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descriptions of classes (patterns), providing mass parallelism at data processing and significant acceleration of 
processes for solution making in the process of pattern recognition has been described. 
Results have been obtained at support of RFBR grant № 06-08-01612-а and Program “Innovations Support” of 
Presidium of RAS. 
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ADAPTIVE WAVELET-NEURO-FUZZY NETWORK  
IN THE FORECASTING AND EMULATION TASKS 

Yevgeniy Bodyanskiy, Iryna Pliss, Olena Vynokurova 

Abstract: The architecture of adaptive wavelet-neuro-fuzzy-network and its learning algorithm for the solving of 
nonstationary processes forecasting and emulation tasks are proposed. The learning algorithm is optimal on rate 
of convergence and allows tuning both the synaptic weights and dilations and translations parameters of wavelet 
activation functions. The simulation of developed wavelet-neuro-fuzzy network architecture and its learning 
algorithm justifies the effectiveness of proposed approach. 
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Introduction 
At present time the neuro-fuzzy systems have been an increasingly popular technique of soft computing [1-4] 
successfully applied for the processing of information containing complex nonlinear regularities and distortions of 
all kinds. These systems combine the linguistic interpretability and the approximation properties of the fuzzy 
inference systems [5, 6] with the learning and universal approximation capabilities of artificial neural networks 
[7, 8]. This means, that they can be used in forecasting and emulation of the stochastic and chaotic signals and 
sequences with complex nonlinear trends and nonstationary parameters, described by the difference nonlinear 
autoregression equations (NAR) in the form 

( ) ( ( )) ( ),x k F X k kξ= +  

where ( ) ( ( 1), ( 2), , ( ))TX k x k x k x k n= − − −K  is ( 1)n×  the prehistory vector, which determines present 
state ( )x k , ( )x k  is a signal value in k -th instant of discrete time 0,1,2, ,k = K  ( )F •  is an arbitrary 
nonlinear function, unknown in the general case, ( )kξ  is a stochastic disturbance with unknown characteristics 
but with bounded second moment. 
Along with the neuro-fuzzy systems for processing the signals of all kinds, the wavelet transform has been an 
increasingly popular technique [9-11] which provides a compact local signal representation in both time and 
frequency domain. At the turn of the artificial neural network and wavelets theories the wavelet neural networks 
have evolved for the analysis of nonstationary processes with considerably nonlinear trends [12-18].  
The natural step is to combine the transparency and the interpretability of fuzzy inference systems, powerful 
approximation and learning capabilities of artificial neural networks and compact description and the flexibility of 
wavelet transform in the context of hybrid systems of computational intelligence, which further we shall call as the 
adaptive wavelet-neuro-fuzzy networks (AWNFN). 
The key point, defining effectiveness of such systems, is the choice of learning algorithm, which is usually based 
on the gradient procedures of the accepted criterion minimization. Combination of the gradient optimization with 
the error backpropagation essentially reduces the rate of learning hybrid systems [19] and leads to necessity of 
using rather large training samples. In the case when the data processing has to be carried out in real time, 
forecasted or emulated sequence is nonstationary and distorted, conventional gradient descent learning 
algorithms (let alone genetic algorithms) appeared to be ineffective.  
The paper is devoted to the tasks of synthesis of adaptive wavelet-neuro-fuzzy network for the forecasting and 
emulation tasks. This network has higher rate of learning in comparison with systems using conventional 
backpropagation gradient algorithm. 

Architecture of the adaptive wavelet-neuro-fuzzy network 
Let us introduce into consideration the five-layers architecture, shown on fig. 1, someway similar to the well-
known ANFIS [2] which is in turn the learning system of Takagi-Sugeno-Kang fuzzy inference [20,21].  
The input layer of the architecture is formed of the time-delay elements 1z−  ( 1 ( ) ( 1)z x k x k− = − ) and under the 
input of current signal value ( )x k the prehistory vector ( ) ( ( 1), ( 2), , ( ))TX k x k x k x k n= − − −K  is formed 
as an output of this layer.  
The first hidden layer unlike the neuro-fuzzy systems is formed not of conventional non-negative membership 
functions, but of hn  wavelets ( h  wavelets for each input) ( ( )) ( ( ), , ) ( )ji ji ji ji jix k i x k i c kϕ ϕ σ ϕ− = − =  
with 2hn  tuning parameters of dilation (center) jic  and translation (width) jiσ . 

Various kinds of analytical wavelets can be used as the activation functions in adaptive wavelet-neuro-fuzzy 
network, for example: Morlet wavelets, “Mexican hat” wavelets, Polywog wavelets, Rasp wavelets [12], the 
generator of analytic wavelets [22], the triangular wavelets [23]. 
Here it can be noticed, that the oscillation character of wavelet function doesn’t contradict the unipolarity of 
membership functions as negative values jiϕ  can be interpreted in terms of the small membership or 
nonmembership levels [24, 25]. 
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Fig. 1 – Adaptive wavelet-neuro-fuzzy network for the forecasting and emulation tasks 
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The fourth hidden layer performs an operation similar to computing of the consequent in the fuzzy inference 
systems. The most often used function ( ( ))jf x k  in fuzzy inference systems is linear form (in our case local 
autoregression model): 

0
1

( ( )) ( )
n

j j ji
i

f X k p p x k i
=

= + −∑ . 

In this case in the fourth layer signal values are computed  

0
1

( )( ( )) ( ) ( ),
n

T
j j ji j j

i

w k p p x k i w k p X k
=

+ − =∑  

where ( ) (1, ( ))T TX k X k= , 0 1( , , , )T
j j j jnp p p p= K , and ( 1)h n +  parameters jip , 1,2, ,j h= K , 

0,1,2, ,i n= K  are to be determined. 
And at last output signal (forecast ˆ( )x k ) of network is computed in the fifth output layer 

1

1 1 1

1 1 1

( ( ), , )( )
ˆ( ) ( ) ( ( )) ( ( )) ( ( )),

( ) ( ( ), , )

n

ji i ji jih h h
j i

j j j jh nh
j j j

j ji i ji ji
j j i

x k i cw k
x k w k f X k f X k f X k

w k x k i c

ϕ σ

ϕ σ

=

= = =

= = =

−
= = =

−

∏
∑ ∑ ∑

∑ ∑∏
 

which, introducing the variables vectors 1 1 1 2( ( )) ( ( ), ( ) ( 1), , ( ) ( ), ( ),f X k w k w k x k w k x k n w k= − −K  

2 2( ) ( 1), , ( ) ( ), , ( ), ( ) ( 1), , ( ) ( ))T
h h hw k x k w k x k n w k w k x k w k x k n− − − −K K K , 10 11( , , ,p p p= K  

1 20 21 2 0 1, , , , , , , , )T
n n h h hnp p p p p p pK K of dimensionality ( 1)h n + , can be rewritten in the compact form 

ˆ( ) ( ( ))Tx k p f X k= . 
The tunable parameters of this network are located only in the first and fourth hidden layers. These are 2hn  
wavelets parameters jic  and jiσ , and ( 1)h n +  parameters of the linear local autoregression models jip . 
Namely they must be determined during the learning process.  

The learning of adaptive wavelet-neuro-fuzzy network 
As far as tunable vector of parameters p  is contained in the network description linearly, for its refinement any of 
the algorithms used in adaptive identification [26] will operate, primarily the exponentially weighted recurrent least 
squares method (this method is the second order optimization procedure and has both filtering and following 
properties) in the form  

 

( )( ( ) ( ) ( ( )))( 1) ( ) ( ( )),
( ( )) ( ) ( ( ))

1 ( ) ( ( 1)) ( ( 1)) ( )( 1) ( )
( ( 1)) ( ) ( ( 1))

T

T

T

T

P k x k p k f X kp k p k f X k
f X k P k f X k

P k f X k f X k P kP k P k
f X k P k f X k

α

α α

⎧ −
+ = +⎪ +⎪

⎨
⎛ ⎞+ +⎪ + = −⎜ ⎟⎪ + + +⎝ ⎠⎩

 (1) 

where ˆ( ) ( ) ( ( )) ( ) ( ) ( )Tx k p k f x k x k x k e k− = − =  is the forecasting (emulation) error, 0 1α< ≤  is the 
out-dated information forgetting factor; optimal on operation rate one-step gradient Kaczmarz algorithm [27, 28], 
having the following properties 

 ( ) ( ) ( ( ))( 1) ( ) ( ( ))
( ( )) ( ( ))

T

T

x k p k f X kp k p k f X k
f X k f X k

−
+ = + , (2) 

or Goodwin-Ramadge-Caines algorithm [29] 
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1

2

( 1) ( ) ( )( ( ) ( ( ))) ( ( )),

( 1) ( ) ( ( 1)) ,

Tp k p k r k x k p f X k f X k

r k r k f X k

−⎧ + = + −⎪
⎨

+ = + +⎪⎩
 (3) 

which is the stochastic approximation procedure. 
Here it should be mentioned, that exponentially weighted recurrent least squares method (1), having filtering and 
following properties, can be unstable under small values of parameter α ; convergence of the algorithm (2) under 
the intensive disturbance ξ  is disrupted, and stochastic approximation procedures, including (3), operate only in 
the stationary conditions. 
For tuning of the first hidden layer parameters in AWNFN backpropagation learning algorithm based on the chain 
rule of differentiation and gradient descend optimization of local criterion 

 2 21 1 ˆ( ) ( ) ( ( ) ( ))
2 2

E k e k x k x k= = −   

is used.  
In the general case learning procedure in this layer has the form  
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⎨ ∂⎪ + = −
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and its properties are completely determined by the learning rate parameter ( )c kη , ( )kση , selected according 
to the empirical reasons. It should be noticed that if the parameters of the fourth layer can be tuning most rapidly, 
the operation rate is lost in the first layer.  
Increasing of the convergence rate can be achieved with more complex than gradient procedures, such as 
Hartley [30] or Marquardt [31] algorithms which can be written in general form [32]  
 1( 1) ( ) ( ( ) ( ) ) ( ) ( )Tk k J k J k I J k e kλ η −Φ + = Φ + + , (4) 

where 1 1
11 11 21 21( ) ( ( ), ( ), ( ), ( ), , ( ),jik c k k c k k c kσ σ− −Φ = K  1 1( ), , ( ), ( ))T

ji hn hnk c k kσ σ− −K  is the ( 2 1hn× ) 
tunable parameter vector (at that for the computation complexity reduction it includes not the width parameter 

jiσ , but its inverse value 1
jiσ − ), ( )J k  is the (2 1)hn×  gradient vector of output signal ˆ( )x k  on the tunable 

parameters, I  is the (2 2 )hn hn×  identity matrix, η  is a scalar regularizing parameter, λ  is the positive 
scalar gain.  
To compute elements of gradient vector 

 1 1 1 1
11 11 21 21

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) , , , , , , , , ,
T

ji ji hn hn

x k x k x k x k x k x k x k x kJ k
c c c cσ σ σ σ− − − −

⎞⎛ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

K K   

the chain rule can be used, at that 
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where 1,ji ji ji jicϕ ϕ σ −∂ ∂ ∂ ∂  is partial derivatives of concrete wavelet activation function. 
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To reduce the computational complexity of the learning algorithm we can use the matrix inversion lemma in the 
form 

 
1 1

1 1
1( )

1

T
T

T

IJJ IJJ I I
J IJ

η ηη η
η

− −
− −

−+ = −
+

,  

using which it is easy to obtain the relation 

 1
2( )T JJJ I J

J
λ η λ

η
−+ =

+
.  

Substituting this relation to the algorithm (4), we obtain first hidden layer parameters learning algorithm in the 
form 

 2
( ) ( )( 1) ( )

( )
J k e kk k

J k
λ
η

Φ + = Φ +
+

. (5) 

It is easy to see, that algorithm (5) is the nonlinear additive-multiplicative modification of Kaczmarz algorithm, and 
under 1, 0λ η= =  coincides with it structurally. 
To provide the filtering properties to the learning algorithm (5) let us introduce additional tuning procedure of the 
regularizing parameter η  in the form [33, 34, 35] 

 
2

( ) ( )( 1) ( ) ,
( )

( 1) ( ) ( 1) .

J k e kk k
k

k k J k

λ
η

η αη

⎧Φ + = Φ +⎪
⎨
⎪ + = + +⎩

 (6) 

If 0α = , then this procedure coincides with (5) and has the highest rate of convergence, and if 1α = , then this 
procedure obtains properties of stochastic approximation, and serves as generalization of procedure (3) in the 
nonlinear case.  
Here it should be noticed, that the algorithm (6) is stable at any value of forgetting factorα , what favorably differs 
it from the exponentially weighted recurrent least squares method (1). As a result this procedure can be used too 
in the form  

 
1

2

( 1) ( ) ( )( ( ) ( ) ( ( ))) ( ( )),

( 1) ( ) ( ( ))

T
p p

p p

p k p k k x k p k f X k f X k

k k f x k

λ η

η αη

−⎧ + = + −⎪
⎨

+ = +⎪⎩
 (7) 

for the fourth layer parameters tuning. One can notice close relation of the algorithms (1) and (7), as  
 1( ) ( ).k TrP kη− =   

However algorithm (7) is much simpler in the computing implementation and easily reconstructs its properties 
from the most following to the most filtering ones. 

Simulation results 
To demonstrate the effectiveness of the proposed adaptive wavelet-neuro-fuzzy-network and its learning 
algorithm (6), (7), AWNFN was trained to emulate the nonlinear dynamical system which proposed in [36]. 
Emulation of the Narendra’s dynamical system is a standard test, widely used to evaluate and compare the 
performance of neural and neuro-fuzzy systems for nonlinear system modeling and time series forecasting. The 
nonlinear dynamical system is generated by equation in form [36] 
 ( 1) 0.3 ( ) 0.6 ( 1) ( ( )),y k y k y k f u k+ = + − +  (8) 

where ( ( )) 0.6sin( ( )) 0.3sin(3 ( )) 0.1sin(5 ( ))f u k u k u k u k= + +  and ( ) sin(2 250)u k k= , k  is 
discret time.  
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The values ( 4), ( 3), ( 2), ( 1)x t x t x t x t− − − −  were used to emulate ( 1)x t + . In the online mode of 
learning, AWNFN was trained with procedure (6), (7) using signal ( ) sin 2 / 250u k k=  for 1...1000k = . The 
parameters of the learning algorithm were 0.9α = , 2pλ = , 1λ = . Initial values were (0) 1η =  and 

(0) 10000pη = . After 1000 iterations the training was stopped, and the next 800 points for the signals 
( ) sin 2 / 250u k k= , 1...300k =  and ( ) 0.5sin 2 / 250 0.5sin 2 / 25u k k k= + , 501...1000k =  were 

used as the testing data set to emulate dynamical system. As the activation function “Mexican hat” wavelet is 
used. Initial values of synaptic weights were generated in a random way from 0.1−  to 0.1+ . 
The root mean-square error (RMSE) was used as criterion for the quality of emulation 

 2

1

1 ˆ( ( ) ( ))
N

k
RMSE x k x k

N =

= −∑ .  

Fig. 5 shows the results of nonlinear dynamical system emulation. The two curves, representing the actual (dot 
line) and emulation (solid line) values, are almost indistinguishable. 

 
Fig. 5 – Emulation of the nonlinear dynamical system using adaptive wavelet-neuro-fuzzy network  

 

Table 1 shows the results of the emulation process on the basis of the adaptive wavelet-neuro-fuzzy-network 
compared the results of emulation process on the basis of standard ANFIS with the backpropagation learning 
algorithm. 
 

Table 1: The results of nonlinear dynamical system emulation 

Neural network/ Learning algorithm RMSE 

Adaptive wavelet-neuro-fuzzy-network / Proposed 
learning algorithm (6), (7) 0.025 

Backpropagation ANFIS 0.110 
 

Thus as it can be seen from experimental results the proposed adaptive wavelet-neuro-fuzzy-network with the 
learning algorithm (6), (7) having the same number of adjustable parameters ensures the best quality of 
emulationt and high learning rate in comparison with conventional ANFIS architecture.  

Conclusions 
Computationally simple learning algorithms for the adaptive wavelet-neuro-fuzzy network in the forecasting and 
emulation of the nonlinear nonstationary signals tasks are proposed. The simulation of developed approach 
justifies the effectiveness of AWNFN using for solving wide category of emulation, forecasting and diagnostics 
problems. 
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MULTIALGEBRAIC SYSTEMS IN INFORMATION GRANULATION 

Alexander Kagramanyan, Vladimir Mashtalir, Vladislav Shlyakhov 

Abstract: In different fields a conception of granules is applied both as a group of elements defined by internal 
properties and as something inseparable whole reflecting external properties. Granular computing may be 
interpreted in terms of abstraction, generalization, clustering, levels of abstraction, levels of detail, and so on. We 
have proposed to use multialgebraic systems as a mathematical tool for synthesis and analysis of granules and 
granule structures. The theorem of necessary and sufficient conditions for multialgebraic systems existence has 
been proved.  

Keywords: granular computing, multirelations, multioperations. 
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Introduction  
Granular computing explores knowledge from different standpoints to reveal various types of structures and 
information embedded in the data [Zadeh, 1997, Bargiela, Pedrycz, 2002]. A paradigm of granular computing 
consists in grouping elements together (in a granule) by indistinguishability, similarity, proximity or functionality in 
arbitrary feature or signal spaces. Taking into account a semantic interpretation of why two objects are put into 
the same granule and how two objects are related with each other it provides one of a general methodology for 
intelligent data analysis on different levels of roughening or detailing [Pal et al., 2005, Yao, Yao, 2002].  


