
International Journal "Information Theories & Applications" Vol.14 / 2007

366

THE APPLICATION OF GRAPH MODEL FOR AUTOMATION
OF THE USER INTERFACE CONSTRUCTION

Elena Kudelko

Abstract: The ability of automatic graphic user interface construction is described. It is based on the building of
user interface as reflection of the data domain logical definition. The submitted approach to development of the
information system user interface enables dynamic adaptation of the system during their operation. This
approach is used for creation of information systems based on CASE-system METAS.

Keywords: User interface, metadata, CASE-technology, dynamically adapted information systems, graph model.

ACM Classification Keywords: D.2.2 Software Engineering: Design Tools and Techniques – Computer-aided
software engineering (CASE); G.2.2 Discrete Mathematics: Graph Theory – Graph algorithms.

Introduction
The aim of the working out of application user interface is the reflection of the inner structure of information
system objects on the level of user understanding about data domain that means the determination of screen
objects which let user co-operate with the information system (IS). User interface must include the set of screen
forms with the help of which information input and editing can be possible, as well as the navigation system which
let data domain objects be catalogued for speeding-up access to them. In this work the approach for automation
of the logical description data domain reflection on user interface level, based on the use of graph model, is
described. The working out of the models of user interface is made in the context of the creation of CASE-
technology METAS [Lyadova, 2003] based on the metadata, which are multilevel and describe IS from different
points [Ryzhkov, 2002]. User interface management, described in this work, is based on the metadata of
presentation level, which are built on the base of logical level. Both levels can be represented as graphs.
The basic concepts of the logical level are entities, attributes, relation between entities and also instances of
these concepts. Entity is a type of data domain objects which is characterized by the set of its attributes and
relations with entities. For example, entity can be «Person» characterized by the qualities «Surname», «Name»,
«Birthday», which are attributes of this entity. A person must have an address that means that entity «Person»
must be related with entity «Address». Metadata of the presentation level describe user interface elements:
screen forms, controls of different type, navigation system of application. The idea of automatic creation of forms
is based on the building of presentation level graph as a reflection of the logical level graph.

Screen Forms

Let us describe the graph of the logical model Gl, on the base of which we will build the graph of the presentation
model Gpr. The nodes of the logical model graph are corresponded to entities of data domain; there are relations
between entities, which are directed arcs in the graph of logical model:

nkjmieer
Nn,mrrrEeeeVEVG

kji

mlnllll

..1,;..1 where),,(
 },,...,,{ },,...,,{ where),,(2121

===
∈===

Incoming into the node e arcs mean relations of «1:М» type, in which entity e is on «М» side that means it is child
entity. Outgoing arcs present relations of «1:М» type, in which entity e is on «1» side that means it is parent
entity. Relations of «М:М» type are represented by two-forked arcs of graph Gl.
Each node of the presentation model graph Gpr is a form of some entity; arcs between nodes are possible
transitions between forms (corresponding to arcs in the logical model graph); arcs are directional, direction is

International Journal "Information Theories & Applications" Vol.14 / 2007

367

given from the form reviewed to the forms which can be called from the current form:

nkjmiffr
NmnrrrEfffVEVG

kji

mprnprprprpr

..1,;..1 where),,(
, },,...,,{ },,...,,{ where),,(2121

===

∈===

Here pairs (ej , ek) and (fj , fk) are directed. That means graphs Gl and Gpr are oriented.
Graphs Gpr and Gl are, in general, multigraphs, in which cycles and loops are possible, and so, the incident nodes
of the arc is not enough to identify this arc. That’s why arcs must be marked with unique names, for lVee ∈∀ 21,
there must not be two arcs lEee ∈),(21 , having identical types and names. It is the same for graph Gpr.

The building process of the presentation model graph is in the reflection of the logical model graph Gl on the set
of nodes and arcs of the presentation graph Gpr. In every moment the presentation model graph can be
determined short. Let us see the building process of a new node f of graph Gpr.

The Elementary Graph of the Presentation Model

Node f ∈ Gpr goes to some form for entity e ∈ Gl. This entity can be named the main entity form (we write
efME =)(). So, we have:))(:)((efMEGeGf lpr =∈∃∈∀ . The inverse proposition is also true. If we review the

completely specified presentation model graph Gpr, i.e. the graph where there are’t any undetermined nodes, then
))(:)((efMEGfGe prl =∈∃∈∀ . Arcs, incoming into node e of graph Gl, that means arcs for transition to parent

entities in the relation of «1:М», «0..1:М», «0..1:1» type, are included into the presentation model graph (except
two-forked graphs). Outgoing and two-forked arcs (arcs connecting reviewing entity with child entities) will be
described later. Any arc in graph Gpr goes to some arc in graph Gl, i.e.

))(,)(:),()(),((kkjjljkiprkji efMEefMEEeerEffr ==∈=∃∈=∀ .

Such graph model corresponds to the simplest case when for the reflection of every entity its own form is used
and transitions between forms are realized by the relations of «1:M», «0..1:М», or «0..1:1» type, which exists
between main entities of forms, in direction from child entity (from «M» side) to parent one (to «1» side). Let us
view the example in Figure 1.

Figure 1. Reflection of the logical model graph on the presentation model graph

In graph Gl there are 5 nodes corresponding to 5 entities of data domain. Its own form is built for each of them:
5,1 where),(== ifMEe ii . Entity e1 has got two parent relations with entities e2 and e5, entity e3 has got one

parent – entity e1. Therefore, there will be three arcs in graph Gpr, corresponding to the relations «1:M» of graph
Gl. The building of graph Gpr goes according to gradual addition of nodes and its’ arcs into sets Vpr and Epr
accordingly. That’s why while building new node prVf ∈ for node lVe∈ it can happen that there is no node

prVf ∈′ for node lVe ∈′ yet, to which we must prolong arc from node f. Missing node f ′ must be built to avoid

«hanging» arcs. We mark built node f ′ as indefinite («udef»). Such node has got one or several incoming arcs
(in particular, arc prEff ∈′),().

f3

Gl

e3

e2

e4

e5
e1

Gpr

f2

f1

f4

f5

International Journal "Information Theories & Applications" Vol.14 / 2007

368

Attributes Reflection

Besides relations with other entities every entity is characterized by the set of its attributes. These attributes must
be reflected by the elements of application user interface and must be included into the presentation model.
The creation of node f in graph Gpr is the reflection of logical model attributes to the controls of the presentation
level. Any node lVe∈ has got the set of attributes NnaaaeAttr n ∈= },,...,,{)(10 , where attribute a0 is the key
attribute of entity ()(0 ekeya =). In common case entity can have several key attributes (a compound key). But
this situation can be taken to the viewed case by the addition of artificial key.The key attribute is used only on the
logical level and is inaccessible for user on the presentation level.
Any non-key attribute niai ,1 where, = , can be either own attribute of the entity (the set of such attributes –

)(eAttrown), or an attribute, realizing the relation with parent entity, i.e. outer attribute ()(eAttrparent). The key
attribute is also in the set of own attributes. All own attributes have got a type Type(ai), which sets possible
attribute values and operations, applicable to these values, and also the method of attribute values input and
output. Every attribute ai connecting with parent node lVe ∈′ is corresponding to any incoming in node e (but not
two-forked) arc lEee ∈′),((),()(eearel i ′=). The reflection of such arcs in graph Gpr is set by the algorithms,
described in the work. We can also speak about the type of such attribute. The type coincides with the type of the
key attribute of parent entity e′ .
Node f of graph Gpr includes in itself the set of the controls },...,{)(1 nacacfAttrCtrl = , corresponding with
attributes of entity)(fMEe = . The key attribute does not go into the presentation model. Each control will have
the type, defining by the type of corresponding attribute or parent relation.

Compound Forms

Sometimes it is comfortable to include into the form information not only about one object of data domain but also
the information connected with this object, i.e. the information about objects of several entities. Then each node
of the presentation model graph will correspond to the subset of nodes of the logical model graph. The fulfillment
of such reflection depends on the semantics of data domain and it can be done by user-administrator.
On the base of the built presentation model graph the extended graph can be built, nodes of which will be
compound forms. Let us view the process of building such a graph. Let us have node f of graph Gpr, which
corresponds to node e of graph Gl, i.e. ME(f)=e. Let’s mark by Gl(f) some set of nodes and arcs, complying with
node f of the presentation model graph. In graph Gl(f) every node is corresponded to node of the logical model
graph, and arc is corresponded with the arc of the logical model graph. Now in the set of nodes there can be
several nodes, corresponding to one and the same entity. The same is for arcs: in the set of arcs of graph Gl(f)
there can be several arcs, reflecting one and the same arc of the logical model graph. The set of nodes and arcs
of graph Gl(f) is marked correspondingly Vl(f) and El(f). Initially, the set of nodes of graph consists from one node,
corresponding to entity e, and the arcs set is empty: φ==)()},({)(fEfMEfV ll .

Let us view the arbitrary node e of the logical model graph Gl. Node e can be connected with the other nodes of
graph Gl, i.e. there is a set of incident arcs to this node. Let us break this set on two subsets: the set of incoming
arcs Eparent(e)⊂ El and the set of outgoing and two-forked arcs Echild(e)⊂ El. The first set connects node e with the
set of parent entities for this node

,,1,),,(where,}0{},,...,{)(1 niVeeerpNnrprpeE liiinparent =∈=∪∈=

and the second set – with the set of child entities
.,1,),,(where,}0{},,...,{)(1 niVeeerchNnrchrcheE liiinchild =∈=∪∈=

International Journal "Information Theories & Applications" Vol.14 / 2007

369

In the example in Figure 1, relations),(15 ee and),(12 ee make up the set of parent relations for entity e1, and

relations),(31 ee and),(41 ee – the set of child relations.

Let us suppose that it is necessary to reflect on the form the information about the child entity of the main entity of
form f. Let us examine the main entity e (ME(f)=e) and identical node to it ech, representing child entity for entity e.
So,),(:)(chchchildch eereEr =∈∃ .

For including of node ech into graph Gl(f) it is necessary to:
1. Include node ech into the set Vl(f), and arc rch – into the set El(f);
2. Include arc),(chff , where ME(f)=e, ME(fch)=ech, into the set Epr. This arc will correspond to arc lch Eee ∈),(.
To delete node ech from graph Gl(f) it is necessary to fulfil the reverse transformation of the sets Vl(f), El(f) и Epr:
1. Exclude arc),(chff , where ME(f) = e, ME(fch)=ech, from the set Epr;
2. Delete arc rch from the set El(f), node ech must be excluded from the set Vl(f).
Let us now have node ep, incidental to the main entity e of form f (ME(f)=e) which is parent for it,
i.e.),(:)(eereEr ppparentp =∈∃ . Including and deleting node ep from the set Vl(f) occurs in the following way. For
adding parent node to the main entity of the form it will be enough:
1. Include node ep into the set Vl(f), and arc rp – into the set El(f);
2. Include arcs, corresponding to the relations between node ep and its parent nodes, i.e. for)(pparent eEr ∈∀

we include arc),(,)ME(where),,(prrrr eerefff == ;

3. Delete arc),(pff , where ME(f)=e, ME(fp)=ep, from the set Epr of graph Grp. This arc corresponds to arc

lp Eee ∈),(.

Deleting of parent node from the main entity of the form includes the following steps:
1. Include arc),(pff , where ME(f)=e, ME(fp)=ep, into the set Epr of graph Grp. This arc corresponds to arc

lp Eee ∈),(;

2. Exclude arcs corresponding with relations of node ep with parent nodes, i.e. for)(pparent eEr ∈∀ we delete
corresponding to it arc),e(e,re)ME(fff prrrr == where),,(;

3. Delete arc rp from the set El(f), node ep must be excluded from the set Vl(f).
Let us give the example, showing described operations of including of nodes into the form structure for entity e.
In Figure 2а the logical model graph is shown. Let us discuss the fragment of the presentation model graph, built
for the form entity e. Figure 2b shows the simplest presentation model graph, built according the logical model
graph. In Figure 2c there is the form structure f after including into it child relation),(1eche and, so, adding
relation),(1fchf into graph Gpr. In Figure 2d parent relation),(2 eep is included into the form structure, besides in
graph Gpr connections),(21fpf ,),(22fpf are added and connection),(2fpf is deleted.

Similarly we can view adding and deleting operations for other entities, including in subgraph Gl(f). In order to
view these operations in details, we introduce the definition of parent entity of level n.
Let us have entity lVe∈ . The parent of the first level for this entity can be any entity, relation of which with entity e

is in set Eparent(e). If entity 1−n
pe is a parent of level n-1 for entity e, then entity)(),(: 11 −− ∈ n

pparent
n
p

n
p

n
p eEeee will be

a parent of level n for entity e. The parent set of level n for entity e we will mark).(eE n
parent).()(1 eEeE parentparent =

For example, in Figure 2a)},(),,{()(2222212
3 epepepepechEparent = .

International Journal "Information Theories & Applications" Vol.14 / 2007

370

Figure 2. Including parent and child entities into the form structure

The discussed above operation of the addition of node)(eEe parentp ∈ to the set Vl(f) was described for ep, which
is the parent of the first level for node e. For node ep, including in the set Vl(f), and also for any node from the set
Vl(f), which is a parent of arbitrary level for node e, we can define the similar operations of deleting\adding parent
and child entities.
We can examine node prGf ∈ and entity e=ME(f). We will take any node e′ , which is parent of arbitrary level of

node e. We must notice that described below algorithms will be right for the case, when ee =′ .
Let us have node ech, which is incidental to node e′ of form f and which is child for her:

),(:)(chchchildch eereEr ′=′∈ .

For including node ech into graph Gl(f) it is necessary to execute the following algorithm:
1. Add node ech into the set Vl(f), and arc rch – into the set El(f);
2. Add arc),(chff , where ME(f)=e, ME(fch)=ech, into the set Epr. This arc corresponds to arc lch Eee ∈′),(;

In order to delete node ech from graph Gl(f) it is necessary to fulfill the reverse transformation of the sets Vl(f), El(f)
and Epr:
1. Exclude arc),(chff , where ME(f)=e, ME(fch)=ech, from the set Epr;

2. Delete arc rch from the set El(f), node ech must be deleted from the set Vl(f).
 Let us now have node ep, incidentical to node e′ of form f and which is parent for it, i.e.

),(:)(eereEr ppparentp ′=′∈ .

Addition of parent node into the form structure is in the following:
1. Add node ep into the set Vl(f), and arc rp – into the set El(f);
2. Add arcs, corresponding to relations between node ep and parent nodes, i.e. for)(pparent eEr ∈∀ we add

),(,)ME(where),,(prrrr eerefff == ;

3. Delete arc),(pff , where ME(f)=e, ME(fp)=ep, from the set Epr of graph Grp. This arc corresponds to arc

lp Eee ∈′),(.

Gl

ep3

ep1

ech1

ech2

e

Gpr

ep2

ep22

ep21

fp3

fp1
f

fp2

a) b)

c)
Gpr

fp3

fp1 f
fp2

e

ech1

fch1

the scope of form f

fp21

fp22

d)
Gpr

fp3

fp1

f

e

ech1 fch1

ep2

International Journal "Information Theories & Applications" Vol.14 / 2007

371

Deleting of parent node from form structure consists of the following steps:
1. Add arc),(pff , where ME(f)=e, ME(fp)=ep, into the set Epr of graph Gpr. This arc corresponds to arc

lp Eee ∈′),(;

2. Delete arcs, corresponding to the relations between node ep and parent nodes, i.e. for)(pparent eEr ∈∀ we

delete corresponding arc to it),e(e,re)ME(fff prrrr == where),,(;

3. Delete arc rp from the set El(f);
4. Fulfill cascading deleting of all parent nodes which are in Gl(f), i.e. apply recursively the algorithm to every

node)(:)(pparent
i
pl

i
p eEefVe ∈∈ ;

5. Delete cascadely all child relations of node ep, which are in Gl(f), i.e. we must apply the deleting algorithm of
child node to every node)(:)(pchild

i
chl

i
ch eEefVe ∈∈ ;

6. Node ep must be excluded from the set Vl(f).
Described above the rules of adding nodes can be used in series until the expansion of graph Gl(f) is possible, i.e.
till set nodes Vl(f) have parent and child nodes and relations that can be included into graph Gl(f). Node e (and
incidental to it arc) can be included into Gl(f), if the graph does not have the path, including the same consecution
of nodes and arcs, starting in the root, as well as the way from root node up to including node e.
So the repeated bringing in of one and the same path to graph Gl(f) is impossible. And graph Gl(f) is a tree in
which the root is a node, corresponding to the main entity of form.

Attributes Reflection in Compound Forms

Including of parent node lVe∈ into graph Gl(f) of any node prVf ∈ is a reflection of the attributes of the logical
model on the controls of the presentation level. Deleting node e from graph Gl(f) is a deleting of corresponding
controls. Node f of graph Gpr includes a set of controls NmacacfAttrCtrl m ∈= },,...,{)(1 , corresponding to
attributes of entities of the set Vl(f). So,

U
)(

),()(
fVe l

efAttrCtrlfAttrCtrl
∈

= .

When adding new parent node pe from relation),(eep ′ , where)(fVe l∈′ , to set Vl(f):

1. The element corresponding to parent relation),(eep ′ , i.e.),()(:)(eeareleAttraac p ′=′∈↔ is deleted from
the set of controls.

2. We add controls ac into the set of controls of node f , corresponding to all non-key attributes a of entity ep, i.e.
)(:)(pekeyaeAttra ≠′∈∀ into the set AttrCtrl(f) we put aac ↔ .

When deleting parent node pe , taking part in relation)(),(fEee lp ∈′ from the set Vl(f):

1. We delete all controls, corresponding to entity pe from the set of controls.

2. Into set AttrCtrl(f) we add),()(: eearelaac p ′=↔ .

Entity Tree

A tree is a building of hierarchy on the set of entities and relations between them. Together with the set of forms
the set of tree nodes must provide access to any entity. The described structure is a tree only on a user’s screen
(its’ name comes from here). From the point of view of the structure it is an oriented graph),(TTT EVG = , maybe

International Journal "Information Theories & Applications" Vol.14 / 2007

372

with cycles. The set of nodes),...,,(21 nT ndndndV = includes two types of nodes (two subsets). The first subset

T
g

T VV ⊂ consists of grouping nodes, the second subset T
o

T VV ⊂ has got object nodes. Any object node
corresponds to the entity of the logical model and so, the form of the presentation level. Correspondence of object
nodes and nodes of the logical model graph can be given as function l

o
T VVEnt →: . Then

))(:)(:)((efMEVfendEntVeVnd prl
o

T =∈∃∧=∈∃∈∀ . In that way, we can draw arc (nd, f) from object node
nd to corresponding node-form f. The set of such arcs forms the additional set (let us call it Eext), connecting two
graphs Gpr and GT. Nodes of the logical model do not correspond to nodes of the entity g

TV . Such nodes are only
created for convenient reflection of the information on the user’s screen. There are arcs between nodes of the set
VT. Arcs can exist as between nodes of one subset (g

T
o

T VV или), as also between nodes of different subsets.
There is one group node in the tree from which the tree scanning starts. Such node can be marked as a root. The
root node does not have incoming arcs. Any node of the set VT is reachable from the root, i.e. between any node
of the set VT and root node there is a path.
The path between two object nodes can correspond to subgraph of the logical model which includes some
sequence of arcs and nodes, which are between entities that are reflected by two viewed nodes.
For example, in Figure 3, graph of the logical model Gl can be corresponded to the graph of the object tree GT. In
the tree graph object nodes e1, e2, e3 are named corresponding to the names of nodes-entities of graph Gl, which
they correspond to. Arc TGee ∈),(31 is corresponded to the path 〉〈 3434141 ,,,, erere , arc),(22 ee – to the path

〉〈 2222 ,, ere , arc),(32 ee – to the path 〉〈 3232 ,, ere .

Figure 3. Example of entity tree

Let us view two object nodes ednEntendEntVdnnd o
T ′=′=∈′)(,)(:, , between which there is a path

Nndnndndndndndndndndndndndnd nnnn ∈′==〉〈 − ,,,),,(),...,,(,),,(, 11322211 . This path is corresponded to the
path of the logical model graph Nmeeeeeeeeeeeee mmmm ∈′==〉〈 − ,,,),,(),...,,(,),,(, 11322211 .

Every node in graph GT can be reachable from the root by different paths, and each of these paths can be
concerned with the path in the logical model graph. While building the tree on the user’s screen, i.e. during data
loading, only important in this context relations are considered. While building a tree part of the ways can be
reflected on the user’s screen and the other part serve for assignment of additional dependence. Let us say that
additional ways of the logical model connect with the way of graph GT , consisting from one arc. For unification of
the ways assignment we can also take that visual paths in graph GT do not have corresponding paths in the
logical model graph and all entities relations specify by non-visual additional connections.
Let us make it clear on the example. There is a fragment of graph GT, shown in Figure 4. Here while building the
branch which includes nodes root, nd1, nd2, nd3, for loading nodes of type nd3 relations),(23 ndnd and

),(13 ndnd are used, but while loading the branch which goes over nodes root, nd4, nd5, nd2, nd3, relations
),(52 ndnd and),(42 ndnd are used, while loading nodes of type nd2 and the relation),(23 ndnd while loading

nodes of type nd3.

Gl

e2
e4

e1

e3

GT

r22

r23
r43

r14

e2

<r22>

<r23> <r14,r43>

root

e1

e3

International Journal "Information Theories & Applications" Vol.14 / 2007

373

Figure 4. Paths assignment in the entity tree

In such a way, a tree is a kind of visual presentation of entities’ relations and it reflects the view of the end user on
the interconnection of the objects of data domain (or vice versa on the absence of the connection between some
entities).

At last we get extended graph of the presentation model prG′ (prV ′ – the set of its’ nodes, prE′ – the set of arcs),
consisting of nodes and arcs of graphs Gpr and GT; besides, this graph includes the set of arcs between object
tree nodes and nodes-forms:

. , where),,(extTprprTprprprprpr EEEEVVVEVG ∪∪=′∪=′′′=′

Conclusion

This work describes the base model of user interface of application, including objects of user interface and
specifying interconnection between them. Based on described operations with graph of the presentation model
there have been worked out additional algorithms that are not described in the work.

In order to realize suggested above graph model of user interface we can offer the approach of CASE-technology
METAS, including in itself tools for automation of working out large scale IS, based on using multilevel structure
of dynamically changing metadata [Ryzhkov, 2002]. Case-tools contain the set of program components,
processing metadata of different levels and building on this base application, which has the meanings of interface
designing and graphic interface of the end user of IS. Program components, realizing Windows-interface of
applications [Kudelko, 2004], are built based on the present graph and they use algorithms suggested above.

Bibliography

[Kudelko, 2004] E.Y. Kudelko. The Application of Metadata for Automation of the User Interface Construction. In: Articles
Collection of International Seminar “Modern Problems of Mechanics and Applied Mathematics”, Voronezh University,
Russia, 2004, pp. 310-313.

[Lyadova, 2003] L.N. Lyadova, S.A. Ryzhkov. CASE-technology METAS. In: Scientific Articles Collection “Mathematics of
Program Systems”. Perm University, Russia, 2003, pp. 4-18.

[Ryzhkov, 2002] S.A. Ryzhkov. The Concept of the Metadata in the Development of Information Systems. In: Scientific
Articles Collection “Mathematics of Program Systems”. Perm University, Russia, 2002, pp. 36-44.

Author’s Information

Elena Kudelko – Perm State University, Department of Computer Science, Assistant; 15, Bukirev St., Perm,
614990, Russia; e-mail: kudelko_elena@mail.ru

nd3

root visual ways
additional ways

nd1

nd2

nd4

nd5

