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LIMIT BEHAVIOUR OF DYNAMIC RULE-BASED SYSTEMS 
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Abstract: The paper suggests a classification of dynamic rule-based systems. For each class of systems, limit 
behavior is studied. Systems with stabilizing limit states or stabilizing limit trajectories are identified, and such 
states and trajectories are found. The structure of the set of limit states and trajectories is investigated. 
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Introduction 
Dynamic intelligent systems and dynamic knowledge bases are typically understood as a result of integrating 
expert systems with simulation systems and automatically updated knowledge bases [1].  
Although research in this area has a rather long history, there are some issues that still remain unaddressed — 
those of global behavior of dynamic intelligent systems, their attainable sets, stability, and other issues that 
usually come up when studying dynamic systems [2].  
In this paper, we focus on the kind of systems that are dynamic systems whose states, behavioral laws and other 
dynamic system “attributes” are described in a special way.  
This special way consists in using intelligent system techniques for describing both states and behavioral laws for 
such systems (by intelligent system techniques we mean methods for knowledge representation, modeling of 
reasoning and behavior modeling that are common in artificial intelligence). The said does not mean that 
functions and variables defined in any other way cannot be used as components of such systems; what is more 
even, it is supposed that the systems in question allow for integration with various models, such as differential 
equation systems, finite automata, and others.  
In a general case, attainability of knowledge-based systems is determined by their knowledge bases and control 
strategies [3, 4]. In the case when a set of rules is used as knowledge representation in a system [5], attainability 
is entirely determined by the structure of the set of rules, by the general principles of rule organization, and the 
control strategy being used [6].  
If by a rule base architecture we mean ‘structure of the rule set + rule structure + rule application logic’ then, 
consequently, attainability of rule-based systems is entirely determined by the rule base architecture.  
Let us remind the basic definitions following [4]. 

1 Rule-Based Systems 
A rule [6] is said to be a triple of sets: 
П = <С, А, D>, where:  
C is the applicability condition for the rule;  
A is the set of facts to be added by the rule П; 
D is the set of facts to be removed by the rule П. 
C, A and D are sets of formulas of a language L, e.g. a multi-sorted first-order predicate calculus language, 
whose alphabet contains variables of sort t that take values from a linearly-ordered discrete set T. A ∩ D = ∅ for 
every rule.  
The word “fact” is used here as a synonym for the expression “closed atomic formula of a first-order predicate 
calculus language”.  
Formulas from С, A and D are turned into facts by some substitutions that will be described below. 
Every rule will be assigned to one of two classes τ or θ and denoted as a τ-rule or θ-rule, respectively.  
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With each τ-rule, we associate either an action which is performed by an actuator in the environment or a 
procedure that computes and assigns to a variable the values of certain database attributes based on values 
taken by other attributes in the current state. 
No actions are associated with θ-rules, as the latter do not affect the real world and merely update our knowledge 
of it.  
It should be stressed that in conditions C of θ-rules first-order language formulas are such that the value of t 
(t∈T) in the formulas from the condition is the same as the value of t in the formulas from the sets A and D. This 
means that the result of a θ-rule execution changes the state in which its condition is satisfied.  

As far as τ-rules are concerned, if (∀ t) (n≤ t≤m) (∃ x) FC(t,x) is a formula from condition C and  
(∀t) (p≤t≤q) (∃y) PA(t,y) is a formula from the list A of formulas to be added (where n, p and m, q are the 
discrete start and end time points, respectively, for the “validity” term of facts FC(t,x) and PA(t,y)), then the integer 
v = p−n, which is the time lag between the start point of the fact PA(t,y) being added and the start point of the 
period when the condition FC(t,x) is true, is a characteristic of each rule and is associated with it.  
Things are the same with the sets of formulas to be removed.  
Let us now look at the basic computational process in rule-based systems.  
For this purpose, we need the following concepts to be introduced [3]: database and strategy of control over the 
system’s rules.  

1.1 Database 
Database is a collection of finite relations, or tables (e.g. like those in relational databases), the number of which 
equals the number of different predicate symbols in the rules. Table columns correspond to the sorts of individual 
variables in atomic formulas. Interpretation of language L in the database is taken to be defined in a standard 
way.  
One can therefore talk of satisfiability or non-satisfiability of rules’ conditions.  

1.2 Control Strategy 
Control strategy picks up a rule from the set of rules, checks if its condition is satisfied in the current state of the 
working memory and, if so, applies the rule, i.e. performs the actions as prescribed by the rule; otherwise, it picks 
up the next rule and carries out the same manipulations on it.  
For the sake of definiteness, we assume that the set of rules is ordered, e.g. in a lexicographic way.  
Then the control strategy looks as follows: 
1. Pick up the next rule Пi from the set of rules. 
2. Check whether condition Сi is true in the current state of the working memory. 
3. If Сi is true, then substitute all free variables in formulas from Сi, Аi and Di by the corresponding values from the 
database. Otherwise go to 1.  
4. Apply the rule, i.e. write down to the working memory the values that make true the formulas from Аi and 
remove from the working memory the values that make true the formulas from Di.  
5. Go to 1. 
The condition for the completion of the process is either stabilization of the working memory or exhaustion of the 
set of applicable rules. 
Typically, the choice of rule depends on the task or domain specifics; the general principle consists in that the 
rule’s condition should hold. If there is more than one such rule in a current state then the so-called conflict set 
resolution strategies are applied. With the latter not being the subject of this paper, we take the control strategy to 
be such that the choice of rule will only affect the computational complexity and not the result of the process. To 
put it differently, in what follows we are not going to be concerned with rule applicability, and we will get back to 
this later.  
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2 Dynamic Rule-Based Systems 
Let X be a set of facts, χ ∈ 2X, П ∈ (τ∪θ). Let K(χ,П) denote the control strategy we described above, and we 
assume  

K(χ,Пθ) = Φ(χ), where Пθ∈θ, 
K(χ,Пτ) = Ψ(χ), where Пτ ∈τ. 

Φ(χ) will be referred to as a closure function, Ψ(χ) as a transition function.  
Then  

H = <X, T, Φ, Ψ>                                                                    (1) 
will be referred to as a dynamic rule-based system.  
The fixed point of equation  

Φ(χ) = χ 
will be referred to as a state of the system (1), and the fixed point of equation 

Ψ(Φ(χ)) = χ (if such exists) with t→∞, 
will be referred to as the limit state of the system (1). 

3 Classification of Rule-Based Dynamic Systems 
As the basis for classification we will take the form of system’s rules and certain correlations on the sets of rule 
components.  
First, we identify classes of systems which differ in the form of rules. 
In system H1 the rules are of the form:  

П1=<С, {P(t,y)}, ∅>  
(here P(t, y) is a fact to be added). 

In system H2 the rules are of the form:  
П1=<С, {P(t,y)}, {Ф(t,z)}> 

(here P(t, y) is a fact to be added, Ф(t, z) is a fact to be removed). 
In system H3 the rules are of the form:  

П1=<С, P(t,y), F(t,z)>  
(here P(t, y) is a set of facts to be added, F(t,z) is a set of facts to be removed). 

Let us now identify classes of systems, based on some correlations on the sets of rule components. Let S0 be the 
initial state.  
Then system H21 is a system H2, such that:  
(∪{P}) ∩ (∪{Ф}) = ∅ (where (∪{P}) and (∪{Ф}) is the union of facts being added and removed, respectively, 
over all of the rules of system Н2); 
system H22 is a system H2, such that S0 ∩ (∪{Ф}) = ∅; 
system H23 is a system H2, such that (∪{P}) ∩ (∪{Ф}) ≠ ∅ and S0 ∩ (∪{Ф}) ≠ ∅; 
system H31 is a system Н3, such that (∪P) ∩ (∪F) = ∅;  
system H32 is a system Н3, such that S0 ∩ (∪F) = ∅;  
system H33 is a system Н3, such that (∪P) ∩ (∪F) ≠ ∅ and S0 ∩ (∪F) ≠ ∅ (here (∪P) and (∪F) stand for the 
union of the sets of facts being added and removed, respectively, over the entire set of the rules of system H3). 
 

4 Limit States of Dynamic Rule-Based Systems 
Let us give a few rather simple statements without proof: 
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Statement 1. The limit state of system Н1 equals S0 ∪ (∪{P}). 
Statement 2. The limit state of system Н21 equals (S0 / (∪{Ф})) ∪ (∪{P}).  
Statement 3. The limit state of system Н31 equals (S0 / (∪F)) ∪ (∪ P). 
Statement 4. In systems Н22, H23, Н32, Н33 stabilization of states never occurs, as a matter of fact, but every 
state of every one of these systems lies in the set S0 ∪ (∪{P}) — for systems Н22 and H23 or the  
set S0 ∪ (∪ P) — for systems Н32 and Н33.  
Statement 5. The trajectories of systems Н22, H23, Н32 or Н33, with t 
large enough, look as shown by diagram 1, where for Н22 and Н32 for 
all i: Si0 ⊆ Si1.  
It is appropriate to call such trajectories limit trajectories.  

5. Structure of the Set of Limit States  
Let us represent the structure of the set of limit states as set inclusion 
diagrams. The arrow pointing from a smaller set to a larger one plays 
the role of the inclusion relation. We also assume that all facts to be 
added and removed of all the systems under consideration belong to 
set X. Then it is evident enough that the following diagram 2 holds for 
systems Н1, Н21 and Н22:  
Let now systems Н31, Н32 and Н33 be such that to each rule of 
system Н31 a rule of system Н32 is related in such a way that for each 
rule П(Н31) of system Н31 there is such a rule П(Н32) in system Н32 
that С(Н31) = С(Н32), P(Н31) = P(Н32), and the inverse holds true 
(where С and Р are the applicability conditions and the sets of facts to 
be added of systems Н31 and Н32, respectively). Then, if system Н33 
is such that for each rule П(Н33) of system Н33 there is a rule П(Н31) 
in system Н31 and there is a rule П(Н32) in system Н32 such that 
С(Н31) = С(Н32) = С(Н33), P(Н31) = P(Н32) = P(Н33) and 
F(H31) ⊆ F(H33) and F(H32) ⊆ F(H33), then the following diagram 3 
holds: 
In the last two diagrams, the inclusions of Н22, H23, Н32 and Н33 in 
Н1 have a slightly different meaning from others: they mean inclusion 
in H1 of every state of the limit trajectory.  
Now let us come back to the postponed question of rule applicability. 
The situation is as follows: taking rule applicability into account may 
lead to some rules proving inapplicable on a certain step. It can be 
shown that if one sticks to the control strategy described in Section 1.2 then diagram 2 will remain the same. 
Diagram 3 will change its appearance to that of diagram 4: 

Conclusion 
In the paper, classes of dynamic systems have been identified from the point of view of their architecture. It has 
been shown that it is precisely the architectural specifics of such systems that determine their behaviour. The 
classes of systems with stabilizing limit states have been specified, and these states have been found. For 
systems with no stable limit states, the limit trajectories have been found (in case of a finite rule set).  
The structures of limit states and trajectories have been established based on the criterion of attainable set 
inclusion.  

 
Diagram 1 

 
Diagram 2 

 
Diagram 3 

 
Diagram 4 
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Abstract: The method of case-based reasoning for a solution of problems of real-time diagnostics and 
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Introduction 
The problem of human reasoning simulating (so called “common sense” reasoning) in artificial intelligence (AI) 
systems and especially in IDSS is very actual nowadays [1,2]. That is why special attention is turned to case-
based and analogous reasoning methods and models. The analogy and precedents (cases) can be used in 
various applications of AI and for solving various problems [3-7], e.g., for diagnostics and forecasting or for 
machine learning. AI experts model case-based reasoning by computers in order to develop more flexible models 
of search for solutions and learning.  
In this paper, we consider method of case-based reasoning for a solution of problems of real-time diagnostics and 
forecasting in RT IDSS [5]. These systems are usually characterized by strict constraints on the duration of the 
search for the solution. One should note that, when involving models of case-based and analogous reasoning in 
RT IDSS, it is necessary to take into account a number of the following requirements to systems of this kind [2]: 
− The necessity of obtaining a solution under time constraints defined by real controlled process; 


