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RECENT RESULTS ON STABILITY ANALYSIS  
OF AN OPTIMAL ASSEMBLY LINE BALANCE 

Yuri Sotskov 

Abstract: Two assembly line balancing problems are addressed. The first problem (called SALBP-1) is to 
minimize number of linearly ordered stations for processing n partially ordered operations V = {1, 2, ..., n}  within 
the fixed cycle time c. The second problem (called SALBP-2) is to minimize cycle time for processing partially 
ordered operations V on the fixed set of m linearly ordered stations. The processing time ti of each operation 

V i∈  is known before solving problems SALBP-1 and SALBP-2. However, during the life cycle of the assembly 
line the values ti are definitely fixed only for the subset of automated operations V~V\ . Another subset V~ V⊆  
includes manual operations, for which it is impossible to fix exact processing times during the whole life cycle of 
the assembly line. If ,Vj ~

∈  then operation times tj can differ for different cycles of the production process. For the 
optimal line balance b of the assembly line with operation times t1, t2, …, tn, we investigate stability of its optimality 
with respect to possible variations of the processing times tj of the manual operations .Vj ~

∈   

Keywords: Scheduling, robustness and sensitivity analysis, assembly line. 

ACM Classification Keywords: F.2.2 Nonnumerical algorithms and problems: Sequencing and scheduling. 

Introduction 

A single-model paced assembly line, which manufactures homogeneous product in large quantities, is addressed 
(we use terminology given in monograph [Scholl, 1999]). The assembly line is a sequence of m linearly ordered 
stations, which are linked by a conveyor belt or other material handling equipment. Each station of the assembly 
line has to perform the same set of operations repeatedly during the life cycle of the assembly line. Set of 
operations V, which has to be processed on the assembly line within one cycle time c, is fixed. Each operation 

V i∈  is considered indivisible: An operation has to be completely processed on one station within one cycle 
time. All the m stations start simultaneously the sequences of their operations and buffers between stations are 
absent. Simple Assembly Line Balancing Problem is to find an optimal balance of the assembly line for the fixed 
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cycle time c, i.e., to find a feasible assignment of operations V into a minimal possible number m of stations. In 
[Scholl, 1999], abbreviation SALBP-1 is used for such a problem.  

In this paper, it is assumed that set V includes operations of two types. Subset V~ ⊆  V includes all the 
operations for which it is impossible to fix exact processing times for the whole life cycle of the assembly line 
(manual operations). An operation V~\V i∈  is one with operation time ti being fixed during the life cycle of the 
assembly line (automated operations). The technological factors define a partial order on the set of operations V. 
Digraph G = (V, A) with vertices V and arcs A defines partially ordered set of operations V = {1, 2, ..., n}, which 
have to be processed on the assembly line within cycle time c. Without loss of generality, it is assumed that 

},~...,,2,1{~ nV =  },2~1~{ ~ , ..., n n,   nVV\ ++= and nn~ ≤≤0 . The vectors of the operation times are 
denoted as follows: ) ..., , ,(  ~

n~21 tttt = , )(  21 nn~n~ , ..., t, ttt ++= , t = ),~( tt  = (t1, t2, ..., tn). The set of n 

operations is presented as follows: }1~~21{  , ..., nn, n, ..., , V += . If 0~ =n , then ∅= V~ . If nn =~ , then V~  = 
V. The assignment V = V1 ∪ V2 ∪ … ∪ Vm  of the set of n operations to m linearly ordered stations S = (S1, 
S2,…, Sm) (i.e., partition of set V into m mutually disjoint non-empty subsets Vk, k ∈ {1, 2, …, m}) is feasible 
operation assignment (called also line balance) if the following two conditions hold. 
Condition 1: Feasible operation assignment does not violate the precedence constraints given by digraph G = 
(V, A), i.e., inclusion (i, j) ∈ A implies that operation i is assigned to station Sk: kVi∈ , and operation j is assigned 
to station Sr: rVj∈ , such that mrk ≤≤≤1 .  

Condition 2: Cycle time c is not violated for each station Sk, k ∈ {1, 2, …, m}, i.e., sum of the processing times of 
all the operations assigned to station Sk (called station time), has to be not greater than cycle time c: 

ct
kVi

i ≤∑
∈

. (1) 

For problem SALBP-1, line balance b is optimal when it uses the minimal number of m stations and when both 
Condition 1 and Condition 2 are satisfied.  
Lemma 1: Constructing an optimal line balance for problem SALBP-1 is binary NP-hard problem even for the 
case of two stations used in the optimal line balance (S = (S1, S2)), empty precedence constraints (A = ∅), and 
fixed processing times of all the operations V processed on the assembly line (V~  = ∅).  
Lemma 1 may be easily proven by polynomial reduction of NP-complete partition problem [Garey, Johnson, 1979] 
to problem SALBP-1 with two stations and A = ∅ (see, e.g., [Scholl, 1999]).  
For the sake of simplicity, notation  

∑
∈

=
kVi

ik tVt )(  (2) 

is used for the original vector t = (t1, t2, …, tn) of the operation times. We assume that, if  ,Vj ~
∈ then operation 

time tj is a given non-negative real number: 0≥jt . The value of this operation time can vary during life cycle of 

the assembly line and can even be equal to zero. Zero operation time jt ′  will mean that operation kVj ∈ IV~  
will be processed (e.g., by an additional worker) in such a way that processing operation j will do not increase 
station time for Sk for the new vector t = ( t,t~′ ) = ( nn~n~ t,,t,t,,t,t KK 121 +′′′ ) of the operation times: 

∑∑
∈∈

′=′
{j}\kk Vi

i
Vi

i tt . The latter equality is only possible if jt ′  = 0.  

If V~\V i∈ , then operation time ti is given real number fixed during the whole life cycle of the assembly line. We 
assume that ti  > 0 for each operation .V\V i ~

∈  As far as the processing time of an automated operation is fixed, 
one can consider only automated operations, which have strictly positive processing times. Indeed, an operation 
with fixed zero processing time has no influence on the solution to problem SALBP-1. In contrast to usual 
stochastic problems (see surveys [Erel, Sarin, 1998; Sarin, Erel, Dar-El, 1999]), we do not assume any probability 
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distribution known in advance for the random processing times of the manual operations. Moreover, it is assumed 
that optimal line balance b is already constructed for the given vector t = (t1, t2, ..., tn) of the operation times and 
the aim is to investigate the stability of optimality of line balance b with respect to independent variations of the 
processing times of the manual operations }21{ n~,,,V~ K= . More precisely, we investigate stability radius of  an 
optimal line balance b, which may be interpreted as the maximum of simultaneous independent variations of the 
manual operation times with definitely keeping optimality of line balance b.  

Motivation and Definitions 
Problem SALBP-1 arises when a new assembly line must be installed and the internal demands and properties of 
the assembly line have to be estimated. Cycle time c is defined on the basis of customer demands in the finished 
products. The value of c may be calculated as the ratio of available operating time of the assembly line and 
production volume for the same calendar interval. This problem may also arise when cycle time c of acting 
assembly line has to be changed because of changing customer demands in the finished product.  
In the real-world assemble lines, processing times of some operations may be known exactly and fixed for a long 
time (if an operation has to be done by fully-automated or semi-automated machine). Indeed, modern machines 
and robots are able to work permanently at a constant speed for a long time. However, in some cases it is not 
realistic to assume constant processing time for an operation, if it has to be done by a human operator with rather 
simple tools. In the case of a human work, operation time is subject to physical, psychological, and other factors. 
Due to the learning of operators, the operation times during the first days (weeks, months) of a life cycle of the 
assembly line may differ from the processing times of the same operations during the later days (weeks, months). 
Moreover, some workers can leave the plant and new workers with lower or higher skills have to replace them.  
In the case of changeable operation times, it is important to know the credibility of the optimal line balance at 
hand with respect to possible variations of all or a portion of the operation times. Line balance b, which is optimal 
for the original vector t = ( t,t~ ) of the operation times, may lose its optimality or even feasibility for a new vector 

),~( ttt ′=′  of the operation times. For example, due to increasing of operation times, line balance b may become 
infeasible for cycle time c since inequality (1) may be violated. In such a case, it is necessary to look for another 
line balance and to use it for a suitable modification of production process on the assembly line. Also, line 
balance b may lose its optimality with saving feasibility. It may occur if another operation assignment bs becomes 
feasible for the new vector ),~( ttt ′=′  of the operation times and bs uses less stations than line balance b uses.  
Of course, each re-engineering of the assembly line being in process takes an additional time and other 
expenditure. So, assembly line modification has to be started, if it is really necessary: When the income from the 
re-engineering will be larger than the total expenditure caused by this re-engineering. Therefore, an evaluation of 
expenditures and benefits should be conducted before deciding whether re-engineering of the assembly line is 
necessary. However, these expenditures and benefits are difficult to evaluate before the end of the re-
engineering process. In this paper, we survey some sufficient conditions for keeping the optimality of the line 
balance being in process.  
To test whether line balance b remains feasible for the new vector ),~( ttt ′=′  of the operation times takes 

)n~(O  time (if station times are included in the input data) or )n(O  time (otherwise). Indeed, for the new 
operation times we have to verify inequality (1) for each subset ,,...,2,1, mkVk =  that includes at least one 
manual operation with changed processing time in vector .t′  In the case of feasibility of the line balance b for the 
new vector t ′ , in order to test its optimality for t ′  one has to solve NP-hard problem SALBP-1. Intuitively, it is 
clear that sufficiently small changes of the operation times nttt ~21 ,...,,  may keep line balance b optimal for the 
new vector ),~( ttt ′=′  of the operation times. Our aim is to estimate or (what is better) to calculate the largest 
simultaneous and independent variations of the operation times ,V~i,ti ∈  that do not violate the feasibility and 
optimality of the line balance b. At the stage of the design of the assembly line, there exists a lot of optimal line 
balances. Using stability analysis, one can select such an optimal line balance, which optimality is more stable 
with respect to possible variations of the operation times Viti

~, ∈ .  
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Let B denote the set of all assignments of operations V to stations S1, S2, … , Sm (for possible numbers m of the 
stations: nm ≤≤1 ), which satisfy Condition 1. Subset of set B of all operation assignments which also satisfy 
Condition 2 for the given vector t = (t1, t2, … , tn) of the operation times is denoted by B(t) = {b0 b1, … , bh} where 
bk, k ∈ {0, 1, ..., h}, means line balance k

b

kk bbb

km
V...VVV ∪∪∪=

21
. Let subset of set B(t) of all the optimal line 

balances be denoted by Bopt(t). Inclusion b ∈ Bopt(t) implies that line balance b with partition 
bbb

bm
VVVV ∪∪∪= ...

21
 satisfies Condition 1, Condition 2, and the following optimality condition for the vector 

t = (t1, t2,…, tn) of the operation times.  
Condition 3: mb = min{ kmb  : bk  ∈ B(t)}.  

Since line balance b is contained in the set B(t), we obtain b = br ∈ B(t) for some index r ∈ {0, 1,…, h}. As a 
matter of convenience, index r will be omitted for the optimal line balance b, which stability will be investigated. In 
both definitions of set B and set B(t), number m of stations is not fixed: For line balance bk from the set B(t), 
inequalities nmm ≤≤

kbb  must hold and number of stations in an operation assignment from set B has to 
belong to set {1, 2, … , n}. The question under consideration may be formulated as follows. How much can be 
modified the components of the vector t~  simultaneously and independently from each other that the given line 
balance b remains optimal?  
Let nR  ( nR+  respectively) denote the space of n-dimensional real vectors t  = (t1, t2, …, nt ) (the space of n-
dimensional non-negative real vectors) with the maximum metric, i.e., distance ),( *ttd  between vector t  ∈ nR  

and vector *t = ( **
2

*
1 ,,, nttt K ) ∈ nR  is calculated as follows: },:{max),( * Vittttd *

ii ∈−=  where *
ii tt −  

denotes the absolute value of the difference *
ii tt − . Let line balance b be optimal for the given non-negative real 

vector t = )( t,t~ =(t1, t2, …, tn) ∈ nR+  of the operation times, i.e., b )(tBopt∈ . For problem SALBP-1, the 
definition of stability radius of an optimal line balance is introduced as follows. 
Definition 1: The open ball Oρ( t~ ) with radius ρ ∈ 1R+  and center t~ ∈ n~

+R  in the space n~R  is called a 
stability ball of the line balance b )(tBopt∈ , if for each vector *t  = ( *~t , t ) of the operation times with 

*~t )~(tOρ∈ nR
~
+I  line balance b remains optimal. The maximal value of the radius ρ of stability ball Oρ ( t~ ) of 

the line balance b is called stability radius denoted by ρb(t). 

In Definition 1, vector )(  21 nn~n~ , ..., t, ttt ++=  of the processing times of the automated operations and the 
complete vector ),...,,(),~( 21 ntttttt ==  of the operation times are fixed, while vector ),...,,(~ *

~
*
2

*
1

*
ntttt =  may 

vary within the intersection of the open ball Oρ( t~ ) nR⊂  with the space n~
+R  of the non-negative real vectors. 

Stability radius ρb(t) is equal to the minimal upper bound of independent variations iε  of the processing times ti 
of all the manual operations Vi ~

∈  which definitely keep the optimality of the line balance b, i.e., inclusion 
)( *tBopt∈b  holds with }{ iii tt ε−= ,0max*  or iii tt ε+=* .  

In the rest of this paper, we survey recent results proven in [Sotskov, Dolgui, 2001; Sotskov, Dolgui, Portmann, 
2006; Sotskov et al, 2005] on stability analysis of an optimal line balance for problems SALBP-1 and SALBP-2.  

Stability Radius of an Optimal Line Balance for Problem SALBP-1 

Let b
kV~  denote the subset of manual operations of set b

kV  and let b
kV  denote the subset of automated 

operations of set b
kV . For each index k ∈ {1, 2, …, mb}, equality bbb

kkk VVV ∪=
~  holds. The following remark is 

used in stability analysis of an optimal line balance for problem SALBP-1.  
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Remark 1: Let us consider the line balance b )(tBopt∈  being in process and the modified vector ),~( ttt ′=′  

of the operation times. If there exists subset ,b
kV  k ∈ {1, 2, ..., bm }, in the line balance b such that  

0=∑ ′
∈ b

kVi
it , (3) 

we continue to affirm that line balance b uses mb stations for the modified vector ),~( ttt ′=′  as well.  

We can argue Remark 1 as follows. In spite of equality (3) valid for the new vector ),~( ttt ′=′ , station Sk is still 
exists in the assembly line with line balance b. At very least to delete station Sk  causes additional cost and 
additional time for re-engineering the assembly line. Moreover, after deleting station Sk  we obtain another line 
balance, say, b* B∈ : V = 

{ }
U

kimi
i

b

V
≠∈ ,,...,2,1

b =
*

*b

** bbb
m

VVV ∪∪∪ ...
21

, where .1* −= bb mm  Due to the validity of 

inequality ti > 0 for each automated operation V~V\i ∈ , equality (3) is only possible if .~bb
kk VV =   

In [Sotskov, Dolgui, Portmann, 2006], it was proven the following necessary and sufficient condition for the case 
when optimality of the line balance b ∈ Bopt(t) is unstable. 

Theorem 1: For line balance b ∈ Bopt(t) equality ρb(t) = 0 holds if and only if there exists a subset b
kV , 

}21{ bm,,,k K∈ , such that ∅≠b
kV~  and t( b

kV ) = c.  

To present a formula for exact value of stability radius ρb(t) of optimal line balance b ∈ Bopt(t) we need the 
following notation:  

,~:min { ∅≠= bbb
kV

k
δδ  k { }bm...,,2,1∈ }, (4) 

where 
b

b
b

k

k

V
Vtc

k ~
)(−

=δ  and value t(Vk) is defined in (2). It is easy to see that testing criterion given in Theorem 1 

takes O(n) time. This asymptotic bound is defined due to calculating station times b
b mpVt p ...,,2,1),( = . If 

station times are included in the input data, then testing criterion given in Theorem 1 takes O(mb) time.  
The following lower bound of stability radius has been obtained within the proof of Theorem 1 given in [Sotskov, 
Dolgui, Portmann, 2006].  
Corollary 1: If optimality of line balance b ∈ Bopt(t ) is stable, then ≥)t(bρ  min{ bb Δ,δ }, where  

}:)(min **{ BVp ∈Δ=Δ bbb  and )(
*b

pVΔ  = 
*

*

~
)(

b

b

p

p

V

cVt −
. 

Let 
)(b d

pV~ = { ui,...,i,i 21 }, where |~|
)(d

pVu b= , and indices v of operations iv are assigned in such a way that the 

following inequalities hold: 
uiii t...tt ≤≤≤

21
. It is assumed that .0

0
=it  Vector nttt +∈′′=′′ R),~(  closest to t, 

for which subset 
(d)

pV b  is feasible (inequality (1) holds for subset 
(d)

pV b  with vector ),~( ttt ′′=′′ ), can be 

obtained if for each operation 
(d)

pq V~i b∈ we set }{ )(ˆ,0max
)(d

q pji Vtt bΔ−=′′  where j and iq denotes the same 

manual operation (j = iq) and value )(ˆ )(d

pV bΔ  is calculated as follows: 

)(ˆ )(d

pV bΔ  = { }1~...,,1,0~max
)(

)(

)( 0
−=

−

−− ∑∑
=∈ d

d

αd
p

p

p

ii
Vi V:

V

tct
b

b

b

β
β

β

α
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Here maximum is taken among right-hand fractions calculated for  1~...,,1,0
)(
−=

d

pV bβ . We define  

{ :)V( )(
(d)

p
d bb ΔΔ ˆmax)( = }cVt

)d(

p >)( b , 

minˆ =Δb { :d )( )(bΔ  b(d) )1( −∈ bmB }. 
(5) 

In [Sotskov, Dolgui, Portmann, 2006], the following formula for calculating the exact value of stability radius ρb(t) 
has been derived.  
Theorem 2: If optimality of line balance b ∈ Bopt(t) is stable, then ρb(t) = min{ bb Δδ ˆ, } with bδ  being defined in 

(4) and bΔ̂ in (5). 
Let ⎡ ⎤a  denote the smallest integer greater than or equal to real number  a . Theorem 2 implies the following 
five corollaries.  

Corollary 2: If mb = ⎥⎥
⎤

⎢⎢
⎡

c
Vt )( , then min)( ≥tbρ { }

n
mcVt, ~

)1()( −− bbδ . 

Corollary 3: If mb = ⎥⎥
⎤

⎢⎢
⎡

c
Vt )(  and 

n
mcVt

~
)1()( −−

≤ bbδ , then b
b δρ =)(t .  

Corollary 4: If b ∈ Bopt(t), then }max,{min)( ~ iVi tt ∈≤ b
b δρ . 

Corollary 5: If b ∈ Bopt(t), then }{ ~~ max,maxmin)( jVijVi ttct ∈∈−≤bρ . 

Corollary 6: If b ∈ Bopt(t) and )m()d( B 1−∈ bb , then }{ )(,min)( )(dt bb
b Δ≤ δρ . 

Stability of an Optimal Line Balance for Problem SALBP-2 
In this section, we consider problem SALBP-2: To find an optimal balance of the assembly line for a fixed number 
of stations, i.e., to find a feasible assignment of all operations V to exactly m stations in such a way that the cycle-
time c is minimal. For problem SALBP-2, line balance br  is optimal if along with Condition 1 and Condition 2, it 
has the minimal cycle time. We denote the cycle time for line balance br with the vector t of the operation times as 
c(br, t):  

c(br, t) = max ∑
∈

=
rb

kVi
i

m t1k . 

For problem SALBP-2, optimality of line balance b = bs with vector t of the operation times may be defined via the 
following condition.  
Condition 4: c(bs, t) = min{c(br, t) : br ∈ B(t)}, where B(t) = {b0, b1, …, bh} is the set of all line balances. 
For problem SALBP-2, definition of the stability radius of an optimal line balance is introduced as follows. 
Definition 2: The closed ball Oρ ( t~ ) in the space n~R  with the radius ρ ∈ 1R+  and center t~ ∈ nR

~
+  is called a 

stability ball of the line balance b ),(tB∈  if for each vector *t = ( *~t , t ) of the operation times with 
*~t )~(tOρ∈ ∩ nR

~
+  line balance b remains optimal. The maximal value of the radius ρ of stability ball Oρ ( t~ ) of 

the line balance b is called stability radius denoted by )(t
b

ρ . 

In Definition 2, vector )( 2~1~ nnn , t, , tt  t K++=  of the automated operation times and vector 

),,,(),~( 21 ntttttt K==  of all the operation times are fixed, while vector )...,,,(~ *
~

*
2

*
1

*
ntttt =  of the 

manual operation times may vary within the intersection of the closed ball Oρ ( t~ ) with the space nR
~
+ . For each 

optimal line balance br  ∈ Bopt(t), we define a set W(br) of all subsets rb
kV~ , k ∈ {1, 2, …, m }, such that  
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∑
∈ rb

kVi
it = c(b, t). It should be noted that set W(br) may include the empty set as its element. In [Sotskov et al, 

2005], the following claims have been proven.  
Theorem 3: Let inequality ti > 0 hold for each manual operation Vi ~∈ . Then for line balance bs ∈ B(t), equality 

)(t
sb

ρ = 0 holds if and only if there exists a line balance br ∈ Bopt(t) such that condition W(bs) ⊆ W(br) does not 

hold. 
Corollary 7: If Bopt(t) = {bs}, then 0)( >t

sb
ρ . 

If there exists an index k ∈ {1, 2, …, m} such that  

∑
∈ 0b

kVi
it < c(b0,t), (6) 

then we set λ (b0)= nWVt,t)c( b
k

Vi
i

b
k

~)}}(~:max{{ 00
0

0

bb ∉− ∑
∈

. Due to (6), the strict inequality λ (b0)> 0 must hold. 

If ∑
∈ 0b

kVi
it = c(b0,t) for each index k ∈ {1, 2, …, m}, then we set λ (b0) = min{ti : i ∈ V~ }. We denote  

Δ = min{Δ(bs) : bs ∈ B \ B(t)}, where Δ(bs) = 
n

,t)c(,t)c( s
~

0bb − . Theorem 3 implies the following claim.  

Corollary 8: If 0)( >t
sb

ρ , then (t)ρ
sb

 ≥ min{Δ, λ (b0)}. 

Calculating exact value of stability radius )(t
b

ρ  is close to calculating stability radius of the optimal schedule for 
the makespan criterion (see [Sotskov, 1991; Sotskov, et al. 1998]). 

Conclusion  
In the above sections, the recent results on stability analysis of an optimal line balance are presented. We used 
the notion of stability radius, which is similar to the stability radius of an optimal schedule introduced in [Sotskov, 
1991] for shop-scheduling problems. If stability radius of an optimal line balance is strictly positive, then any 
independent changes of the operation times tj, ,~Vj∈  within the ball with this radius definitely keep the 
optimality of this line balance. On the other hand, if stability radius of optimal line balance b is equal to zero 
(Theorems 1 and 3), then even small changes of the processing times of all or a portion of the manual operations 
may deprive the optimality of line balance b. It is worth noting that conditions presented in this paper (except 
Theorem 2, Theorem 3, Corollary 1, and Corollary 8) may be tested in polynomial time, which is important for 
real-world assembly lines with large numbers of operations. Moreover, for exact value of stability radius, feasibility 
of line balance b, which is defined by the value bδ , may be tested in polynomial time due to Theorem 2 as well.  
In practice, the tendency at the design stage must be to find optimal line balance for which stability is as much as 
possible. The common objective is to assign to each station a set of operations with roughly the same total 
operation time [Bukchin, Tzur, 2000; Erel, Sarin, 1998; Lee, Johnson, 1991; Sarin, Erel, Dar-El, 1999]. Due to the 
above results, we have to defer stations with manual operations and stations without manual operations. 
Theorem 1 shows that for the station with manual operations it is desirable to have some slack between cycle 
time and station time. The larger this slack is the larger stability radius of the line balance may be. On the other 
hand, for the stations loaded by only automated operations, such a slack may be as small as possible, which 
gives the possibility to increase slacks for stations with manual operations.  
Since stability radius ρb(t) cannot be larger than c/2, one has to pay special attention to the manual operations 
with possible variations of the processing times more than c/2 (such operations may cause instability of optimality 
of the line balance being in process). At the design stage, such an operation has to be divided into shorter 
operations. If line balance will be used for a long time for assembling the same finished product, it is desirable at 
the design stage, to construct several optimal line balances, and select among them the one with the best stability 
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characteristics. To this end, it is useful to develop algorithms, which construct a set of optimal line balances 
(instead of only one optimal line balance), in order to carry out a stability analysis for them. Or, better yet, it is 
useful to include in the branch-and-bound algorithm or other algorithms used for solving problem SALBP-1 and 
problem SALBP-2 specific rules in order to construct optimal line balance with larger stability radius. In a concrete 
study, the set V~  of manual operations can be reduced (e.g., only critical manual operations may be considered) 
or, on the contrary, set V~  may be completed by some unstable automated operations. By changing the set of 
operations with variable times, the designer of the assembly line can study the influence of different operations on 
stability of optimality and feasibility of line balances.  
In [Sotskov, Dolgui, 2001], slightly different definition of stability radius of an optimal line balance has been used 
for problem SALBP-1. Namely, it was assumed that n
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 (as a result, such a stability radius cannot be 

greater than }~:min{ Viti ∈ ). The above Definition 1 is more appropriate for practical assembly lines. As a 
subject for future research, it is important to consider stability characteristics of an assembly line balance 
provided that for each operation time an interval of possible variation is known in advance. Such an assumption 
seems to be realistic for many real-word assembly lines.  
This research was partially supported by ISTC (Project B-986). The author would like to thank Prof. Alexandre 
Dolgui, Prof. Marie-Claude Portmann, and Prof. Frank Werner for joint research in stability analysis.  
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