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GENETIC ALGORITHM FOR FINDING THE KEY’S LENGTH AND CRYPTANALYSIS
OF THE PERMUTATION CIPHER
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Abstract: In this article we discuss a possibility to use genetic algorithms in cryptanalysis. We developed and
described the genetic algorithm for finding the secret key of a block permutation cipher. In this case key is a
permutation of some first natural numbers. Our algorithm finds the exact key’s length and the key with controlled
accuracy. Evaluation of conducted experiment’s results shows that the almost automatic cryptanalysis is possible.
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Introduction

The main problems in cryptography are the development of reliable cryptographic schemes (a cryptography
problem) and the search for new effective methods of deciphering existing schemes (a cryptanalysis problem).
A cryptographic approach to secure information implies its transformation which enables it to be read only by the
owner of the secret key. The reliability of a cryptographic method of securing data depends on cryptanalysis
stability of the used scheme. When we talk about cryptanalysis we assume that we know the cryptographic
scheme, but we don't know the key and/or its length. In other words, a cipher breaking problem (a cryptanalysis
problem) is a problem of finding only one true secret key among all possible secret keys, i.e. it is a search
problem. The search space is large and the criterion of found solution’s "quality" is not usually purely formalized.

In this article we focus on the cryptanalysis problem of the block permutation cipher. The secret key of this cipher
is a permutation of some first natural numbers with unknown length. To solve the cryptanalysis problem we use
genetic algorithms. It seems reasonable to apply genetic algorithms, because they are successfully used in
search problems and optimization problems. You can read about solving cryptanalysis problems by genetic
algorithms in [Delman, 2005, Lebedev, 2005, Jakobsen, 1995]. But authors of these articles assume that the
key's length is known and they use standard methods which do not consider peculiarities of the task or they don’t
investigate how algorithm’s parameters can affect its convergence speed.

Before developing any genetic algorithm, you must choose the proper way to present possible solution as a
symbol string and also choose proper main operators — selection, crossover and mutation. The quality of the
genetic algorithm should be adjustable. We should have a possibility to change algorithm’s parameters such as
the size of the population, the number of generations and probabilistic characteristics of main operators.

A block permutation cipher

In this article we consider the particular cryptographic scheme — the symmetric block permutation cipher. The
main idea of this cipher is that we divide the input text into blocks, i.e. into symbol strings with the fixed length
equal to N, and then symbols in every block are rearranged in accordance with the given permutation

P—[l 2 3 0. Nj

P P2 P3 .o Pi . Pn

where p; € {1,2,3,...,N}. In other words, symbol at the position i is moved to the position p;. The secret key of that
cipher is the permutation P. Deciphering is performed using the inverse permutation P!,
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The genetic algorithm

A permutation will play the role of individual in the genetic algorithm, because the solution of the cryptanalysis
problem here is also a permutation. At first we suppose that we know the key’s length and we must find only the
key, i.e. the permutation with the fixed length N.

The main problem we must solve is the role of separate genes of an individual. The first simple solution which
seems the most evident is to associate separate genes with elements of the permutation P, i.e. associate the it
gene with the number p;. Obviously in that case genes will depend on each other. If some gene is equal to j, then
no other gene of this individual can be equal to j, because all numbers between 1 and N are presented only once
in the permutation P. The dependence of genes results in important limitations to operators of mutation and
crossover. We can't use standard operators in this case, because all of them work with a string of independent
bits. Such interconnections between genes don't reside in wildlife. This leads to prejudices in the effectiveness of
using genetic algorithms. But this association is subconsciously comprehensible and doesn't need any additional
computations to form genes.

The alternative solution is to use an intermediate presentation of an individual in a form of an object which can be
easily transformed to a permutation. At the same time such object should be presented as a string of independent
bits to make applicable mutation and crossover operators. In this case the problem of choosing a proper
intermediate presentation can be very complex. In this article we choose the first solution which is the most
comprehensible. It means that in the rest part of the article we will regard separate genes as elements of the
permutation P.

The next problem is how to calculate fitness value for individuals. We suppose that input text is a literary text in
Russian. Fitness function is taken from Jakobsen's works [Jakobsen, 1995, Agranovskiy, 2002]. In 1995 Thomas
Jakobsen suggested an automatic method for deciphering a simple substitution cipher. In Jakobsen’s method the
information about frequency sharing of digrams in literary texts is used. Digram is a pair of two neighboring
symbols in text. Jakobsen suggested calculating the fitness value as the sum of modules of differences between
predefined etalon digram frequencies and real digram frequencies in the ciphertext. Let T; be the relative
frequencies of digrams (i, j) in the text T. Then the fitness function would look like

W(T) = Z‘Tij ~ Ej|
ij

where Ej is the predefined etalon frequencies of digrams (i, j). Etalon frequencies’ matrix E is calculated
beforehand under big literary text in Russian. Obviously, the more literary is the text, the less is the fitness value
and the "closer" is the found key to the true secret key. It means that fitness value is in inverse proportion with
individual's fitness. It is important that fitness function can be not equal to zero even if the ciphertext is deciphered
with the true secret key.

So, if we have the ciphertext S, then we should perform the following steps to calculate fitness value of the
individual P.

1. Decipher ciphertext S with the selected key P. As a result we would get the text T = Decryptq(S)..
2. Calculate digrams frequencies Tjin the text T.
3. Calculate the fitness value WAT).

Let's focus on the properties of the fitness function W(T). Let P; and P, be two individuals and let them differ in
only two first genes (obviously they can't differ in the only one gene). Suppose for instance

(1 2 3 .. NJ
Pl: )
Pp P2 Py .o Py
(1 2 3 .. Nj
P, = :
P P Ps - Pu

Suppose, we have ciphertext S. Texts Decrypt, (S) and Decrypt, (S) deciphered with keys Pr and P
differ only in symbols which are at positions ps1, p2, p1+ N, p2+ N, p1+ 2N, p2+ 2N and so on. These numbers
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form two arithmetic progressions with the difference of N. Because texts DeCI’yptF,1 ( S) and Decryptp2 (S)

can differ only in these positions, each block with a length of N has no more than 3 digrams which differ in their
frequencies. So, when the key's length N is big enough (this is true for real schemes), a small change of an
individual would cause a small change of a fitness value.

Also notice that in long literary texts digram frequencies T are close to corresponding etalon frequencies E;.
That's why in the result of deciphering the text T with the true secret key fitness value would be close to zero. So,
if K is the true secret key then the value W(Decrypi(S)) would be the minimal possible value.

As it was mentioned above we can use a standard crossover operator only if an individual is presented as a string
of independent bits. In our case individuals are not strings of independent bits, so we can't use standard
operators. We should develop a special crossover operator. The main requirement to the crossover operator is
that the result of its execution should give a correct permutation. In this article we suggest the next crossover
operator:

1. Enumerate all genes with numbers 1, 2, 3, ..., N and scan them in increasing order.
2. Copy gene with the next number from one of the parents, if it is possible.
3. Assign any possible number to gene if genes from both parents are impossible.
Let P(i) be the number which replaces the number i in permutation P. So, we have the next crossover algorithm
for two parents Py and P, and their child P*.
1. Assign a value of @ to the set Used. Used is the set of already used gene values. Set the number of
current gene jto 1.

2. Define whether numbers Pi(i) and Pa(i) belong to Used or not.

3. If only one of numbers P1(i) and P(i) doesn't belong to Used then assign it to the " gene of P*. If both
numbers don't belong to Used then choose number Pi(i) with probability p. or choose P,(i) with
probability (1 - pc). Assign the selected number to the i gene of P*. If both numbers belong to Used,
then assign random number from the set {1, 2, 3, ..., N\Used to the *" gene of P*.

4. Include the number which was assigned to the i gene of P* in the set Used.
5. Move to the next gene, i.e. increase i by 1 and go to step 2.

We can use a standard exchange operator as the mutation operator. The idea of exchange operator is very
simple. Some two genes of the individual exchange their positions with some probability. To develop the selection
operator we use two main classical ideas: the "wheel principle" and the "elite principle” [Mitchell, 1999]. The
population’s size remains constant because every time new two children are obtained we delete two individuals
with the smallest fitness from the population. Finally, we selected the condition of the end of calculations.
Calculations stop when era number reaches a fixed number M. Because of this condition we can predict time that
is needed to complete the calculations or we can define the parameter M so that the algorithm ends after
specified time.

The influence of genetic algorithm’s parameters

So, we developed a genetic algorithm for solving the problem of cryptanalysis of the block permutation cipher. We
supposed that we know the key’s length N. Let’s discuss the optimal values for parameters. The main parameters
which were mentioned early in this article and which influence the algorithm’s speed and the solution’s quality
are:

- the population’s size k;

- the probability of copying a gene from one of the parents p;
- the mutation’s probability pp;

- the number of generations M.
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There are no theoretical recommendations on how to choose these parameters. We can only say that the
mutation’s probability should be small and p. must be close to 0.5. The number of generations can be chosen
depending on time resources. Generally speaking, if the number of generations is the only condition for the end of
calculations it must be big enough. The population’s size at the start is also important because the population’s
size is constant in our genetic algorithm and is always equal to k. Notice that the population’s size has a
considerable influence on the complexity of computations and the time required for them.

Conducted experiments show that small population’s size gives bad results because the algorithm quickly finds a
local minimum point of the fitness function and all further populations are formed in its vicinity. According to these
experiments if key's length equals to 10 then the optimal value for population’s size is between 15 and 17.
Changing the mutation’s probability in a reasonable range doesn’t have a significant impact on the results. It can
be partially explained that we used a specific crossover operator which already implies some mutation of
individuals. Indeed, when the next gene cannot be copied from one of the parents it is simply chosen randomly,
i.e. child doesn’t “resemble” any of his parents in this gene. The optimal number of generations significantly
depends on the key’s length N. If N is small, a big number of generations isn't effective because after some
populations algorithm finds a local minimum and all further calculations don’t lead to a better result. Possible
solutions’ space grows with the growth of the key’s length. It requires more generations to find the best solution.
At the end of the genetic algorithm’s work we obtain a text called decrypted text. That decrypted text doesn’t
considerably differ from the starting open text. Usually we can restore separate symbols from the context. So,
algorithm doesn’t completely solve the cryptanalysis problem but greatly helps to decrypt the given text.

Finding the key’s length

The genetic algorithm described above works on the assumption that the key’s length N is known. The result of
its work is the permutation which corresponds to the best individual from the final population. Because this
permutation has the minimum value of the fitness function W(T) genetic algorithm also calculates the value F(N)
by the given key’s length N. F(N) indicates the minimal found value of the fitness function.

Let's now focus on the key’s length finding problem from the given ciphertext. Let N be the supposed key's length
and L be the true key’s length. If N is equal to L then we can expect that the permutation found by the genetic
algorithm is close to the searched permutation and the fitness function corresponding to this permutation would
have a relatively small value.

Let the true secret key be the permutation

(1 2 ... L]
K =
Pt P2 - PL

Consider the key with length 2-L of a form

K,_[l 2 o L L+l - 2-Lj
P Py - P L+p o L+pL

In K’ first L columns are absolutely equal to first L columns in permutation K. The rest columns are obtained
from the first L columns by adding L to all numbers. We can correctly decipher the ciphertext with the key K’
because both keys K and K' identically transform any text. It means that when genetic algorithm searches the
key with the length 2:L it would find a permutation which is close to K'. At the same time a small fitness value
would correspond to the found permutation. Therefore the value F(2:-L) would be relatively small. Similar
statements are true for all keys have length divisible by L. In other words, if we pass the ciphertext and the key's
length N = m-L (where m is a natural number) to the input of genetic algorithm then we can expect a permutation
with a small fitness value at the output. Otherwise, if N isn't divisible by L then there is no permutation with the
length N which are close to the key K. In this case fitness value and value F(N) are expected to be relatively
large. So, value F(m-L) is expected to be much smaller than F(N) for all N which are not divisible by L.

So, we offer the following algorithm for the finding of the key’s length. At first, choose some initial value Ny for the
key’s length. The value F(No) is calculated using the genetic algorithm. At the next step we increase the supposed
key's length by 1 and calculate value F(N1) (where Ny = Ny+ 1) using the genetic algorithm and so on. At the i
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step we calculate value F(Nj) where N;= Ny + i. This algorithm continues while N<N* where N* is a predefined
value (is an upper bound). As a result of this process we have a sequence of numbers

F(No), F(No+ 1), F(No+2), ..., F(No+1i), ..., F(NY).

In this sequence we can mark out small values having positions expected to form an arithmetical progression with
the step L. The value of L is the searched true key’s length.

Notice that we can use a small population’s size and a small number of generations while searching the key's
length to save time resources. When the length of the key is found we can restart genetic algorithm with big
values for parameters to find the secret key.

An example of algorithm’s work

As the input text we took a fragment of literary text in Russian:

Bbino muxoe nemHee ympo. ConHue yxe 00807bHO 8bICOKO CMOSAIO0 Ha Yucmom Hebe,
HO nonig ewe bnecmenu pocoll, u3 HedagHO NPOCHyswWiuxcs GonuH eesano Oywucmol
CBEXECMbIO, U 8 1ECY ewje CbIPOM U He WYMHOM, 8€CeIT0 pacneganu paHHUe nmuyku. Ha
8EPLIUHE NOI02020 X0/IMa, C8epXY AOHU3Y NOKPLIMOZO. ..

In experiment this text was encrypted using the block permutation cipher with the key’s length equal to 10. In the
result we had the next ciphertext:

m uonoebixbeHeyemms oCny. eOHPd 00Xeny8 bIBCKO OHOLSIAOHMOAc OomMm UC Y,H
beneoHweebs nn oun omeccpesu €, OUHON PCHOHBOACXAOWUO8 Ye8sOH UIMCO
wucyldmceb,Xe €eleenic 8 e yupblo CUeMWywMoe MHH ecrl eep 0,ael he cuaeu
MHHUanpH asu.ek 4 enfuHowopx oMeoaosnepex ¢ed y, YnKU3pHOO 0 02 M bl...

From this meaningless set of symbols it is difficult to restore the start text manually. Then this ciphertext was
passed to the input of the genetic algorithm in order to find the secret key’s length. The range of the supposed
key's lengths was [4; 34], i.e. No=4, N*=34. For all supposed key’s lengths we calculated corresponding values
F(4), F(5), ..., F(34). Figure 1 shows the reverse values 11/F(4), 1/F(5), ..., 1/F(34). The higher point at the
diagram the closer its abscissa to the true key’s length L or to a value, divisible by L.

2.0

0-5 T T T T T T T T T T T T
4 6 8 10 12 14 16 18

22 24 26 28

20 30 32 34

Fig1. Diagram of the dependence 1/F(N) where N is the supposed key’s length.
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On the figure we can see the maximal “spike” of the fitness function which corresponds to the length 10. Notice
that 10 is the true secret key’s length. The next noticeable local maximum is at N=20 which corresponds to the
double value 2-L. Further there are no noticeable “spikes” but at N=30 (which equals to the triple value 3-L) we
can see a local maximum.

Results of this experiment conform well to the theory. So, in this experiment we can affirm that the secret key's
length L is equal to 10. Then genetic algorithm was restarted to find the secret key. We used the following values
for algorithm’s parameters: the population’s size — 15, the number of generations — 30 and the mutation’s
probability — 0.2. In the result we obtained the next text:

Bbinoxmu oe niem eeHympo. HonCue yxeedo 0/IbHO ObIC8KO CMO JI0SIHA Yuc omm Hebe
OH, nonsa weebnecmepu focol, H3 uedagHooNp CHyBWU CAXAONUH nesso Aywuliimoc
CBEXEIOMbLC, U 8 YeCs ewe CMPObI U He HYMWOM, 8e0€/IC pacneuasns paHHne umuyku. Ha
8EPLIUHO NEI02020/1X0 Ma, C8YpXe AOHU30 NYKPLIMOR O...

As we can see, algorithm didn’'t completely solve the problem because the result text isn’t identical to the input
text. But we can see that this text is close to the input text. For example, we can see several words which are

equal to the corresponding words in the input text: “6bino”, “yxe”, “nons”, “Hebe” and so on. It seemed easy to
finish the decryption manually using this result text.

Moreover, we can compare the true secret key and the result of the genetic algorithm. The true secret key is the
permutation

1 2345678 9 10
10 8 56 2139 4 7)

The result of the genetic algorithm is
1 23456 78910
(10856913247}'
These permutations differ in only one pair of values. It seems easy to look through a small number of variants and
to find the true secret key manually.

Certainly the genetic algorithm for finding the secret key described in this article doesn’t completely automate the
text decryption but it makes the decryption faster. After using this algorithm we can easily finish the decryption
process manually.
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