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Conclusion 
In the present paper an approach for optimal constrained control based on using of neural networks is suggested.  
On the basis of the simulation experiments one can say that the proposed approach for optimal control is 
accurate enough for the engineering practice. The suggested approach can be applied for optimal control in real 
time, where the control is constrained. 
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Abstract: Binary distributed representations of vector data (numerical, textual, visual) are investigated in 
classification tasks. A comparative analysis of results for various methods and tasks using artificial and real-world 
data is given. 
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Introduction 
Classification tasks consist in assigning input data samples to one or more classes from a predefined set [1]. 
Classification in the inductive approach is realized on the basis of a training set containing labeled data samples. 
Usually, input data samples are represented as numeric vectors. Vector elements are real numbers (e.g., some 
measurements of object characteristics or their function) or binary values (indicators of some features in the input 
data). 
This vector information often isn’t explicitly relevant to the classification, therefore some kind of transformation is 
necessary. We have developed methods for transformation of input information of various kinds (such as 
numerical [2], textual [3], visual [4]) to binary distributed representations. These representations can then be 
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classified by linear classifiers – such as SVM [5] or more computationally effective and naturally handling multiple 
classes perceptron-like classifiers [4, 6]. The objective of this paper is to investigate efficiency of the proposed 
methods for distributed information representation and classification using real and artificial data of different 
modalities. 

Numeric vector data classification 
For an experimental research of the abovementioned methods on numeric data the following well-known test 
problems have been selected: Leonard-Kramer LK, XOR, Double Spiral; datasets generated by DataGen [6]; and 
sample data from the Elena database [7]. The dimensionality A of data vectors varied from 2 to 36, number of 
classes C varied from 2 to 11, and the number of samples in the training and test sets varied from 75 to 3218.  
All selected problems have essentially non-linear class boundaries. Therefore, non-linear transformation of input 
numeric vectors has been used - i.e., RSC and Prager [2] methods of encoding. Those methods extract binary 
features – indicators of input A-dimensional vector presence in s-dimensional (s<A) hyperrectangle receptive 
fields with random position and size.  
To investigate the impact of code parameters on the classification quality, we chose the following experimental 
scheme. Input vectors were converted to RSC and Prager codes. Those codes were then used as input data for 
training and testing linear classifiers. The number (or percent) of test errors was chosen as a classification quality 
criterion. We used SVM [5] and modifications of perceptron-like classifiers [4] as linear classifiers for the obtained 
distributed representations. Besides, classification experiments with (non-linear) kernel SVM using Prager, RSC 
[2] and standard (Gaussian and polynomial) kernels were conducted.  
It is well known [5] that SVM doesn’t support online learning, requires solving computationally expensive non-
linear programming problems, and constructs optimal separating hyperplane for two-class problems only. In this 
work we have also used a perceptron with an enlarged margin and multi-class learning rule developed by 
I.Misuno in order to overcome SVM drawbacks. In the resulting perceptron outputs of neurons that correspond to 
classes are determined as yc = Σixiwic, where wic are the weights of modifiable connections, xi is the i-th element 
value of the vector input to the connections. (In the present context x is the binary vector obtained by input 
transformation to distributed representation, but the original data vector could be used for linear tasks as well). 
For the “true” class neuron yc-true = yc-true(1–T), where 0<T<1 is the “defense margin parameter". The classification 
output is the index c* of neuron with the maximum activation: c* = argmaxс yc. In case of an error (c*≠ctrue) 
connections are modified in the following way: wic = wic + Δw for c=ctrue and wic = wic – f(Δw) for c: yc > yc-true, 
where ctrue is the index of the correct class. E.g., f(Δw) = Δw/|c|. Our previous version of the enlarged margin 
perceptron had single-class (not multi-class) learning rule: unlearning with single class c* = argmaxс yc was 
performed in case of error, and f(Δw) = Δw. For T=0 and single-class learning rule one obtains usual percepton, 
while for T=0 and multi-class learning rule one obtains usual percepton with multi-class learning. Multi-class 
learning extracts and uses more information from a single error and so provides a potential for faster learning and 
better generalization for essentially multi-class tasks, especially at early learning iterations of the training set. This 
can be critical for the on-line learning tasks.   

Experimental results for numerical data  
Figure 1 demonstrates Leonard-Kramer problem results: dependencies of classification errors percent %err, 
elementary cell size cell (the smaller is the cell, the larger is resolution), and average fields dimensionality E{s} vs 
the code density p (the fraction of 1s in the code). For Prager and RSC coding, the results of SVM and of the 
perceptron with single-class (“Perc0”) and multi-class learning (“Perc1”) with no margin (“T0”) and enlarged 
margin (“T0.75”) were averaged by 10 realizations of codes at N=100. Results for SVM with kernels (Kernel) are 
also shown. For all cases (as well as for large Ns Figure 2) classification error reaches its minimum near p=0.25, 
which corresponds to the minimum cell and E{s} = 2. 
Figure 2 demonstrates %error and cell vs N at p=0.25. The results were averaged by 10 realizations of code 
generation trials. At N=500 the SVM results have already been close to the kernel results. For the enlarged 
margin perceptron (T=0.75) with multi-class learning the error for N>(300–1000) was lower than the SVM one. 
Training for perceptron was faster than that for SVM by 20 times, while testing was >100 times faster.   
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The experimental results for the DataGen data are given in Figure 3 (A=4, S=3, C=4, R=4, where R determines 
the complexity of the class regions [6]) and the number of samples per class is equal to 100. Averaging was 
conducted through 5 realizations of the DataGen samples and 5 realizations of codes. For these parameters the 
minimum cell value corresponds to p~0.3 (and close to it for p=0.125...0.5) and the error minimum for both SVM 
and the enlarged margin perceptron is also reached in this interval. For N=100 it is biased to the larger p values 
(which ensures a more stable number of 1s). For N=1000 the minimum is biased to the smaller p which 
corresponds to a larger mean dimensionality of receptive fields, while the number of 1s remains large enough and 
the cell is small enough. The training time for the perceptron is ~20 times less than for SVM, and the testing time 
is ~500 times less. 
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Figure 3 

We have also obtained and compared experimental results for the multi-class and single class learning 
perceptrons. The error rate for multi-class learning perceptron was up to 1.5 times lower than for the usual one, 
whereas the error rate for multi-class perceptron with the enlarged margin was still lower and comparable with the 
error for single-class perceptron with the enlarged margin. Typically, the learning curves (test error vs training 
iteration number) were lower for multi-class learning than for single-class learning, and best results for multi-class 
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learning were higher than those for single-class learning. The results for ordinary perceptron (no margin and 
single-class learning) were typically lower than those for perceptrons with the enlarged margin in all tests.  

Table 1 

Database RSC 
SVM 

RSC 
kern. 

RSC 
Perc0 

T0 

RSC 
Perc1 
T0.75 

Prager 
SVM 

Prager 
kern. kNN MLP IRVQ 

Clouds 12.68 14.84 17.84 – 12.4 14.8 11.8 12.2 11.7 
Concentric 1.36 1.2 1.58 – 1.17 1.04 1.7 2.8 1.5 

Gaussian2 S=2 28.12 35.12 38.42 – 27.83 35.64 27.4 26.8 27.2 
Gaussian7 S=2 14.35 15.68 20.49 – 14.36 15.76 15.9 15.3 11.5 
Gaussian7 S=5 14.69 14.64 19.62 – 13.36 15.12 – – – 

Iris S=2 6.53 6.67 6.13 5.33 5.59 6.67 4 4.3 6.7 
Iris S=4 4.27 6.67 7.47 5.73 6.13 6.67 – – – 

Phoneme S=2 14.12 11.51 16.43 13.7 15.79 14.47 12.3 16.3 16.4 
Phoneme S=5 13.61 11.62 15.74 13.19 14.82 12.62 – – – 
Satimage S=2 10.06 10.13 10.69 9.15 10.82 10.79 9.9 12.3 11.4 
Satimage S=5 10.11 – 10.89 9.1 10.64 – – – – 
Texture S=2 0.82 0.76 1.44 1.13 0.82 0.80 1.9 2.0 3.1 
Texture S=5 0.73 – 1.65 1.07 0.74 – – – – 

For the artificial data of the Elena database the code parameters were N=1000, A=S=2, p=0.25; for the real data 
(Iris, Phoneme, Satimage, Texture) N=10000, S=2,5(4), p=0.1 and 0.25. Table 1 demonstrates percentage of 
classification errors. For SVM and perceptron the results were obtained by averaging over 10 realizations of RSC 
and Prager codes. The best results of the known methods kNN, MLP, IRVQ are also given [7]. The comparison of 
results shows that RSC and Prager coding provided the best result to Concentric, Phoneme, Texture and the 
second best result for Satimage and Gaussian 7D. Perceptron training time is (on the average) several times 
less, and test time is dozens of times less than that for SVM. 

Classification of texts and images 
Traditional approaches to text classification use functions of word occurrence frequencies as elements of their 
vector representations. Methods for informative feature selection can be used to reduce vectors’ dimensionality, 
[4]; however, even simplified methods that consider features as independent have quadratic computational 
complexity. We propose and investigate the use of distributed representations for dimensionality reduction of 
vector text representation. N-dimensional binary code with m 1s in random positions is used to represent each 
word. N-dimensional text representation is formed by adding of its word vectors, with the following mapping to 
binary space performed by a threshold operation, or by context-dependent thinning CDT (see [3]).   
Testing in the classification task has been conducted using Reuters-21578 text collection [3] by means of SVM. 
For the TOP-10 categories BEP (break even point of recall/precision characteristic) for the initial vector 
representation of N*=20000 was 0.920/0.863 (micro/macro averaging). Using of the distributed representations 
with N=1000, m=2 made it possible to obtain 0.861/0.775 (micro/macro averaging), and usage of CDT in some 
experiments increased it by several percents. 
The analogously formed distributed representations were studied for classification of handwritten digit images of 
the MNIST database [4], where images were coded by the extracting binary features. The presence of each 
feature corresponded to the combination of white and black points in some positions of retina (LIRA features [4]). 
As a result, a "primary" binary code was obtained. Then it was transformed to the "secondary" representation 
using the same procedures as for text information.  
Classification results with dimensionality reduction from N* to N are shown in Table 2. Line “sel” contains the error 
percent obtained using selection of informative features [4]. Line “distr” contains classification results for the 
"secondary" binary distributed representations. Results for the distributed representations considerably exceed 
the results of initial representations for the same N and are similar to the results of feature selection methods [4].  
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We have also obtained and compared MNIST experimental results for multi-class and single class learning 
perceptrons. Here we used original LIRA features without transformation to secondary distributed 
representations, for N={1000, 10000, 50000}, and both with and without feature selection. We observed the same 
tendencies as for numerical data, however the advantage of multi-class learning was more pronounced for 
weaker classifiers (at N=1000) than for the better ones (at N=50000). 

Table 2 

N (err) 5000(667) 10000 (407) 50000 (195) 128000 (160) 
N* 1000 1000 5000 1000 5000 10000 1000 5000 10000 
sel 820 578 420 492 264 242 474 261 218 

distr 904 727 415 632 274 213 826 264 204 

Conclusions 

The developed binary distributed representations of vector data (numeric, text, images) were investigated in the 
classification tasks. A comparative analysis of various method results for the tasks with artificial and real data was 
carried out. The study showed that analytical expressions for the characteristics of the RSC-Prager codes of the 
numerical vectors obtained in [2] make it possible to select code parameters that provide high results in the non-
linear classification tasks using linear classifiers. Results obtained with the proposed perceptron with an enlarged 
margin are comparable to the results of the state-of-the-art SVM classifiers, however a significant decrease in 
training and recognition time has been observed. The results obtained with the RSC-Prager kernels also make it 
possible to reduce training and testing time for small S.  
Application of distributed encoding for representation of binary features in texts and images also made it possible 
to obtain computationally effective solutions of classification tasks preserving classification quality. A promising 
direction of further studies could consist in developing computationally efficient RSC and Prager kernels, as well 
as developing distributed representations and kernels that provide a more adequate account for structural 
information in the input data. 
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