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HYPER-RANDOM PHENOMENA: DEFINITION AND DESCRIPTION

Igor Gorban

Abstract: The paper is dedicated to the theory which describes physical phenomena in non-constant statistical
conditions. The theory is a new direction in probability theory and mathematical statistics that gives new
possibilities for presentation of physical world by hyper-random models. These models take into consideration the
changing of object’s properties, as well as uncertainty of statistical conditions.
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Introduction

The most of physical phenomena (electrical, electromagnetic, mechanical, acoustics, nuclear, and others) are an
indeterminate type. Usually, different stochastic methods are used to describe them. However, possibilities of
such methods are limited. There are serious problems, when the observation conditions are changed in space or
time and it is impossible to determine the statistical regularity, even by a large experimental sample size.

The changed conditions are met everywhere. It is impossible to image any real event, value, process or field in
absolutely fixed conditions. All mass measures are led in the variable conditions, controlled only partly.

The fixed statistical condition and the probability measure are linked together. When it is said the fixed (constant)
condition about it is meant that there is the probability measure for every samples of the researched set.

When a physical phenomenon is observed in more or less invariable condition, there is possibility to achieve the
statistical regular results. However, if the condition is changed in wide bounds, the statistical estimates are not
stable and it is impossible to obtain probable estimates.

To image a depth of the problem, let us apply to well known classic task with tossing a coin. The stability of head
or tail (A or B) essentially depends from the style of tossing [1]. In a fixed statistical condition there are stable
event frequencies P, (A), py(B), which tend to any probabilies P(A), P(B), when the number of

experiments N is tend to infinity. In case of variable condition, the frequencies p, (A) and p,(B) are
continuously changed. They oscillate in any intervals and not tend to any fixed probabilities.

The condition stability plays the important role in the probability theory that marked by a number of scientists,
beginning from Jakob Bernoulli [2]. R. von Mises proposed even to define [3] the probability conception on the
base of the event frequency in fixed condition.

It is not simple to determine correctly a probability measure for real physical phenomenon. This fact was marked
in many works, for instance, in the article [4].

Difficulties and often impossibility to use the probability theory stimulate the developing of new theories, such as
fuzzy logic [5], neural network [6], chaotic dynamical systems [7], and others. The new theory of hyper-random
phenomena, the bases of which are presented below, may be included to this list.

The aim of the paper is to review the original author’s researches published in articles [8 — 15] and generalized in
the monograph [16].

The theory is oriented to description of different type uncertainty, as a contingency, when the probability measure
exists, as another one, when the probability measure does not exist.

In modern mathematics, the random phenomena are defined by the probability field that assigned by the triad
(Q, 3T, P), where Q represents the set of the simple events @ € 2, J - the Borel field, P - the probability
measure of the subsets.

The hyper-random phenomena may be defined by the tetrad (€2, 3, G, P,) [9], where €2 and 3 are the set of
simple events and the Borel field (as in the case of the probability field), G is the set of the conditions g € G,
and Pg — the probability distributions for the condition ¢ .
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Any hyper-random phenomena (events, variables, functions) may be regarded as a set (family) of random
subsets. In this construction, every subset is associated with any fixed observation condition. The probability
measures are determined for the elements of each subset; however, the measures are not determined for the
subsets of the set.

Hyper-random Events and Variables

The hyper-random event A from the Borel field I cannot be described by any probability. However, the event
A/ g under the condiion g € G may be presented by the probability P, (A) = P(A/g) . This probability
oscillates when condition is changed. The range of the oscillation may be described by the supremum Pg (A)
and the infimum P, (A) of the event probability defined as

Ps(A)=supP(A/g), R (A)=infP(A/g).

geG

In the constant condition ( g = const ) these bounds are congruent and the hyper-random event degenerates to
the random one with the probability P (A) = P (A) =P, (A).

The bounds P (A), P, (A) are half-measures. There has been obtained the expressions that are similar to the
formulas, describing the product and the addition rules, the Bayes' and other theorems of the probability theory.
To describe the scalar hyper-random variable X a number of the characteristics have been proposed. They are
similar to the probability characteristics of a random variable. The main of them are the supremum F(X) and
the infimum F, (X) bounds of the distribution function and also the probability density functions fg(X) and

f, (X) of these bounds. They are determined by the following expressions:
Fo(X)=supP{X <x/g}, Fl(x)zingP{X <x/g},
geG ge
dF (%) dF, (x)
fo(x)=—2—=, f (x)=———=,
s(X) ™ 1 (X) o

where P{X <x/ g} is the probability of the inequality X < X for the condition ¢ .

It has been found that the bounds of the distribution function and the probability density functions of the bounds
for hyper-random variable have the same particularities as according characteristics for a random variable and in

addition Fg(X) > F, (X).

Among the bounds of the distribution function there is a zone of
the ambiguity (fig. 1). For a random variable X its width
AF(X) = Fg(X) = F,(X) equals to zero for all X . If the

supremum F(X) of the distribution function is tend for all X to

unit and the infimum F, (X) - to zero, zone of the ambiguity is

tend to maximum. In this case, the hyper-random variable
approaches to a chaos one.

0 X
To describe the hyper-random variable, the characteristics similar >

to random variable ones, may be used. They are the bound's  Fig. 1. The bounds of the distribution function
crude and the central moments determined for the hyper-random  and the zone of the ambiguity (the black-out part)
variable X on the base of the bound’s expectation

M; [0(X)], M, [@(X)] of the function ¢(X):

M, [0(¥)] = [ 00T (0dx, M, [o(X)]= [ o(0f, (x)dx.
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In particular, the bound’s means m,, m,, are mg =M [X], m, =M, [X]. For the real hyper-random

variable X the bound's variance D, , D,, are D, =M, [(X —mSX)ZJ, D, =M, [(X —~ m,x)zj.

I x

The bound’s crude moments are determined by the expressions mg, =M [XV] m,., =M, [XV} and the

bound’s central moments — by the ones pg,, =Mg [(X —mSX)V], W =M, [(X —m,X)V], where v is the

order of the moment.

To describe the hyper-random variables other type characteristics may be used too. They are supremum and
infimum of the crude moments and the same bounds of the central moments. These characteristics are
determined on the base of the expectation of the function (X /g):

M.[p(X /g)]=sup [ o(x/@)f (x/@)dx, Mi[p(X/g)]=inf [ p(x/g)f(x/g)dx,
geG * &

where f(x/ Q) is the probability density function in condition g .

In particular, for the hyper-random variable X the supremum m and the infimum m, of the mean are
m,=M,[X], m,=M;[X], and the supremum D, and the infimum D, of the variance are
D, =M[(X _mx/g)z]a D,=M;[(X —m

)*], where m_,_ represents the mean of the random variable

x/g g

X /g . The crude moment’s bounds m,,, and m, are described by the expressions m, =M, [XV],
My, =M; [XV] , and the central moment's bounds p,, and p,, - by the following ones
Msxv:Ms[(X _mx/g)v]l “ixv:Mi[(X _mx/g)v]'

In general, the operators M [-], M, [+] differ from the operators M [-], M, [-] and the bound’s moments

differ from the moment’s bounds, although in some particular cases they may be expressed by each other, for
instance, when the distribution functions F(Xx/ @) for different conditions g have not interception points. Then,

if the variance D, ,, is raised with raising the mean m, ,, (“a” type distribution) there are the following equalities:

DSX = D Dlx = D

IX?

g
mg, =m,, m,=m

IX 7

if the variance D, , is reduced with raising the mean m,

Dlx = Dix'

SX ! sx !

9

(“b” type distribution) there are the equalities: mg, =m,, m, =mg, Dy, = D,

The results were generalized to complex X and vector X hyper-random variables, to real X (t), complex
X (t), and vector X (t) functions.

Hyper-random Functions

The scalar hyper-random process X (t) has been presented as a family of the random processes X (t)/g
determined for a set conditions g € G . The process described by the supremum F (X;t) and the infimum
F, (X;t) of the distribution function, probability density functions fg (X;t), f,(X;t) of these bounds, the
bound’s moments Mg, (t) , M, (), tee (), W) and the moment's bounds m,(f) , m, (),
Hoo (1), W (T), where V=(v,,...,v ) is the order vector of the moment, L is the measure of the

distribution. These characteristics are described by expressions that are similar to ones for hyper-random
variable:
F (%) =sup P{X (L) < X, X(t) <X /9}, F (X)) = ing P{X(t) < X,.... X(t)) <X _/0},
ge

geG
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L L
L (%E) = 66F (xt)’ (%) = 0"F (X%;1)
X;...OX_ OX,...OX_

mg, (1) = M [X ()] = T xfs(xtdx,  m,, (1) =M, [X(1)] = T xf, (x;t)dx,

Mg, (oot = MDX () X D] = [ [0 F (e, X5t )X X

(t,....t) =M, [X"(t,)... X" (t)]= jjx1 X (K Xt )X, X

—0

m

Ixvy...v

B, v (Gseeest) = M[(X () = Mg (£))™ (X (8) = Mg, (E))™ ],
B, (G €)= MG TOXCG ) = My (8)) ™ (X (ED) =My, (80))™ ],

Mg, (1) = M[X (D], m, (1) = M;[X (D],
tent) = MIX Y (). XN @)L My, (G t) = MIXY (). X (@),

IXvy.

Ho.. v (Lo t) = MEICX () — mx/g(t))v‘ (X () =m0 )™ ],

Hig, v (Gt ) = MIOX () =My g ()™ (OX(E) — My (8)) ™ ]
The bound'’s correlation functions and the bound’s covariance functions are
K5x(t1’t2) = Ms[x(t1)x (tz)]s le(tlﬂtz) = M| [X(tl)x(tz)];

Rs, (1, 1,) = Mg[(X () —mg, (£ (X (t,) — Mg, (1,))],

Rlx(tl’tz) = M| [(X (tl) - mlx(tl))(x (tz) - mlx(tz))]
and the correlation function’s bounds and covariance function’s bounds are
Ko (0, 6) =M X)X ()], K (t,5) =M [X({)X({,)],

Rox (45 t) = M[(X (1) = my o (4 DCX (L) =My (L)),
Rix(tl’tz) = Mi[(x(tl)_ mx/g(tl))(x (tz)_ mx/g (tz))]

m

sxvln.vL(

Stationary and Ergodic Hyper-random Functions

It has been found that some hyper-random functions have special stationary and ergodic properties. A function
X (1) has been called a stationary hyper-random one if the bound’s mean do not depend from time and bound’s

correlation functions depend only from time interval T=1t, —t;: K, (t,,t,) = Ky (1), K, (t,,t,) =K, ().
A function X(t) has been called stationary hyper-random one for all conditions if the mean

(t) =m,, ) and the correlation function

(t)= _[ xf (x;t/g)dx does not depend from time t (m g

x/g x/g

Kot = _[ _[ X%, F(X, %,5t,t, / g)dxdx,

—00 —00

depends only from the interval T and the condition g: K, (t,t,) =K, (7).
The bound’s correlation functions K (1), K, (t) are determined by bound’s spectral density S, (),
(f) that linked each other by the following expressions:

|XX

Se (F)= I K (1) exp(—j2afr)dr, S, (f)= T K, (1) exp(—j2nfr)dr,
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Kai(9)= [ Son(Dexp(2afdf, K, (1) = [ S, (Fexp(i2nfoydf,

where f is a frequency.
The spectral density's bounds are determined by expressions S, (f)=supS, ,(f) ,
geG

(f),where S . (f) is the spectral density for condition g :

Xx/g XX/g

S, (f)=infS
geG

Serg (1) = [ Kyg(exp(=j2nfr)de, K,y (1) = [ S, (F)exp(i2afr)df .

For two hyper-random functions X (t), Y (t) stationary linked each other the bound’s correlation functions are
determined by the following expressions:

Koy (1) = [ Seq (F)exp(i2afi)df , Ky, ()= [ S, (f)exp(j2nfoydf,

where SSXy(f), S

Ixy

(f) are the bound’s spectral density: SSXy(f): I Ky (1) exp(—j2nfr)de |

Sy (f)= T Ky (1) exp(—j2nfr)dr.

The spectral density’s bounds are Ssxy( f)=sup Sxy/g (), Sixy( f)= ing Sxy/g (), where Sxy/g (f) isthe
geG ge
spectral density for condition g ; Sxy o(F)= j K,y/q (1) exp(—j2nfr)de ,

Kayrg (T = .[ Sxy/g(f)exp(j2nfr)df :

It has been determined the particularities of these characteristics and introduced a number of new conceptions, in
particular hyper-random white noise.
Some hyper-random function X (t) may be presented as a set of the random functions determined on the

disjoint intervals T, =[Tg,T(g+1)) with longitude T on that the conditions are not changed
(g=0,%1,+2,...). Let X (t) is the part of the function X (t) according to interval T, and reduced to
interval [-T /2,T /2):

X)), if teTy,

0, if teT,.

The function Xg(t) in a fixed condition g =0,%1,%2,... is the random function determined on the interval

X, (t=T(g +O,5)):{

te[-T/2,T/2) . The set of these functions in uncertainty conditions is a hyper-random function
Y () ={X,1), g=0,%l,...}. A hyper-random function is any function @(Y(t,),...,Y(t )) too, where
t,....t, e[-T/2,T/2).

A hyper-random function X (t), that is stationary for all conditions and }1230 m,(T)=m,, has been called an

ergodic one. Here M, (T) is the sample mean:
T/2

M (1M 00 ()Y E = [ 000 (0,0, Y (G )

-T/2
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and m, =M[o(Y (t),...,Y (t_))] is the mean of the function (Y (t,),...,Y (t,)).
A hyperrandom ergodic function X(t) may be presented by the following serious:

X (1) =;inoloz X (t=T(g+0,5)).
g

When T — oo the mean’s bounds and the correlation and the covariance function’s bounds are described by
the following expressions:

1 1
m. =sup— | x, (t)dt, m_=inf— | x_(t)dt,
SéEETT[ ;O dt, M, lg‘leTT[ ;)

— 1 — .1
Ky () =sup- J X (1) %, (Odt, K, () =inf — J X (t+1) X, (Odt,
— 1 _ _
Ro, (9 =sup [D () =M, J0x; (0=, dt,
TQ
_ o1 _ _
Ry (1) = Héf?j[xg (t+1) -, I[%, (O -m,_,]dt,
TQ

where m, . :Tl [x®dt.
Tg

Hyper-random Models

Developed approaches give possibilities to model different types of real physical objects and their estimates
under uncertainty changing of object's properties and statistical observation conditions. It has been proposed
different measure models: determine — hyper-random, random — hyper-random, and hyper-random — hyper-
random ones, in that the objects are presented by determine, random, and hyper-random models and their
estimates — by hyper-random models.

In case of determine — hyper-random measure model, in the fixed condition g the accuracy of vector estimation

= % =2 . . =4 512 S

® of parameter 6 may be described by the expectation of error's square A§=M[‘® —O‘ /0,9d], where M
is expectation operator. For the indefinite condition the accuracy is characterized by the interval where the value
A7 may be situated. The bounds of this interval are A2, =min[Ag,A]], A7 =max[A;,A]] where

=y 412 o = . -2 S
A =M,[|® —9‘ 0], A; :M,[‘® —6‘ /8] are the bound’s quadratic estimate.

The accuracy of point estimation may be characterized by bounds of quadratic estimate:

AgzsupM[‘c?)*—ér/&g], A?:gelgM[‘é*—é'r/é,g].

geG

In scalar case the volumes A;, A7 and A7, A} may be presentedas A; =o; +&5,, A’ =0} +¢;, and

2 2, .2 2 . 2, .2 2 . 2
A =sglelg[csg+so/g] : A, =1gl’elg[(59+80/g] where Cs =M{(® —ms) /GJ ,

* * 2
;=M (@ -m )2 /0 | are the variances of error bounds, 6> =M| (@ —m_. ) /0,q | is the error
I | | g 0'/g

variances for conditon g, €5, =(mg—0), €,,=(m, —0) are the systematic errors for estimation
distribution bounds, and €,,, = (m,. p —0) is the systematic error for condition g (fig. 2).
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F(G*/O,g)
F.(0/0) // / )
"o 0 -6 4 F0/0)
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Fig 2. The fan of distribution functions F (8°/0,g) (thin curves) for different conditions ¢
and supremum F¢ (0°/0) and the infimum F, (07/0) bounds of the distribution function (bold curves)

To characterize the error A=@® —0 of scalar parameter 0 and it's estimate ©® the intervals
[e5, —Kos, €,,+ko,] and [ms —kog, m, +ko, ] may be used correspondently, where 6, o, are the bound’s

error standard deviation, and Kk is the constant (fig. 2). If conditional distributions of random values ®" /9, g

are not penetrates and the variance D, is raised or reduced with rising the mean m,,, the last interval is

[¢] x/g )
determined by error mean’s bounds m,, m; and error standard deviation’s bounds o, o; . For “a” type
distribution it may be presented as [m,—ko,, m +ko.] and for “b” type distribution - as

[m, —ko,, m +ko,].

A hyper-random estimate O of fixed parameter 0 was called consistent one if it converged in probability to this

parameter under all conditions g € G : &lirn P{@* —é‘ > a/@,g} =0 VgeG, where N is a sample

size for every condition g and € > 0.

The necessary condition, that the hyper-random estimate is a consistent type, is that it degenerates to random
estimate when N — oo, So, estimates are not consistent if they stay hyper-random type when N — 0.

It was made a hypothesis (hyper-random hypothesis) that all real physical phenomena are existed in continuously
changed statistic conditions and therefore all physical phenomena, usually considered as a random type, really
are the hyper-random type. This particularity exists not only in case of finite but infinite interval observation. It is
followed from this that all real estimates are not consistent and it is impossible to achieve infinitely large accuracy
in any conditions.

The bounds of error's square expectation A7, A’ formed on the base of sample X size N and bounds
D, LG)*/GJ, D, L@"/GJ of estimate’s variance DLG)*/e,gJ are described by the inequalities

2 2
Os Oe
2 * 0/ -1 2 * : 0/ -1
ASZDSLG) /GJZSQE.IGD (H 869] INig |0 A ZD{G) /GJZIQIEl(f; [1+ 669] Invg |

where J,, - Fisher intrinsic accuracy for random value ®°/0,9:

- 2 5 N
T, =M dln £, (X /6,9) _ ml@ 1an(2</6,9) ,
o0 o0
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f\(X/0,9) - probability density function of sample X /0, g.

The bound’s quadratic estimate A2, Af and the bound’s variance D g L@"/OJ, D, L@”/OJ are defined by
inequalities

2
1+7ag'0
) , o0
A}=D, |00 >

- b

- \2 S 2
Oln f, (X/0 Oln f . (X/0
w200 Qe

2
)
A} =D |0"/0 >

- b

were fq (X/0), f,, (X/0) are bound's probability density function of sample X /6.

Analogues results were obtained for hyper-random — hyper-random measure model too.

On the base of hyper-random hypothesis was shown that in any case accuracy of any real physical
measurements is limited, all real estimates are not consistent ones, and therefore all real physical phenomena
are hyper-random type.

Processing of Hyper-random Signals

Developed body of mathematics may be effectively used for signal processing. The example illustrating such
possibilities presents below.

Let us look the measure process of the level noise in the production area when there is a lot of production
equipment which time to time switch on and switch off and therefore the noise condition is changed in widely
boundaries. The measurement is done on the basis of the data obtained for a long time.

This task may be concretized by different manner. If the noise in fixed condition and the rule of changing
condition may be regarded as random processes, the task becomes a classic one that consists of estimation of a
random variable or some random variables. To solve this task it is requested to know the distribution functions
type or at least have information that such distributions exist.

If it is impossible to propose, the changing conditions may be described by any distribution, the task is a hyper-
random type. In this case, the recorded data is a sample from a general population of the hyper-random function
X(1).

By the processing of this data it is possible to obtain estimates of different characteristics. The image of the
recorded data and estimates of some characteristics give the fig. 3 — 4. It has been proposed that the process is
an ergodic type.

300

2504 |1

200/ |1

150 l
. B
1Oy
‘ | 73 |
0 il P T M‘M A
N [ y Mg e ¥ Lt Wl

o 1000 2000 3000 4000 ¢

Fig. 3. Current noise level in the production area (solid ling),  Fig- 4. The estimates of the distribution functions F"(x/g)
estimates of the bounds of the expected values m_,, m; (solid lines), the estimates of the bounds of the distribution

(straight solid bold lines), and the bounds of the standard ~ function F¢'(x), F(x) (solid bold lines), and the estimate
deviations m;, +c, , m; *o, (dashed lines). of the distribution function F(x) calculated in the
hypothesis that the data are random type (bold dashed line).

100 150 200 250 v

It is followed from the figures that presented parameters and functions give a lot of useful information that is
essentially more informative than characteristics usually used for describing of random processes.
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Conclusion

1. Any hyper-random phenomena (events, variables, functions) may be regarded as a set (family) of random
subsets. In this construction, every subset is associated with any fixed observation condition. The probability
measures are determined for the elements of each subset; however, the measures are not determined for the
subsets of the set.

2. Hyper-random variables and functions may be described by the supremum and the infimum bounds of the
distribution function. Among the bounds of the distribution function there is a zone of the ambiguity. Random and
chaotic phenomena are the degenerate hyper-random phenomena.

3. In addition to the bounds of the distribution function, the main characteristics describe hyper-random variables
and functions are bound’s crude and the central moments and also crude and the central moment’s bounds. They
are, in particular, bound’s mean, bound’s variance and also mean’s bounds variance’s bounds and so on.

4. Estimations of hyper-random variables and functions were researched. It was paid attention to all real
statistical conditions were continuously changed. Therefore all real physical phenomena usually regard as
random tapes, in really, are hyper-random tapes. This particularity occurs not only in case of finite but also in
case of infinite interval observations. It is follows from this that all estimations of real variables and functions are
not consistent and so it is impossible to achieve infinite physical measurement accuracy in any real conditions.
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