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DESCRIPTION REDUCTION FOR RESTRICTED SETS OF (0,1) MATRICES 1 

Hasmik Sahakyan 

Abstract: Any set system can be represented as an n -cube vertices set. Restricted sets of n -cube weighted 
subsets are considered. The problem considered is in simple description of all set of partitioning characteristic 
vectors. A smaller generating sets are known as “boundary” and ”steepest” sets and finally we prove that the 
intersection of these two sets is also generating for the partitioning characteristic vectors.   

ACM Classification Keywords: G.2.1 Discrete mathematics: Combinatorics 

1. Introduction 
In recent years, the processing of data flows has become a topic of active research in several fields of computer 
science. Continuous arrival of data items in rapid, potentially unbounded flows raises new challenges and 
research problems. The study of known combinatorial algorithms and their computational complexity for data flow 
conditions become an important issue.  
Consider a ),( 10 -matrix A  of size nm× . Let )r,,r(R mL1=  and )s,,s(S nL1=  denote the row and 
column sums of A  respectively, and let )S,R(U  be the set of all ),( 10 -matrices with row sums R and column 
sums S . 
It was found by Gale and Ryser [R,1966] a necessary and sufficient condition for the existence of a ),( 10  matrix 
of the class )S,R(U . This result has found a recent revival in the field of discrete tomography [H, 1997]. In 
discrete tomography the problem is to reconstruct a discrete valued function f  from knowledge of weighted 
sums of function values over subsets of the domain. A much studied special case is nm×  ),( 10 -matrices with 
known row and column sums, precisely matrices in the class )S,R(U . 

As the number of matrices in this class may be high, it is of interest to study the reconstruction problem where 
with additional constraints on the ),( 10 -matrices, which could either lead to a unique realization, or reduce the 
number of alternative solutions. The restrictions may be of different nature: requirements on rows of 
reconstructed matrices – to be different, some geometrical requirements such as convexity and connectivity, etc. 
It is proven ([B,1996], [W,2001], [D,1999] that the existence problems of horizontal and vertical convex matrices 
and the existence problem for connected) matrices (polyominoes are NP-complete; and the reconstruction 
problem for horizontal and vertical convex polyominoes can be solved in polynomial time. At the same time the 
complexity of the existence problem for matrices with different rows is still an open problem [BL,1988].  
We assume now that we consider the last mentioned problem for data flow conditions and the coordinates of 
column sum vector S  might varied slowly by the data flow. Then - which are the allowable values for coordinates 
of S  to correspond to column sum vectors?   
Complete description of the set of all integer-value vectors, which serve as column sum vectors for ),( 10 -
matrices with different rows, is given through its boundary elements [S,1997]. An alternative description of this set 
is known through its special elements - “steepest” vectors. The main result of this research states: the description 
might be given by the common (intersecting) elements of these sets - of upper boundary and steepest vectors, 
which minimizes the descriptor set size. 

                                                           
 
1 The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be  
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2. Problem Description 

Let consider the problem of existence of a ),( 10 -matrix by the given column sums vector S  and with different 
rows. Let assume that the coordinates of vector S  is varying slightly by data flow, and then the problem is in 
description of all integer vectors, which serve as column sums vectors for ),( 10 -matrices of fixed size and with 
different rows. . 

This problem has an equivalent formulation in terms of unit cube nE .  

Let nEM ⊆  be a vertex subset of fixed size mM = , nm 20 ≤≤ . An integer, nonnegative vector 
)s,,s,s(S nL21=  is called the characteristic vector of partitions of set M , if its coordinates equal to the 

partition-subsets sizes of M  by coordinates nx,,x,x L21  - the Boolean variables composing nE . is  equals 
the size of one of the partition-subsets of M  by the i -th direction and then ism −  is the size of the 
complementary part of partition. To make this notation precise we will later assume that is  is the size of the 
partition subset with 1=ix . Then the problem is in description of all integer-coordinate vectors, which serve as 
characteristic vectors of partitions for vertex subsets of size m .  

3. Description through the Boundary Elements 

Let n
m 1+Ξ  denotes the set of all vertices of n  dimensional, 1+m  valued discrete cube, i.e. the set of all integer-

vectors )s,,s,s(S nL21=  with msi ≤≤0 , n,,i L1= . The vertices are distributed schematically on the 
1+⋅nm  layers of n

m 1+Ξ  according to their weights – sums of all coordinates. The L -th layer contains all vectors 

)s,,s,s(S nL21=  with ∑
=

=
n

i
isL

1

.  

Let mψ  denotes the set of all characteristic vectors of partitions of m -subsets of nE . It is evident, that - 
n
mm 1+Ξ⊆ψ . Let mψ)  and mψ(  are subsets of mψ , consisting of all its upper and lower boundary vectors, 

correspondingly: mψ)  ( mψ( ) is the set of all “upper” (“lower”) vectors mS ψ∈ , for which  for all n
mR 1+Ξ∈  greater 

than S  (less than S ), mR ψ∉ .   

These sets of all “upper” and “lower” boundary vectors have symmetric structures - for each upper vector there 
exists a corresponding (opposite) lower vector, and vice versa; so that also the numbers of these vectors are 
equal:  

}S,,S{ rm

)
L

))
1=ψ  and }S,,S{ rm

(
L

((
1=ψ . 

Let jS
)

 and jS
(

 be an arbitrary pair of opposite vectors from mψ)  and mψ( mψ(  correspondingly. )S(I j

)
 

(equivalently )S(I j

(
) will denote the minimal sub-cube of n

m 1+Ξ , passing through this pair of vectors. Then, 

}SQS|Q{)S(I jj
n
mj

())
≤≤Ξ∈= +1  (the coordinate-wise comparison is used). 

The following theorem states that the minimal sub-cubes passing the pairs of corresponding opposite vectors of 
the boundary subsets are continuously and exactly filling the vector area mψ . 

Theorem 1 [S,1997]:  U
)r

j
jm )S(I

1=

=ψ . 

It follows that the description of mψ  is provided through the set of upper boundary vectors }S,,S{ rm

)
L

))
1=ψ  

(correspondingly, the set of lower boundary vectors }S,,S{ rm

(
L

((
1=ψ ). Let assume that the upper boundary 
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vectors are distributed between the layers minL  and maxL  of n
m 1+Ξ . Then for each layer L , maxmin LLL ≤≤ , it 

is sufficient to have all upper boundary vectors situated on that layer..  

4. Description through the ”Steepest”  elements 
Let introduce a concept of “steepest” vectors, defined for each layer. 
 

Definition 1 [B,1988] 
Let )s,,s,s(S nL21=  and )s,,s,s(S '

n
''' L21=  be two vectors of length n  with integer, nonnegative 

components, and let  nsss ≥≥≥ L21  and '
n

'' sss ≥≥≥ L21 . 'S  is an elementary flattening of  S  if and only 
if 'S  can be obtained from S  by: 
(1) finding j,i  such that 2+≥ ji ss ; and then 

(2) transferring 1 from the larger to the smaller; that is, 1−= i
'
i ss  and 1+= j

'
j ss ; and then 

(3) re-ordering the resulting sequence so that it is decreasing. 
 

We mention that operation of elementary flattening doesn’t move vector from one layer of n
m 1+Ξ  to another. 

 

Definition 2 [B,1988]  
Let )s,,s,s(S nL21=  and )s,,s,s(S '

n
''' L21=  be two vectors of length n  with integer, nonnegative 

components, and let  nsss ≥≥≥ L21  and '
n

'' sss ≥≥≥ L21 . 'S  is flatter than S , and S  is steeper than 'S , if 
and only if 'S  can be obtained from S  by a non-empty sequence of elementary flattening. 
 

S  is a steepest vector if and only if there is no vector in mψ , which is steeper than S . 
 

The following theorem is an extension of similar result [B, 1988], which is in terms of hypergraphs and degree 
sequences:  
 

Theorem 2. If S  belongs to mψ  then all vectors flatter than S  also belong to mψ . 
Proof: 
Let mn )s,,s,s(S ψ∈= L21  and )s,,s,s(S '

n
''' L21=  is flatter than S . It follows that there exists a sequence of 

elementary flattening, which transfers S  to 'S . We prove that after each elementary flattening, the obtained 
vector belongs to mψ . Let 2+≥ ji ss  and after an elementary flattening we receive the vector 

)s,,s,,s,,s( nji LLL 111 +− .  

Consider the partitioning of nE  by i th and j th directions. Let 2
11

−
==

n
x,x ji

E , 2
01

−
==

n
x,x ji

E , 2
10

−
==

n
x,x ji

E , 2
00

−
==

n
x,x ji

E  

be the corresponding sub-cubes, and 11 == ji x,xM , 01 == ji x,xM , 1,0 == ji xxM , 00 == ji x,xM  - the corresponding 

subsets of M , belonging to these sub-cubes. Then we have: ix,xx,x sMM
jiji

=+ ==== 0111  

jx,xx,x sMM
jiji

=+ ==== 1011   

Hence    21001 ≥− ==== jiji x,xx,x MM   

Therefore there exist two vertices in 01 == ji x,xM  such that the corresponding vertices in 2
10

−
==

n
x,x ji

E  don't belong 
to 10 == ji x,xM . Moving one of them from 01 == ji x,xM  to 10 == ji x,xM , will provide the necessary 1−is  and  1+js  
values.  
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The geometrical visualisation is through the following picture: 
 
 

It follows from the above theorem that the steepest vectors of each layer L , maxmin LLL ≤≤  of n
m 1+Ξ  provide 

the description of all vectors from mψ  belonging to that layer.  

5. Description through the Boundary Steepest Elements 
On one hand, mψ  can be described through the set of all upper boundary vectors, and on the other hand - 
through the set of all “steepest” vectors. Below we prove that mψ  can be described having only the intersection 
of these two sets – which is the set of all “boundary steepest” vectors.   
The theorem below states that if some layer of n

m 1+Ξ  contains more than one upper boundary vector, then only 
the steepest ones of them are necessary for the description of mψ , or the same – if among the steepest vectors 
are both boundary and non-boundary, then only the boundary ones are necessary to describe the whole set of 
partitioning characteristic vectors. 
 

Theorem 2. If a layer of mψ  contains a boundary vector, then it can be obtained by operations of flattening from 
only an other boundary vector. 
The theorem has been proved by contradiction, considering all possible cases. 

Conclusion 
Any set system can be represented as a subset of n -cube vertices set. For a given subset it is important to know 
the partition sizes, - the coordinates of partitioning characteristic vectors. A smaller generating sets are known as 
“boundary” and ”steepest” sets and finally we prove that the intersection of these two sets is also generating for 
the partitioning characteristic vectors.   
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ALGORITHMIC MINIMIZATION OF NON-ZERO ENTRIES IN 0,1-MATRICES 

Adriana Toni, Juan Castellanos, Jose Erviti 

Abstract:  In this paper we present algorithms which work on pairs of 0,1- matrices which multiply again a matrix 
of zero and one entries. When applied over a pair, the algorithms change the number of non-zero entries present 
in the matrices, meanwhile their product remains unchanged. We establish the conditions under which the 
number of 1s decreases. We recursively define as well pairs of matrices which product is a specific matrix and 
such  that by applying on them these algorithms, we minimize the total number of non-zero entries present in both 
matrices. These matrices may be interpreted as solutions for a well known information retrieval problem, and in 
this case the number of 1 entries represent the complexity of the retrieve and information update operations. 

Keywords: zero-one matrices, analysis of algorithms and problem complexity, data structures, models of 
computation 

Introduction 
We introduce some notation and concepts that will be useful from now on.  
Let m

jiI ,  denote the matrix resulting from permuting the ith and jth rows in the identity matrix of dimensions m × m, 

denoted Im. For any matrix M of dimensions m × n,   m
jiI ,  × M returns the matrix M in which rows i, j have 

switched position. 
Generally, if m

ji
m

ji
m

ji
m

kk
IIII ,, ...

2211
×××=σ , the effect of the multiplication mIσ × M is to switch the position of 

rows ik and jk of M, then do the same thing with rows ik -1 and jk -1, then with rows ik -2 and jk -2… until finally rows i1, 
j1 have been switched. 

Let H be the matrix of dimensions nnn
×

+
2

)1(
 defined by: 

Hij=
⎩
⎨
⎧ −−+≤≤ −

otherwise
wiljl l

0
)1(1 1  

where 


