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GROWING NEURAL NETWORKS  
USING NONCONVENTIONAL ACTIVATION FUNCTIONS 

Yevgeniy Bodyanskiy, Iryna Pliss, Oleksandr Slipchenko 

Abstract: In the paper, an ontogenic artificial neural network (ANNs) is proposed. The network uses orthogonal 
activation functions that allow significant reducing of computational complexity. Another advantage is numerical 
stability, because the system of activation functions is linearly independent by definition. A learning procedure for 
proposed ANN with guaranteed convergence to the global minimum of error function in the parameter space is 
developed. An algorithm for structure network structure adaptation is proposed. The algorithm allows adding or 
deleting a node in real-time without retraining of the network. Simulation results confirm the efficiency of the 
proposed approach. 

Keywords: ontogenic artificial neural network, orthogonal activation functions, time-series forecasting. 
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Introduction 
Artificial neural networks (ANNs) are widely applied to solving a variety of problems such as information 
processing, data analysis, system identification, control etc. under structural and parametric uncertainty [1, 2]. 
One of the most attractive properties of ANNs is the possibility to adapt their behavior to the changing 
characteristics of the modeled system. By adaptivity we understand not only the adjustment of parameters 
(synaptic weights), but also the possibility to adjust the architecture (the number of nodes). The goal of the 
present paper is the development of an algorithm for structural and synaptic adaptation of ANNs for nonlinear 
system modeling, capable of online operation, i.e. sequential information processing without re-training after 
structure modification. 
The problem of optimization of neural network architecture has been studied for quite a long time. The algorithms 
that start their operation with simple architecture and gradually add new nodes during learning, are called 
‘constructive algorithms’. In contrast, destructive algorithms start their operation with an initially redundant 
network, and simplify it as learning proceeds. This process is called ‘pruning’. 
Radial basis function network (RBFN) is one of the most popular neural network architectures [3]. One of the first 
constructive algorithms for such networks was proposed by Platt and named ‘resource allocation’ [4]. By present 
time, a number of modifications of this procedure is known [5, 6]. One of the most known is the cascade-
correlation architecture developed by Fahlman and Lebiere [7]. 
Among the destructive algorithms, the most popular are the ‘optimal brain damage’ [8] and ‘optimal brain 
surgeon’ [9]. In these methods, the significance of a node or a connection between nodes is determined by the 
change in error function that its deletion incurs. For this purpose, the matrix of second derivatives of the optimized 
function with respect to the tunable parameters is analyzed. Both procedures are quite complex computationally. 
Besides that, an essential disadvantage is the need for re-training after the deletion of non-significant nodes. 
This, in turn, makes the real-time operation of these algorithms impossible. Other algorithms such as [10] are 
heuristic and lack universality. 
It should be noted that there is no universal and convenient algorithm, which could be used for the manipulation 
of the number of nodes and suitable for most problems and architectures. Many of the algorithms proposed so far 
lack theoretical justification as well as the predictability of the results of their application and the ability to operate 
in real time. 
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Network Architecture 
Let’s consider the network architecture, that implements the following nonlinear mapping 
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where 1,2,...k =  – discrete time or ordinal number of sample in training set, jiw  – tunable synaptic weights, 
( )jiφ •  – j -th activation function for i -th input variable, ih  – number of activation functions for appropriate input 

variable, ( )ix k  – value of i -th input signal at time moment k  (or for k -th training sample). 
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between the scatter-partitioned and grid-partitioned systems. 
We propose the use of orthogonal polynomials of one variable for the activation functions. Particular system of 
functions can be chosen according to the specificity of the solved problem. If the input data are normalized on the 
hypercube [ 1, 1]n− , the system of Legendre polynomials orthogonal on the interval [ 1, 1]−  with weight 

( ) 1xγ ≡  [17] can be used: 
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where [ ]•  is the integer part of a number. 
System of Legendre polynomials is best suited for the case when we know exact interval of data changes before 
network construction. This is quite a common situation as well as an opposite one. For the latter case the 
following system of Hermite orthogonal polynomials can be used: 
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This system is orthogonal on ( ; )−∞ +∞  with weight function 
2

( ) xh x e−=  and gives us a possibility to 
decrease influence of the data lying far from the point of origin. 

Normalized Hermite polynomials usually denoted by ˆ ( )nH •  (i.e. those with ˆ ( ) 1nH • = ) can be obtained from 

(6): 
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Among other possible choices for activation functions we should mention Chebyshev [15, 16] and Hermite [18] 
functions as well as non-sinusoidal orthogonal systems proposed by Haar and Walsh. 

Synaptic Adaptation 
The sum of squared errors will be used as the learning criterion: 
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where k  is the ordinal number of an element in the learning sequence or the discrete time when the data is 
processed in the order of its arrival, ( )y p  – value of learning signal at time moment p  (or for p -th training 
sample). 
For the convenience of further notation, let us re-write the expression for the output of the neural network (4) in 
the form 
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where 11 21( ) ( ( ( )), ( ( )),..., ( ( )))
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h nk x k x k x kφ φ φ φ=  is a )1( ×h  vector of the values of the basis functions 

for the k-th element of the training set (or at the instant k for sequential processing), 
11 21( ) ( ( ), ( ),..., ( ))

n

T
h nW k w k w k w k=  is a )1( ×h  vector of synaptic weights estimates at the iteration k . 

Since the output of the proposed neural network linearly depends on the tuned parameters, we can use the least 
squares procedure to estimate them. For sequential processing, e.g. in the case of online learning, we can use 
the recursive least squares method: 
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Because of the orthogonality of the basis functions, the matrix ( )P k  will tend to diagonal form as k →∞ . If 
the activation functions are orthonormal, ( )P k will tend to the unity matrix. Due to this property, the learning 
procedure will retain numerical stability with the increase of the number of samples in the training sequence. 

Structure Adaptation 

Let’s consider sequential learning that minimizes (8) and leads to the estimate 
 )()()( 1 kFkRkW hhh

−= ,  (11) 
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 ( ) ( 1) ( ) ( )h hF k F k k y kφ= − + . (13) 

The use of the recursive least squares (RLS) method and its modifications allows to obtain an accurate and well-
interpretable measure of significance of each function in the mapping (4). This mapping can be considered as an 
expansion of an unknown reconstructed function in the basis { (.)}jiφ . Obviously, if the absolute value of any of 
the coefficients in this expansion is small, then the corresponding function can be excluded from the basis without 
significant loss of accuracy. The remaining synaptic weights does not need to be retrained if the weight of the 
excluded node is close to zero. Otherwise, the network should be retrained. 
Assume that a vector of synaptic weights )(kWh  of a network comprising h  nodes was obtained at the instant 
k  using the formula (11), where the index h  determines the number of basis functions (the dimension of 

)(kϕ ). Also assume that the absolute value of the considered parameter )(kwh  is small, and we want to 
exclude corresponding unit function from the expansion (4). The assumption about the insignificance of the 
activation h  is not restrictive, because we always can re-number the basis functions. This will result only in the 
rearrangement of the rows and columns in the matrix )(kRh  and in the change of ordering of the elements of 
the vector )(kFh . However, the rearrangement of columns and/or rows of a matrix does not influence the 
subsequent matrix operations. 
Taking into account the fact that the matrix )(kRh  is symmetric, we obtain: 
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where )(krij  is the element of the i -th row and j -th column of the matrix )(kRh , 
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After simple transformations of (14) we obtain the expression 
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that enables us to exclude the function from (4) and obtain the corrected estimates of the remaining parameters 
of the ANN. For this operation, we use only the information accumulated in the matrix )(kRh  and vector )(kFh . 

Using the same technique as above, it is possible to write a procedure that can be used to add a new function to 
the existing basis. Direct application of the Frobenius formula [12] leads to the algorithm 
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where T
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T
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Thus, with the help of equation (16) we can add a new function (neuron) to the model (4), and exclude an existing 
function using the formula (15) without retraining remaining weights. In order to perform these operations in real 
time, it is necessary to accumulate the information about a larger number of basis functions than currently being 
used. E.g., we can initially introduce a redundant number of basis functions H  and accumulate information in 
the matrix )(kRH  and vector )(kFH  as new data arrive, with only Hh <  basis functions being used for the 
description of the unknown mapping. The complexity of the model can be either reduced or increased as 
required. 
The analysis of equations (11), (15), and (16) shows that the efficiency of the proposed learning algorithm is 
directly related to the condition number of the matrix )(kRh . This matrix will be non-singular if the functions 

h
ii 1(.)}{ =ϕ  used in the expansion (4) are linear-independent. The best situation is when the function system 
h
ii 1(.)}{ =ϕ  is orthogonal. In this case, the matrix )(kRh  becomes diagonal, the formulas (11), (15), and (16) 

being greatly simplified because 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

n
n aa

diagaadiag 1,...,1),..,(
1

1
1 ,  (17) 

where ),..,( 1 naadiag  is an )( nn×  matrix with non-zero elements naa ,..,1  only on the main diagonal. 

Simulation Results 
We have applied the proposed ontogenic network with orthogonal activation functions to online identification of a 
rat’s (Ratus Norvegius Vistar) brain activity during sleeping phase. 
The signal was measured with frequency of 64 Hz. We took a fragment of signal containing 3200 points (50 
second of measuring), that was typical for sleeping phase of rat’s life activity. Two neural networks of type (4) 
were trained in real-time. Each network had 10 inputs – delayed signal values ( ( )y k , ( 1)y k − ,…, ( 9)y k − ) 
and was trained to output one-step ahead value of the process – ( 1)y k + . First network utilized synaptic 
adaptation algorithm (11) while second one also involved the structure adaptation technique (15), (16). Initially 
both ANNs had 5 activation functions per input, the one with synaptic adaptation only retained all 50 tunable 
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parameters during it’s work while ANN with structure adaptation mechanism had only 25 fired functions (the most 
significant ones chosen in real-time). For the results comparing purpose we also trained multilayer perceptron 
(further referred as MLP) with the same structure of inputs and training signal, having 5 units in the 1st and 4 in 
the 2nd hidden layers (that totals to 74 tunable parameters). As MLP is not capable of real-time data processing, 
all samples are used as training set and test criteria are calculated on the same data points. MLP was trained 
during 250 epochs with Levenberg-Marquardt algorithm. Our research showed that this is enough to achieve 
precision comparable to proposed ontogenic neural network with orthogonal activation functions. 
For visual presentation of processed data see Fig. 1 which shows the results of identification using proposed 
neural network together with original time series.  
Results of identification can be found in table 1. We used some different measures of identification quality. First, 
we analyse normalized root mean squared error, which is closely related to the learning criterion. Two other 
criteria used: “Wegstrecke” [19] characterizes the quality of the model for prediction/identification (+1 means 
perfect one), “Trefferquote” [20] is percent value of correctly predicted direction changes. 
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Figure 1. Identification of a rat’s brain activity during sleeping phase using proposed neural network with 
orthogonal activation functions – brain activity signal (solid line), network output (dashed line), and identification 

error (dash-dot line) 
 

Table 1 – Identification results for different architectures 

Decription NRMSE Trefferquote Wegstrecke 

OrthoNN, real-time processing 0.1852 82.2847 0.85312 

OrthoNN, real-time processing, variable 
number of nodes 

0.2175 77.6357 0.74625 

MLP, offline learning (250 epochs), error on 
the training set 

0.1685 83.9533 0.87192 

 
We can see that utilizing structure adaptation technique leads to somewhat worth results. This is the tradeoff for 
having less tunable parameters and possibility to process non-stationary signals.  
Adaptation of neural network in real time benefits us in a number of ways. First, as noted earlier, it can reduce 
computational complexity. Second and perhaps more important benefit is in using adapting neuromodel as a 
basis for some higher level system of data processing (e.g. time-series classification, diagnostics system etc.). 
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After obtaining promising results of online identification we used proposed neural network architecture to monitor 
rat’s state in real time. Second level of monitoring system was built with the help of expert which initially provided 
recorded activity of rat’s brain together with animal state for each moment of time. We processed the data and 
analyzed neural network’s set of states. The analysis showed that states are dividable in a space of synaptic 
weights. A slightly modified Bayes estimator for the state of observed object was synthesized and trained. 
Simulation showed that developed automated monitoring system is capable of online data processing and gives 
correct state in 94,5% of cases. The response of the systems in form of object’s state was later verified by the 
expert and found reliable enough to be used for data preprocessing in day to day activity.  

Conclusion 
A new computationally efficient neural network with orthogonal activation functions was proposed. It has a simple 
and compact architecture not affected by the curse of dimensionality, and provides high precision of nonlinear 
dynamic system identification. An apparent advantage is much easier implementation and lower computational 
load as compared to the conventional neural network architectures. 
The approach presented in the paper can be used for nonlinear system modeling, control, and time series 
prediction. An interesting direction of further work is the use of the network with orthogonal activation functions as 
a part of hybrid multilayer architecture. Another possible application of proposed ontogenic neural network is its 
use as a basis for diagnostic systems. 
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DOUBLE-WAVELET NEURON BASED ON ANALYTICAL ACTIVATION FUNCTIONS 

Yevgeniy Bodyanskiy, Nataliya Lamonova, Olena Vynokurova 

Abstract: In this paper a new double-wavelet neuron architecture obtained by modification of standard wavelet 
neuron, and its learning algorithm are proposed. The offered architecture allows to improve the approximation 
properties of wavelet neuron. Double-wavelet neuron and its learning algorithm are examined for forecasting non-
stationary chaotic time series. 

Keywords: wavelet, double-wavelet neuron, recurrent learning algorithm, forecasting, emulation, analytical 
activation function. 

ACM Classification Keywords: I.2.6 Learning – Connectionism and neural nets  

Introduction 
Recently, in the analysis tasks and the non-stationary series processing under the uncertainty conditions 
computational intelligence techniques particularly hybrid neural networks are widely used. The most important 
tasks related to signal processing are forecasting and emulation of dynamic non-stationary states of systems in 
the future. 
For solving such kind of forecasting problems a variety of neural network architectures including hybrid 
architectures are used. However they are either bulky because of their architecture (for instance multilayer 
perceptron) or poorly adjusted to learning process in real time. In most cases the activation functions for these 
neural networks are sigmoidal functions, splines, polynomials and radial basis functions. 
In addition wavelet theory is widespread [1-3] and allows to recognize the local characteristics of the non-
stationary signals with high accuracy. At the confluence of the two approaches, hybrid neural networks and 
wavelet theory, have evolved the so-called wavelet neural networks [4-18] that have good approximating 
properties and sensitivity to the characteristics changes of the analyzed processes.  
Previous studies have proposed and described [19-21] attractive features of wavelet neuron such as technical 
realization, ensured accuracy and learning simplicity. At the same time the wavelet functions are incarnated either 
at the level of synaptic weights or the neuron output, and as a learning algorithm the gradient learning algorithm 
with constant step is used. For the improvement of approximation abilities and the acceleration of the learning 


