
International Journal "Information Theories & Applications" Vol.14 / 2007

30

ONTOLOGICAL MULTILEVEL MODELING LANGUAGE

Sergey Shavrin

Abstract: This paper presents ontological multilevel modeling language O2ML, aimed at using with metadata
driven information systems. The first part of this paper briefly surveys existing modeling languages and
approaches, while the last part proposes a new language to combine their benefits.

Keywords: Metamodeling, information systems, modeling languages.

ACM Classification Keywords: H.0 Information Systems - General.

Introduction
Information systems development comprises a diversity of artifacts creation, e.g. domain model, users guide,
code, set of tests, etc. Short term company productivity depends on availability of tools that can ease or automate
the process of artifacts creation and usage. However, medium and long term productivity in many respects
depends on universality of these artifacts.
Rising of abstraction level is a common way of universalization and therefore a way of artifacts life prolonging.
However, abstracting increases semantic gap between an artifact and a machine, thus leading to translation
necessity. As is well known there are two types of translators – compilers and interpreters. Overwhelming
majority of contemporary CASE-tools utilize compiler approach. Benefits are obvious: translation process
executes once, before system exploitation, thus saving target machine resources. On the other hand, interpreter-
based systems exhibit great flexibility. The last property appears to be more valuable in the modern
circumstances.
Given the interpreter-based information
system, domain model is the natural
candidate for the role of “control
program”. In this case system must have
capabilities to understand and execute
models described in some modeling
language. The most widespread modeling
language nowadays is UML [7]. At the
moment, OMG (Object Management
Group) is working on the second version
of the language and concomitant
standards. Not all specifications had been
published yet, but we can already say that
a huge amount of work had been done to
formalize UML semantics. Completely
formalized semantics sets the stage for
building unified UML virtual machine.
Figure 1 shows a UML-model example.
Given an appropriate tool support, exploiting domain model as a primary artifact significantly increases short term
company productivity. However, domain model is prone to become out of date. On the other hand, adjacent
domains can be described using similar models differing in details. In this case company can increase its medium
and long term productivity by exploiting metamodels which describe more stable metaaspects, common to a set
of domains.
UML offers far from complete metamodeling capabilities. These capabilities include stereotypes and tagged
values. Powerful metamodeling language has to be able to operate with full-value metaentities at arbitrary
number of metalevels.

Fig. 1. UML-model example

Document

Number: Integer
Date: DateTime

Bill

TransferBill

BillLine

Price: Currency
Quantity: Integer

* {ordered}
TransferBillLine

Quantity: Integer

* {ordered}
Customer

Name: String
Phone: String
TIN: String

1
Warehouse

Name: String
Address: String

source target 1 1

Wares

Id: String
Name: String

1 1

Documents

International Journal "Information Theories & Applications" Vol.14 / 2007

31

OMEGA Project
OMEGA [4] – Ontological Metamodeling Extension for Generative Architectures – is a MOF [6] (Meta Object
Facility – UML metamodel) extension that introduces ontological metamodeling. OMEGA is aimed at code
generation.
OMEGA project introduces a series of notions that enable full-value ontological metamodeling. These notions
include metaclasses, metaattributes and metaassociations. It is essential that metaattribute in this case isn’t just a
metaclass attribute, but a full-value metaentity. An instance of metaattribute is a conventional attribute. This
allows one to model such domain features as “Document of each type has exactly one numeric attribute
(document number), not less than one date attributes and several property attributes” (Fig. 2 and Fig. 3).

“MetaAttribute”
Number

“MetaAttribute”
Date

Name: String

“MetaClass”
Document

1 1

1 1..*

0..1 *

“MetaClass”
DocTable

0..1

*

0..1

1

“MetaAssociation”
Doc_DocTable

Type = {String}

Type = {DateTime}

Type = {String, Integer,
Currency, RefBook}

“MetaClass”
RefBook

0..1 * “MetaAttribute”
Property

Name: String

“MetaAttribute”
Name

1 1

Multiplicity = {1}
Aggregation = {composite}

Multiplicity = {*}
isOrdered = true

“ModelLayer”
Metamodel

Fig. 2. OMEGA-metamodel example

 “ModelLayer”
Model

Name = «Bill»
Number (Number): String
Date (Date): DateTime
Customer (Property): Customer

“Class”
Bill (Document)

1 *

Item (Property): Wares
Price (Property): Currency
Count (Property): Integer

“Class”
BillLine (DocTable)

{ordered}

Bill_BillLine (Doc_DocLine)

Name = «Customers list»
CustomerName (Name): String
Phone (Property): String
TIN (Property): String

“Class”
Customer (RefBook)

Name = «Wares list»
WareName (Name): String
Code (Property): String

“Class”
Wares (RefBook)

Fig. 3. OMEGA-model example

However OMEGA has two disadvantages. First of all, OMEGA is based on MOF and therefore inherits all its
features. In particular MOF is aimed at describing languages like UML and CWM [5] doesn’t have some
capabilities that are useful in information systems’ domain modeling. Namely MOF (and therefore OMEGA)
doesn’t support plural multidimensional classification – a very convenient modeling tool in author’s opinion.
The second disadvantage concerns OMEGA semantics - its description is mainly informal. This fact complicates
OMEGA virtual machine creation.

International Journal "Information Theories & Applications" Vol.14 / 2007

32

Deep Instantiation

Speaking about instantiation one usually have in mind shallow instantiation. This implies that an instance is
created in accordance with its class definition. In other words defining a class we make assertions about its
immediate instances. Obviously, it is the only possible interpretation of instantiation in two-level “class-instance”
model. However, exploitation of this notion in multi-level case can result in a series of problems. In particular,
ambiguous classification and replication of concepts arise [1, 2].

In order to solve shallow instantiation problems Atkinson and Kϋhne proposed to use a new notion of deep
instantiation [2]. This notion allows one to make assertions not only about immediate instances, but instances of
instances and so on. This capability is gained by introduction of potency notion – a number that defines allowed
instantiations quantity. For example, an instance of class with potency 2 (metaclass) is a class with potency 1
(ordinary class). And an instance of class with potency 1 is a class with potency 0 (object). Similarly, an attribute
with potency 2 becomes an attribute with potency 1 (ordinary attribute) that, in its turn, becomes an attribute with
potency 0 (slot). Figure 4 shows an example of potency exploitation.

Aside from potency, Atkinson and Kϋhne introduced a dual field notion – an object possessing attribute and slot
semantics [2]. In terms of potencies dual field is a slot with non-zero potency. Figure 4 shows some dual field
examples, namely “EntityName” and “Description”.

Property_Value2

Property_Type1

EntityName2 = «Entity»
Description2 = «…»

Entity3

EntityName1 = «Document»
Description1 = «…»
Number2: Integer
Date2: DateTime

Document2

EntityName1 = «Property»
Description1 = «…»

Property2

EntityName1 = «RefBook»
Description1 = «…»
Name2: String

RefBook2 1 * Doc_HeaderProp1

HeaderProperty

1 * Doc_PropValue2

PropertyValue

1
Type

1
Value

*

*

“instance_of” “instance_of” “instance_of”

EntityName0 = «Bill»
Description0 = «…»
Number1: Intrger
Date1: DateTime

Bill1

EntityИмя0 = «Customer»
Description0 = «…»

Customer1

EntityName0 = «Contractor»
Description0 = «…»
Name1: String

“instance_of” “instance_of” “instance_of”

Doc_HeaderProp0

HeaderProperty
Property_Type0

Type

Number0 = 11
Date0 = 22.02.06

:Bill

:Customer

Name0 = «Mr. Smith»

:Contractor

“instance_of” “instance_of” “instance_of”

Doc_PropValue0

PropertyValue
Property_Value0

Value

Contractor1

Fig. 4. Potency usage example

In spite of the fact that potency allows to avoid multilevel modeling problems mentioned above, it is obviously
insufficient to solve real-world problems. The language with potency support proposed in [2] is too simple to be
used in practice. There is a need in additional metamodeling tools like metaattributes and metaassociations.

International Journal "Information Theories & Applications" Vol.14 / 2007

33

O2ML

This part proposes a new modeling language – O2ML (Ontological Multi-Level Modeling Language). This
language combines the best modeling features considered above. Namely, O2ML is based on:

• UML – reach intra-level modeling capabilities (plural inheritance, plural multi-dimensional classification);
• OMEGA – reach inter-level modeling capabilities (metaclasses, metaattributes, metaassociations);
• Deep Instantiation – multi-level modeling support (potency values).

Figures 5 to 7 show O2ML usage example. One can see on these figures that potency values allow reducing
metaattributes quantity. This leads to more simple and compact models. Formally, an attribute with potency value
of n > 1 is a metaattribute with potency value of n – 1 that satisfies following constrains:

• set of allowed types is constrained to only one type;
• instance quantity in each owner-class instance is precisely one;
• instances names replicate their parent name.

string EntityName2 = «Entity»
string Description2 = «…»

“ModelLevel”
Meta-metamodel

“MetaAttribute”
Attribute

“MetaAttribute”
Key

Type = {int, string}
Quantity = {1}
Multiplicity = {1}

“MetaAttribute”
DataField

“MetaClass”
Entity

Fig. 5. O2ML-meta-metamodel example

 “ModelLevel”
Metamodel

“MetaClass”
Document: Entity

string EntityName1 = «Document»
string Description1 = «…»
string Number2: Key
datetime Date2: DataField

“MetaAttribute”
Property: DataField

Multiplicity = {1}

“MetaClass”
TablePart: Entity

string EntityName1 = «Table part»
string Description1 = «…»

1 0..1

“MetaAssociation”
Document_TablePart

“Document”
Multiplicity = {1}
Aggregation = {composite}

“TablePart”
Multiplicity = {*}
isOrdered = true

“MetaClass”
RefBook: Entity

string EntityName1 = «RefBook»
string Description1 = «…»
string Name2: DataField

0..1

0..1

Parent

Scion

“MetaAssociation”
Parent_Scion

“Parent”
Multiplicity = {0..1}
Aggregation = {shared}

“Scion”
Multiplicity = {*}

{Parent = Scion}

Fig. 6. O2ML-metamodel example

International Journal "Information Theories & Applications" Vol.14 / 2007

34

O2ML graphical notation uses attribute definition syntax that differs from the one used in UML. The syntax is as
follows: <Type> <Attribute Name><Potency value>: <Metaattribute Name>. This approach conforms to the fact that
metaattribute is a classifier for corresponding attributes.

 “ModelLevel”
Model

“Class”
Bill: Document

string EntityName0 = «Bill»
string Description0 = «…»
int Number1: Key
datetime Date1: DataField
User Author1: Property
Contractor Customer1: Property

“Class”
BillLine: TablePart

string EntityName0 = «Bill line»
string Description0 = «…»
Wares Item1: Property
int Quantity1: Property
currency Price1: Property

*
{ordered}

“Class”
User: RefBook

“Class”
Contractor: RefBook

0..1
“Class”

Wares: RefBook
*

:Parent_Scion

Parent

Scion

1

:Document_TablePart

Fig. 7. O2ML-model example

Important O2ML feature is that its semantics is described formally. This fact eases O2ML virtual machine creation.
The semantics is described using XOCL (eXecutable OCL) – an extension of OMG’s OCL and a part of XMF
(eXecutable Metamodeling Framework) [3].

Bibliography
[1] Atkinson C., Kühne T. Rearchitecting the UML Infrastructure. ACM Transactions on Modeling and Computer Simulation,

Vol. 12, No. 4, October 2002.
[2] Atkinson C., Kühne T. The essence of multi-level metamodeling. In Proceedings of the Fourth International Conference

on the Unified Modeling Language, M. Gogolla, C. Kobryn, Eds., Lecture Notes in Computer Science, vol. 2185, 19–33,
2001.

[3] Clark T., Evans E., Sammut P., Willans J. Applied Metamodelling: A Foundation for Language Driven Development
http://albini.xactium.com/web/downloads/b1a35960appliedMetamodelling.pdf, 2004.

[4] Gitzel R., Ott I., Schader M. Ontological Metamodel Extension for Generative Architectures (OMEGA), Working Paper,
University of Mannheim, Department of Information Systems III, http://www.bwl.uni-mannheim.de/Schader/_files/gitzel-
omega.pdf, June, 2004.

[5] Object Management Group, Common Warehouse Metamodel, http://www.omg.org/technology/cwm, 2001.
[6] Object Management Group, Meta Object Facility Core v2.0, http://www.omg.org/cgi-bin/doc?formal/2006-01-01, January

2006.
[7] Object Management Group, UML Superstructure Specification v2.0, http://www.omg.org/cgi-bin/doc?formal/05-07-04,

July 2005.

Author’s Information
Sergey Shavrin – Perm state university, computer science department, senior lecturer;
e-mail: shavrin@gmail.com

