
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Formal Problem Definition 
A classification task consists in constructing a deciding function that is a correspondence YXf →: , where X – 
a features values space and Y = {1, k}  – a forecasting values space. For simplicity let’s assume a number of 
classes k = 2. 
For the determination of deciding functions quality one need to assign a loss function: [ )∞→ ,0: 2YL  that for 

classification task will be ( )
⎩
⎨
⎧
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, , where YyYy ∈′∈ , . 

By a risk we shall understand an average loss: 
( ) ( )( ) [ ]∫= DdPxfyLfcR c,, , 

where C is a set of probabilistic measures on YXD ×=  and Cc∈  is a measure [ ]DPc . The set C contains all 
the measures for those a conditional measure [ ]xYPc  exists Xx∈∀ . 
Hereinafter we shall use square parentheses to indicate that the measure is defined on some σ-algebra of 
subsets of the set held, i. e. [ ] [ ]1,0: →ΑDPc , where D2⊆Α  – a σ-algebra. 
For building a deciding function there is a random independent sample ( ){ }NiDyxv ii

c ,1, =∈=  from 
distribution [ ]DPc  used. 

An empirical risk will be sample risk estimation: ( ) ( )( )∑
=

=
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For the all practically used classification algorithms an empirical risk appears biased risk estimation, being always 
lowered, as far as the algorithms minimize an empirical risk. So, estimating this bias is actual. 
Let                                               ( ) ( )vQfcERQcF ,,, = ,    ( ) ( )vQfcREQcF ,,~,~

= . 
Here { } { }fvQ →:  is an algorithm building deciding functions, and vQf ,  – a deciding function built on the 
sample v by the algorithm Q. 
An expectation is calculated over the all samples of volume N. 
Introduce an extreme bias function: 

( ) ( ) 000
~~ˆ~ FFFFS QQ −= , (1) 
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We use a supremum because a distribution c is unknown and we assume the “worst” case.  

Multinomial Case 
In [Nedel’ko, 2003] there is reported the dependency ( )0

~FSQ  for the multinomial case when X is discrete, i. e. 
X = {1,…,n}, and Q minimizes an empirical risk in each Xx∈ . 
For the further comparison let’s remember a dependency ( )0

~FSQ  in asymptotic case: n
N = M = const, ∞→N , 

∞→n . Though this is an asymptotic case, the results are applicable to real tasks because the asymptotic bias 
dependency is close to one for finite samples. 
This asymptotic approximation is wholly acceptable already by n = 10, herewith it has only one input 
parameter  M. 

First, consider “deterministic” case when 0~
0 =F . In this case ( )
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In general case of 0~
0 >F  there is no simple analytical formula for ( )0

~FSQ  and this dependence is given by plot. 
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Estimates by Vapnik and Chervonenkis 
Now we can calculate an accuracy of Vapnik–Chervonenkis evaluations for the considered case of discrete X, as 
far as we know an exact dependency of average risk on the empirical risk for the "worst" probabilistic measure. 
For ( )0

~FS  in [Vapnik, Chervonenkis, 1974] there is reported an estimate ( ) τ=′ 0
~FSV , as well as an improved 

estimate: ( ) ⎟
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By substitution 0~
0 =F  there is resulted ( )

M
SV ′

=′ 2ln0 . 

Let’s perform a simple inference of the last formula. 
Consider a difference between risk and empirical risk: 

( ) ( ) ( )NRRPRRP εεε −====>− 10~~ . 
Since the algorithm minimizes an empirical risk, it maximizes the distance between risks: 

( )N
f

RRP εε −Φ<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>−

Φ∈
1~sup , 

where Φ is a set of all decision functions. This step implies 
a replacement of a probability of a sum by the sum of 
probabilities that makes the main contribution to VC-
estimates inaccuracy. Assume right term to be equal to 1 
(all probabilistic levels are asymptotically equivalent) and 
take logarithms:  

( ) 1ln1lnln =−+Φ εN . 

Since ( )Men −−=Φ 12  and ( ) εε −≈−1ln  obtain: 

( )
M

SV ′
==′ 2ln0 ε . 

Factor Me−−1  is a non-zero numbers probability from 
Poisson distribution and it appears because only “non-
empty” values x contribute to capacity. 
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shows how far VC-estimates are off. 
It is known that VC-estimates may be improved by using entropy as a complexity measure. Then the estimate 
inaccuracy will be: 

( )
( ) ( ) 38,22ln12
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But in real tasks, entropy can’t be evaluated and the last improvement has no use in practice. 
On figure 1 there are drawn the dependency ( ) ( )MF

FSMS 0~
~max

0
=  and its estimation  

( ) ( )MV
F

V FSMS 0~
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= =  
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2ln .  

Plots demonstrate significant greatness of the last. Note that the accuracy of Vapnik–Chervonenkis estimation 
falls since 0

~F  decreases. 
By M ≤ 1 the “worst” distribution (that provides maximal bias) is uniform on X and the results obtained is 
consistent with results for multinomial case reported in [Raudys, 2001]. By M > 1 and restricted 0

~F  the “worst” 
distribution is not uniform on X. 

Fig. 1. Risk bias and VC–estimation. Multinomial case, ER = 0,5. 
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Nearest Neighbors Method 
This method assigns to each x a class that the most of nearest sample neighbours belongs to. 
The number of neighbour objects taken into account is a parameter m that affects a statistical robustness. 
Assume a measure on D to be uniform. Then misclassification probability for any decision function is 0,5 and 

empirical risk is:   ( ) [ ]
mm
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2
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Here square parentheses denote an integer part of a value. 
Figure 2 shows S(M’) for multinomial case (solid line) and ( ) ( )mFmS ~5,0 −=  for nearest neighbours classifier, 
where m = M’. 
Note that though there is no capacity concept defined 
for nearest neighbours method the number of 
neighbours m plays a role of M’. 
So the case m = 1 corresponds to unbounded capacity 
(when a sample can be split via decision functions by 
all the ways). If capacity is unbounded, we can say 
nothing about expected risk using empirical risk only. 
But it does not mean that unbounded capacity methods 
can not be used, it means that they must use other risk 
estimators. 
The fact that a risk bias for multinomial case is close to 
bias for nearest neighbours classifier is not accidental, 
because analytic expression for the first one appears to 
be some kind of averaging the bias for the second 
case. 

Linear Decision Functions 
Let us compare risk bias values for discrete case 
with bias for linear decision functions. 
For simplifying, there was considered uniform 
distribution on features for both classes. For such c 
misclassification probability equals to 0.5 for every 
decision function, but empirical risk appears to be 
much lower. 
To find a dependence S(M) for linear deciding 
functions in X = [0,1]d a statistical modelling was 
used. By the modelling there was for each 
combination of parameters a hundred of samples 
drawn from uniform distribution on D, for each 
sample the best linear classifier built by exhaustive 
search. Note that the uniform distribution on D 
provides maximum of empirical risk bias since we 
put no restrictions on 0

~F . 
A table 1 shows the result of modelling. Here d – features space X dimensionality, N – sample size, 

C2log
NM =′  – sample size divided by VC-capacity of linear functions class ( ∑

=
−=

d

m

m
N

0
1C2C  is a total number of 

possible decision assignments to sample points by using linear decision functions), S – risk bias. 
The same results are shown (by markers) on fig. 3 in comparison with S(M’) for discrete case (solid line). 

Fig. 2. Risk biases for multinomial and nearest neighbours 
classifiers. 

S(M’)
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Fig. 3. Risk biases for multinomial and linear classifiers. 
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Obtained results show that bias dependence on M’ for linear functions is close to dependence for discrete 
(multinomial) case. 
If an algorithm does not perform exhaustive search then a risk bias appears to be lower. This fact is illustrated in 
table 1 by value SF  that is a risk bias for the Fisher’s discriminator. 

Decision Tree Classifier 
The goal now is to evaluate a risk bias for decision functions in form of binary decision trees [Lbov, Startseva, 
1999]. 
 

Tab. 1. Risk bias for linear decision functions 

d N M’ S SF d N M’ S 
1 3 1.16 0.4 0.4 1 10 2.31 0.27 
1 20 3.75 0.2 0.2 1 50 7.53 0.13 
1 100 13.1 0.1 0.1 2 4 1.05 0.47 
2 10 1.53 0.36 0.27 2 20 2.33 0.27 
2 50 4.44 0.18 0.13 2 100 7.53 0.13 
3 5 1.02 0.48 0.35 3 10 1.25 0.41 
3 20 1.79 0.32 0.2 3 50 3.28 0.22 
3 100 5.46 0.16 0.09 4 10 1.11 0.45 
4 20 1.5 0.36 0.19 4 50 2.66 0.25 
5 10 1.04 0.48 0.27 5 50 2.27 0.28 

 

Decision tree is a binary tree with terminal nodes marked by goal class (certain value y) and non-terminal nodes 
marked by predicates in form: Xj < α, where α is a value. Two arcs starting from each non-terminal node 
correspond to true and false predicate values. 
Each decision tree forms certain sequential partitioning in X. 
There was the exhaustive search algorithm 
implemented. The search is performed over the all 
decision trees with L terminal nodes and the best tree 
minimizing an empirical risk is founded. 
While searching, the algorithm counts C – the number 
of different assignments y to sample objects. 
Since C essentially differs on different samples one 
need to evaluate entropy C2logE=H . 

Then 
H
NM =′ . 

Table 2 shows statistical robustness of decision trees 
by different parameters while uniform distribution on D 
assumed. The same result is shown on figure 4 in comparison with multinomial case. 
One can see again that risk bias is caused and determined by M’ (sample size per complexity) rather than any 
other factor. 
Let’s compare complexities (capacities) of decision trees and linear classifier. 
Table 3 shows linear classifier dimensionality d’ that provides the same entropy (average number of different 
assignments y to sample objects) like decision trees with L terminal nodes in d-dimensional space. 
Though decision trees seem to be simple, they have essential capacity. For example if L = d decision trees 
capacity exceeds capacity of linear classifier. 

Tab. 2. Risk bias for tree decision functions 

d N L M’ S d N L M’ S 
1 2 1 2 0.26 1 2 2 1 0.5 
1 5 2 1.51 0.36 1 5 3 1.12 0.44 
1 10 2 2.31 0.27 1 10 3 1.53 0.34 
1 20 2 3.76 0.19 1 20 3 2.33 0.26 
1 20 5 1.50 0.34 2 5 2 1.26 0.40 
2 5 3 1.02 0.49 2 10 2 1.92 0.30 
2 10 3 1.28 0.40 2 20 2 3.19 0.23 
2 20 3 1.94 0.31 2 20 4 1.46 0.37 
3 5 2 1.17 0.42 3 20 2 2.92 0.24 
3 20 3 1.77 0.34 3 20 5 1.12 0.45 
4 20 2 2.76 0.25 5 10 2 1.57 0.35 

Fig. 4. Risk biases for multinomial and tree classifiers. 
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But, the most of algorithms do not perform exhaustive search in 
whole class of decisions and their capacities are expected to be 
lower.  
Note that if an algorithm implements good heuristic search and 
always founds the best decision function, then its capacity will 
be nevertheless equal to the capacity of exhaustive search 
algorithm. So, there is no use to count a number of decisions 
being really tested by an algorithm, because this number is 
irrelevant to actual capacity. 
Hence, calculation of effective capacity requires different 
approach. Effective algorithm capacity may be estimated by the 
following way.  
First one need to perform statistical modelling using uniform 
distribution on D. In this case misclassification probability (risk) 
equals to 0,5 for any decision function. Expectation of empirical 
risk is estimated by modelling, so risk bias is estimated too. 
Then via comparing the bias obtained by modelling with the 
bias for exhaustive search algorithm, the effective capacity of 
the algorithm under investigation is easily revealed. 

Conclusion 
Risk estimates by Vapnik and Chervonenkis are known to be 
excessively pessimistic. But the approach based on complexity measure is very attractive because of universality. 
The work presented shows that the reason for such pessimistic estimates is an inaccurate inference technique, 
but not the worst case orientation. So, it is possible to obtain estimates assuming the “worst” distribution and the 
‘worst’ sample but these estimates will be appropriate in practice. 
For the multinomial case (a discrete feature) there was found how far Vapnik–Chervonenkis risk estimations are 
off. For continuous features the dependence of risk bias on complexity in considered cases is close to multinomial 
one that ensures a possibility to apply obtained scaling of VC-estimates to real tasks, e.g. linear decision 
functions and decision trees. The results obtained for multinomial case may be propagated on continuous one by 
using VC-capacity of decision function class instead of n. 
Comparison of linear classifier and decision trees capacities is also performed. 
There was also described a method for estimation an effective capacity of an algorithm that does not perform 
exhaustive search in the class of decision functions. 

Bibliography 
[Vapnik, Chervonenkis, 1974] Vapnik V.N., Chervonenkis A. Ja. Theory of pattern recognition. Moscow “Nauka”, 1974. 415p. 

(in Russian). 
[Raudys, 2001] Raudys S., Statistical and neural classifiers, Springer, 2001. 
[Lbov, Startseva, 1999] Lbov G.S., Startseva N.G. Logical deciding functions and questions of statistical stability of decisions. 

Novosibirsk: Institute of mathematics, 1999. 211 p. (in Russian). 
[Nedel’ko, 2003] Nedel’ko V.M. Estimating a Quality of Decision Function by Empirical Risk // LNAI 2734. Machine Learning 

and Data Mining, MLDM 2003, Leipzig. Proceedings. Springer-Verlag. 2003. pp. 182–187. 

Author's Information 
Victor Mikhailovich Nedel’ko – Institute of Mathematics SB RAS, Laboratory of Data Analysis, 660090, 
pr. Koptyuga, 4, Novosibirsk, Russia, e-mail: nedelko@math.nsc.ru  

Tab. 3. Correspondent dimensionality for tree and 
linear decision functions. Non-integer 
values of d’ appears because of 
interpolation performed. 

d N L d' d N L d' 
1 5 2 1 2 5 2 1.56 
2 10 2 1.4 2 20 2 1.3 
3 2 2 1 3 5 2 1.83 
3 10 2 1.64 3 20 2 1.47 
4 5 2 2.09 4 20 2 1.59 
5 10 2 1.93 10 10 2 2.45 
1 5 3 2 2 5 3 2.95 
2 10 3 2.86 2 20 3 2.66 
3 5 3 3.76 3 10 3 3.48 
3 20 3 3.07 4 5 3 3.99 
4 10 3 3.94 2 5 4 3.99 
2 20 4 4.26 3 5 4 4 
3 10 4 5.82 3 20 4 5.1 
4 10 4 6.77 1 10 5 4 
2 10 5 6.45 3 15 5 7.77 


