
International Journal "Information Theories & Applications" Vol.15 / 2008

218

SIMULATION-BASED APPROACH TO VERIFICATION OF
LOGICAL DESCRIPTIONS WITH FUNCTIONAL INDETERMINACY

Liudmila Cheremisinova, Dmitry Novikov

Abstract: A verification task of proving the equivalence of two descriptions of the same device is examined for
the case, when one of the descriptions is partially defined. In this case, the verification task is reduced to
checking out whether logical descriptions are equivalent on the domain of the incompletely defined one.
Simulation-based approach to solving this task for different vector forms of description representations is
proposed. Fast Boolean computations over Boolean and ternary vectors having big sizes underlie the offered
methods.

Keywords: design automation, verification, Boolean computations, simulation.

ACM Classification Keywords: B.6.2 [Logic Design]: Reliability and Testing; G.4 [Mathematical Software]:
Verification; I.6.8 [Simulation and Modeling]: Types of Simulation – Parallel

Introduction
In a typical design project more than half of the efforts go not into designing but into verifying that the design is
correct. In this process the design is checked against the specification to ensure that every requirement of the
specification is satisfied by its implementation. The objective of formal verification is to prove behaviour
equivalence of two descriptions representing different design stages of the same device. The task is well studied,
if both descriptions are completely specified and are given as structural representations. This case is reduced to
checking on whether two combinational circuits are equivalent. Efficient methods for equivalence checking were
proposed (see [1 – 4] for example).
In the paper, the verification task is examined for a more general case, when one (initial) of logical descriptions is
not completely specified. The case usually occurs on early stages of designing complex devices when
assignments to primary inputs of designed device exist which will never arise during normal mode of the device
usage. Thus when hardware implementing this device its outputs in response of these inputs may be arbitrary
defined. The initial logic description of a verifiable combinational device is considered as a system of partially
defined Boolean functions.
We are focusing on a case, when the combinational structure obtained in the process of device decomposition is
a multi-block structure. Each block of the structure is described by a system of completely defined Boolean
functions. The task of proving equivalence of two logical descriptions is transformed for this case into a task of
checking out whether the resulting description which is defined functional completely is an extension of the initial
one having functional indeterminacy; i.e. equivalence of logical descriptions is tested on the domain of the initial
system of partially defined Boolean functions.
Different vector forms of representation of partially defined Boolean functions are considered, such as tuples and
intervals of the Boolean space. Simulation-based approach to solving the verification task for different vector
forms of description representations is proposed. The offered methods focusing on the mentioned forms of
representation of Boolean functions are based on fast Boolean computations over Boolean and ternary vectors
having big sizes.

Representation of a system of partially defined Boolean functions
In the paper we consider the case, when the first of the descriptions is a system F = { f1(X), f2(X), …, fm(X) } (X = {x1,
x2, …, xn}) of partially defined Boolean functions. Two cases of representing the system F are considered below:
1) on tuples (or patterns) of values of Boolean variables from X, i.e. complete Boolean assignments to the
variables of X;

International Journal "Information Theories & Applications" Vol.15 / 2008

219

2) on intervals (or cubes) of values of Boolean variables from X, i.e. incomplete Boolean assignments to the
variables of X.
In the first case, a partially defined Boolean function fi(X) ∈ F is specified by a pair of sets Mfi1 and Mfi0 that are on
and off sets of the function fi and consist of n-tuples (b1, b2,…, bn) ∈ Bn (bi ∈ B = {0,1}) of values of Boolean
variables from X = {x1, x2, …, xn} on which the function takes values 1 and 0 correspondingly. The value of the
function is not defined (takes don’t care value “–”) on all other n-tuples that are neither in Mfi1 nor in Mfi0. In this
paper, a case is considered when the system F is weakly defined, i.e. the cardinality of its domain M =

)(0

1

1
ii f

m

i
f MM ∪

=
U is greatly less the cardinality of the whole Boolean space Bn, i.e. |M| << 2n.

Such a system F can be represented by a pair of matrices B and T (Fig. 1,a) having the same number l of rows

as the cardinality of the set M =)(0

1

1
fi

m

i
fi MM ∪

=
U . The Boolean matrix B contains as its rows all n-tuples from

the set M and the ternary matrix T specifies the values of the functions on these n-tuples. A value given on the
cross of the i-th column and the j-th row of the matrix T is used to point out the value of the function fi(X) on the
j-th tuple of M. The value is “1” or “0”, if the function fi(X) is defined on the corresponding n-tuple, and it is “–”
(don’t care) otherwise. Matrices В and T have n and m columns respectively.

 x1 x2 x3 x4 x5 f1 f2 f3 x1 x2 x3 x4 x5 f1 f2 f3

 0 1 0 1 0 – 1 0 1 0 1 0 – – 0 – – 1
 0 0 0 1 1 1 0 – 2 0 0 0 1 1 – 1 1 2
 1 1 0 0 0 1 – 0 3 1 1 – 0 0 1 – 0 3
B= 1 1 1 1 1 T= – 0 1 4 U= 1 1 1 – 1 T= 1 0 – 4
 0 0 1 0 1 0 – – 5 0 – 1 0 1 0 – 0 5
 1 0 0 1 1 0 1 1 6 1 0 0 1 1 1 1 – 6
 1 0 1 1 0 – 0 0 7 1 – 1 1 0 – 0 0 7
 1 0 0 0 1 0 – 1 8 1 0 0 0 – 1 1 – 8

 a) b)

Fig. 1. Systems of partially defined Boolean functions represented: a) on tuples; b) on intervals

In the second case, a partially defined Boolean function fi(X) is specified by a pair of sets Ufi1 and Ufi0 of intervals
that represent on and off sets of the function correspondingly. An interval generally specifies more than one tuple.
More precisely an interval of the rank k consists of a set of 2n–k n-tuples, taking into account that the rank of an
interval is the number of the variables of X, having values 0 or 1. An interval represents a subcube in the Boolean
space Bn and fixes the values of only k variables. The system F can be represented in these case by a pair of
ternary matrices U and T of the same cardinality (Fig. 1,b): the matrix U contains as its rows intervals of the set

U =)(0

1

1
fi

m

i
fi UU ∪

=
U and the matrix T specifies the values of the functions of F on the intervals of U as follows. A

value given on the cross of the i-th column and the j-th row of the matrix T is used to point out the value of the
function fi(X) on the j-th interval of U. The value is “1” or “0”, if the function is defined on all the n-tuples of the j-th
interval, and it is don’t care otherwise.
Representation of a function by the interval form has the following distinctive features. Intervals ui, uj ∈ U can
intersect each other (in contrast to a representation by the tuple form). The value “–” of an element tij of the matrix
T means that either the value of the function fj can be not specified (is don’t care) on the whole interval ui or the
function fj does not take the same definite value (1 or 0) on the whole interval ui, i.e. there exist at least two
n-tuples belonging to the interval ui on which the function fj has different values from the set {1, 0, –}. Thus, the
value “–” of the component tij of the matrix T does not always mean that the value of the function fj is not specified
in the whole interval ui (from such a viewpoint, that the value of fj can be specified arbitrarily when it is
implemented at the design step). So don’t care value of the function fj points only out that it can take different
values inside of the interval ui.

International Journal "Information Theories & Applications" Vol.15 / 2008

220

Transforming a representation of a multi-block structure
Each block of a multi-block structure S is a multi-output one (as in Fig. 1, 2) and is specified by a system of
disjunctive normal forms (DNFs). The system of DNFs is represented by a pair of matrices: ternary and Boolean.
The rows of the first one specify elementary conjunctions. The component on the cross of the i-th row and the j-th
column of the Boolean matrix is equal 1, if the j-th DNF includes the i-th conjunction. The set of primary input
variables of the structure S is the same as the set X of arguments of the system F. Each of m functions yi(X)
implemented by the structure S must be an extension of the corresponding function fi(X) from F. A structure S
implements a system F of partially defined functions if and only if for each fi(X) ∈ F and the corresponding yi(X)
that is the i-th output of the structure S the next two relations hold:

Mfi1 ⊆ Myi1 and Mfi0 ⊆ Myi0, (1)

i. e. the values of fi and yi must be the same in the domain 01
ii ff MM ∪ of the function fi(X).

a)

b)

Fig. 2. A three-block structures implementing systems of Boolean functions shown: a) in Fig. 1,a; b) in Fig. 1,b

Each block realizing a system of disjunctive normal forms can be considered as a three-level multi-output
combinational circuit. Its first level consists of invertors which are used to invert those primary input variables of
the block, which are represented in the inverse form at least in one conjunction. The second level is formed by
multi-input AND gates implementing conjunctions, and the last (third) level is composed by multi-input OR gates.
AND gates are specified in a natural way by the intervals from M. For example the interval 1 –0 1 – 0 corresponds
to the conjunction x1⎯x3 x4⎯x6 implemented by 4-input AND gate and two invertors fed upon variables x3 and x6.
Let us number gates inside of blocks of the multi-block structure and blocks themselves in a topological order, i.e.
in such a way that any connection between gates will connect an output of a gate having a smaller number to an
input of a gate having a bigger number. It should be pointed out that the necessary and sufficient condition for
making the ordering is absence of feedbacks in the structure. The condition holds for each intrablock structure,
and we assume that the structure itself satisfies the condition.
As the result the multi-block structure can be considered as a multi-output combinational circuit C which consists of
invertors, AND and OR gates. Let us assign internal variables zi to outputs of all the elements of C, marking out
those of them that are used to implement m Boolean functions yj(X) (primary outputs). A method proposed below
can be extended for nets consisting of any other elements implementing symmetric logic operations ϕ (z1, z2, …, zk).

Solving the verification task for the tuple based representation
An idea of the proposed method for checking out whether a system F of partially defined Boolean functions is
implemented by a multi-block structure S is to simulate a combinatorial circuit C corresponding to the structure on
the domain of the system F. The system F is implemented by the structure S, if for each n-tuple bj ∈ В of values
assigned to the variables from X the equality fi(bj) = yi(bj) holds for all i for which the value fi(bj) is defined (i.e. is

International Journal "Information Theories & Applications" Vol.15 / 2008

221

equal to 0 or 1). In other words, the vector f(bj) being the j-th row of the matrix T must cover the vector y(bj)
consisting of values generated by primary outputs of the circuit C under assignment bj to its primary inputs.
A ternary (or binary) vector a is covered by a ternary vector b of the same size, if for all components of bi which
are equal to 1 or 0 the equality bi = ai holds.
Thus according to condition (1) we are interested in values of functions yi on n-tuples bj from the set M
represented by rows of the matrix В.
An idea of parallel binary simulation [5] is used. The combinational circuit C is simulated under all possible inputs
simultaneously, i.e. all tuples from the set M are examined at the same time. When parallel simulation of the
circuit is performed under all l n-tuples from M at the same time, a state of each node of the circuit (corresponding
to a primary input or output of a gate) is represented by a Boolean vector. The latter has the size l and specifies
the values of the same variable in all l tuples.
Thus, each Boolean vector represents states of a corresponding node for all l considered assignments to primary
inputs of the simulated circuit, and the union of the i-th components of all the vectors describes the state of all
nodes of the circuit for the i-th assignment to primary inputs.
At the beginning of the simulation, the ordered set of n Boolean vectors having the size l is taken; they
correspond to the columns of the matrix B. Then gates of the circuit C are simulated in the predefined topological
order. Let a gate of the circuit implement a function ϕi (z1i, z2i, …, zki). As each argument zji is related to a Boolean
vector zji having been computed already, the simulation is reduced to computation of the operation ϕ i over
Boolean vectors z1i, z2i, …, zki in the bitwise style. The result of the simulation is a new Boolean vector zi of the
same size l.
As soon as the last gate of the circuit has been simulated, value assignments to the primary outputs of the circuit
C for all assignments to the primary inputs belonging to the domain M of the system F are found. At that each
output function yi of the circuit has a definite value (0 or 1) for each assignment used to the primary inputs, in
particular for those assignments, for which corresponding function fi ∈ F has a definite value as well.
Thus, we need to check the orthogonality of the values of the functions yi and fi on the domain M = Mfi1 ∪ Mfi0.
This is reduced to checking out whether the following pairs of vectors are orthogonal: the ternary vector ti

corresponding to the i-th column of the matrix T and the Boolean vector zip corresponding to the primary output yi
of the circuit. The multi-block structure S implements the system F, if all these pairs of the vectors are not
orthogonal. Otherwise, the block responsible for violating the implementing condition can be found by back
traversal of the combinational circuit C.
To demonstrate the method proposed let us check out that the system of partially defined Boolean functions
shown in Fig. 1,a is implemented by the three-block structure depicted in Fig. 2,a. A sequence of Boolean vectors
generated by parallel simulation of the circuit C simultaneously for the whole domain of the system F is shown
below. Boolean vectors representing values of circuit nodes are accompanied with operations performed over the
vectors corresponding to their arguments. Here the variable corresponding to the i-th output of AND gate of j-th
block of the structure is denoted by ki.j and Boolean vectors representing states of primary outputs of the structure
C are printed in bold.
Inputs. 0 0 1 1 0 1 1 1 x1
 1 0 1 1 0 0 0 0 x2
 0 0 0 1 1 0 1 0 x3
 1 1 0 1 0 1 1 0 x4
 0 1 0 1 1 1 0 1 x5
Block 1. 1 1 0 0 1 0 0 0 x1
 0 1 0 0 1 1 1 1 x2
 1 1 1 0 0 1 0 1 x3
 1 0 0 0 0 0 0 0 k1,1 = x1 ∧ x2 ∧⎯x3
 0 0 1 1 0 0 0 0 k2,1 = x1 ∧ x2
 0 1 0 0 0 0 0 0 k3,1 = x1 ∧⎯x2 ∧⎯x3
 1 0 1 1 0 0 0 0 z1 = k1,1 ∨ k2,1
 0 1 1 1 0 0 0 0 z2 = k2,1 ∨ k3,1

Block 2. 0 0 1 0 1 0 0 1 x4
 0 0 1 0 0 0 0 1 k1,2 =⎯x3 ∧⎯x4
 0 1 0 1 0 1 0 0 k2,2 = x4 ∧ x5
 0 1 0 0 0 1 0 1 k3,2 =⎯x3 ∧ x5

 0 1 1 1 0 1 0 1 z3 = k1,2 ∨ k2,2
 0 1 0 1 0 1 0 1 y3 = k2,1 ∨ k3,1
Block 3. 0 1 0 0 1 1 1 1 z1
 1 0 0 0 1 1 1 1 z2
 0 1 1 1 0 0 0 0 k1,3 = z2 ∧ z3
 1 0 0 0 0 0 0 0 k2,3 = z1 ∧ z2
 0 0 0 0 0 1 0 1 k3,3 =⎯z1 ∧ z2 ∧ z3
 1 1 1 1 0 0 0 0 y1 = k1,3 ∨ k2,3
 1 0 0 0 0 1 0 1 y2 = k2,3 ∨ k3,3

International Journal "Information Theories & Applications" Vol.15 / 2008

222

When comparing pairs, including ternary vector representing values of functions fi ∈ F and Boolean vector
derived under simulation for the corresponding primary output yi, we see that for all pairs the second one is
covered by the first:

f1: – 1 1 – 0 0 – 0 f2: 1 0 – 0 – 1 0 – f3: 0 – 0 1 – 1 0 1
y1: 1 1 1 1 0 0 0 0 y2: 1 0 0 0 0 1 0 1 y3: 0 1 0 1 0 1 0 1

The example demonstrates as the considered task is reduced to Boolean computations over vectors (sequences
of bits) having the same (but arbitrary) size.

Solving the verification task for the interval based representation
In this case, the verification task can be solved by one of the following ways: 1) by unfolding intervals of the
domain of the system into sets of tuples, i.e. by reducing the task to the case considered above (when a system
of partially defined Boolean functions is in a tuple based form); 2) by solving the task directly by using the interval
based representation. The first way can be used, when the number of intervals of the set M having ranks less
than n is not big and these ranks are close to n. In this case, an n-tuple based representation of the domain of a
given system of partially defined Boolean functions will be not much bigger than an interval based representation
given. The second way can be used, when the number of intervals of the set M having ranks less than n is big
and/or these ranks are much less than n. In this case, unfolding intervals could be impossible at practice. Further
we discuss this second way.
As well as earlier we will perform parallel simulation of the circuit C, in the discussed case the simulation will be
carried out on intervals given as rows of the matrix U. Now during circuit simulation, a state of every node
(including those corresponding to primary inputs) of the circuit is represented by a ternary vector. Thus, each
ternary vector represents states of the corresponding node for all l considered partial assignments to primary
inputs (specified by intervals from M) of the simulated circuit, and the union of the i-th components of all the state
vectors describes the state of all nodes of the circuit for the i-th partial assignment to primary inputs (defined by
the i-th interval of M). In this case, the don’t care value of the i-th component of a state vector of the j-th node
means only that a function implemented by the node can have different values for different n-tuples of the i-th
interval of M.
At the beginning of the simulation, the ordered set of n of ternary vectors having the size l is taken. The vectors
represent states of n primary inputs and correspond to the columns of the matrix U. Then gates of the circuit C
are simulated in the predefined topological order. Let a gate implementing the function ϕ i (z1i, z2i, …, zki) is
simulated. As for each its argument zji a ternary vector zji having been computed already corresponds to, the
simulation of the gate is reduced to performing the logic operation ϕi over ternary vectors z1i, z2i, …, zki in the
bitwise style. The result of the simulation is a new ternary vector zi of the same size l. A definition of basic
operations over ternary variables and vectors is given bellow (all possible combinations of two ternary values are
considered and don’t care is interpreted as uncertainty):

 a: 0 0 0 – – – 1 1 1
 b: 0 – 1 0 – 1 0 – 1
⎯a: 1 1 1 – – – 0 0 0

a ∨ b: 0 – 1 – – 1 1 1 1
a ∧ b: 0 0 0 0 – – 0 – 1

After the simulation process is over, it is necessary to check whether the system F of functions is implemented by
the multi-block structure S. This checking can be time consuming. As soon as the last gate of the circuit has been
simulated the following pairs of vectors are compared: the ternary vector tp (p = 1, 2,…, m) corresponding to the
p-th column of the matrix T (the column of values of the function fp ∈ F) and the ternary vector zip corresponding
to the primary output yp of the circuit C. The following three cases are possible:
1. Vectors tp and zip are orthogonal in some component. Hence, the circuit C does not implement the function fp.
2. The vector tp covers the vector zip, i.e. values of all definite (1 or 0) components of the vector tp are the same
as the values of the corresponding components of zip. In this case, the circuit C implements the function fp.

International Journal "Information Theories & Applications" Vol.15 / 2008

223

3. The value of some j-th component (corresponding to the interval uj of the matrix U) of the vector zip is don’t
care, while the value of the corresponding component of the vector tp is equal 1 or 0. In this case, there exists no
unambiguous answer whether the circuit C implements the function fp or does not.
In the third case, an additional analysis is needed to detect the reason of distinction of the values of the j-th
components of the vectors zip and tp. The simplest way is to simulate the circuit C once more on all tuples of the
interval uj of the matrix U. A more refined method is based on-the-fly analysis of the simulation process. If the
output zq of a gate of the circuit C gets don’t care value, the interval corresponding to the value assignment to the
inputs of the gate is to be decomposed into subintervals, in which the output zq gets a definite value. This will help
us to prevent propagation of indeterminacy during the simulation. For example, if zq = x1 x3 x4 x6, and
computations are to be performed for the interval ui = 1 0 – 1 – –, resulting in zq(ui) = –, then the interval is
decomposed into three following ones: ui1 = 1 0 1 1 – 1, : ui2 = 1 0 0 1 – –, ui3 = 1 0 – 1 – 0. For these
subintervals, zq takes definite values: zq(ui1) = 1, zq(ui2) = zq(ui3) = 0.
To demonstrate the method proposed let us check out that the system shown in Fig. 1,b of partially defined
Boolean functions is implemented by a three-block structure depicted in Fig. 2,b. A sequence of ternary vectors
generated by parallel simulation of the circuit C for intervals of the matrix U is shown below.
Inputs. 0 0 1 1 0 1 1 1 x1
 1 0 1 1 – 0 – 0 x2
 0 0 – 1 1 0 1 0 x3
 – 1 0 – 0 1 1 0 x4
 – 1 0 1 1 1 0 – x5
Block 1. 1 1 0 0 1 0 0 0 x1
 0 1 0 0 – 1 – 1 x2
 1 1 – 0 0 1 0 1 x3
 1 0 0 0 – 0 0 0 k1,1 =⎯x1 ∧ x2
 0 0 1 1 0 0 – 0 k2,1 = x1 ∧ x2
 0 1 0 0 0 1 0 1 k3,1 =⎯x2 ∧⎯x3
 1 0 1 1 – 0 – 0 z1 = k1,1 ∨ k2,1
 1 1 0 0 – 1 0 1 z2 = k1,1 ∨ k3,1

Block 2. – 0 1 – 1 0 0 1 x4
 – 1 0 – 0 1 0 0 k1,2 = x4 ∧ x5
 – 1 0 0 0 1 0 – k2,2 =⎯x3 ∧ x5
 – 0 – 0 0 0 0 1 k3,2 =⎯x3 ∧⎯x4
 – 1 – – 0 1 0 1 z3 = k1,2 ∨ k3,2
 – 1 0 – 0 1 0 – y3 = k1,2 ∨ k2,2
Block 3. 0 1 0 0 – 1 – 1 z1
 0 0 1 1 – 0 1 0 z2
 0 0 1 1 – 0 – 0 k1,3 = z1 ∧⎯z2
 – 1 0 0 0 1 0 1 k2,3 = z2 ∧ z3
 0 1 0 0 0 1 0 1 k3,3 =⎯z1 ∧ z3
 0 1 1 1 – 1 – 1 y1 = k1,3 ∨ k3,3
 – 1 0 0 0 1 0 1 y2 = k2,3 ∨ k3,3

When comparing pairs, each of which includes ternary vector representing value of a function fi ∈ F and Boolean
vector derived under simulation for the corresponding primary output yi, we see that for all pairs but one the
second of the vectors is covered by the first one:

f1: 0 – 1 1 0 1 – 1 f2: – 1 – 0 – 1 0 1 f3: – 1 0 – 0 – 0 –
y1: 0 1 1 1 – 1 – 1 y2: – 1 0 0 0 1 0 1 y3: – 1 0 – 0 1 0 –

The only exception is in the 5-th component of f1 for which the case 3 takes place. By splitting the interval 0–101
into two tuples and simulating the structure on them we find out y1(00101) = y2(01101) = 0, i.e. y1 implements f1.
In order to avoid unnecessary decompositions of intervals during simulation, it makes sense to orthogonalize the
initial system of partially defined Boolean functions. A system is orthogonalized, if any interval ui of the domain M
has the following property: every function of the system F has the same value (1, 0, –) for all tuples forming ui . In
this case, the value “–” of a function means that the value of this function is undefined for all tuples of the interval
and may be arbitrarily redefined during implementing the system by circuit.

Orthogonalization of a system of partially defined Boolean functions
In [6, 7], an orthogonalization task is examined for a system of completely defined Boolean functions F = {f1(X),
f2(X), …, fm(X)} which is represented by a pair of matrices: ternary and Boolean. Rows of the ternary matrix
represent intervals. If an element in the Boolean matrix takes the value 1, then the corresponding function takes
the value 1 for the corresponding interval. The task is to find a set of pair-wisely orthogonal completely defined
Boolean functions ϕ1(X), ϕ2(X), …, ϕr(X) such that any function fi ∈ F can be represented as disjunction of some
pair-wisely orthogonal functions ϕj (j = 1, 2, …, r), and the number r of different functions ϕi must be minimal.
Functions ϕj and ϕk are orthogonal, if the condition ϕj ∧ ϕk = 0 holds for any value assignment to variables of X. At
that, if functions ϕi are all reciprocally orthogonal, the intervals for which different functions ϕj and ϕk are defined
don’t intersect each other, however intervals for which the same function is defined may intersect each other.

International Journal "Information Theories & Applications" Vol.15 / 2008

224

In a similar manner as for systems of completely defined Boolean functions the orthogonalization task can be
formulated for a system of partially defined Boolean functions F = {f1(X), f2(X), …, fm(X)}, when each fi ∈ F is
represented by a pair of functions fi1 и fi0. The on set of the function fi1 is the union of intervals for which fi takes
the value 1. The on set of the function fi0 is the union of intervals for which fi takes value 0. In the parts of the
Boolean space that are complementary to on and off sets, the functions fi1 и fi0 take the value 0. In this way, we
come to the system F’ of completely defined Boolean functions having twice more functions than the initial
system F of partially defined Boolean functions. Now, the orthogonalization task can be solved for F’ by some
method from [6,7], and then a backward transition of F’ into the orthogonalized system F can be performed.
A distinguishing feature of an orthogonalized system of partially defined Boolean functions is that any two
intervals for which a function of the system takes different values are not intersect. In this case, the don’t care
value of a function of the system for any interval means that the function is not defined on all tuples of the interval,
and a definite value of the function can be arbitrary assigned under a synthesis procedure.

Conclusion
Methods proposed in the paper are focused on systems of weakly defined Boolean functions which have much
smaller domains than Boolean spaces in which the systems are specified. The methods can be used for verifying
complex logical descriptions.
The task of checking out whether a multi-block structure implements a system of partially defined Boolean
functions is reduced to Boolean computations over ternary and Boolean vectors having an arbitrary size. Methods
can be implemented effectively by using classes CBV [8] и CTM [9] developed for performing operations over
Boolean and ternary vectors of arbitrary sizes in C++. Computational complexity of the methods linearly depends
on the total number of nodes of the simulated combinational circuit (more precisely, on the total number of inputs
of all gates of the circuit) and on the number of bytes (or 32-bit words) used to represent an l-bit vector.

Bibliography
[1] Drechsler R. (Ed.). Advanced Formal Verification. – Kluwer Academic Publishers, 2004. – 260 p.
[2] Mishchenko A., Chatterjee S., Brayton R., Een N. Improvements to Combinational Equivalence Checking // Proc.

ICCAD’06, Nov. 5–9, 2006. – San Jose, CA, 2006.
[3] Ganai M.K., Zhang L., Ashar P., Gupta A., Malik S. Combining strengths of circuit-based and CNF-based algorithms for a

high-performance SAT solver // Proc. ACM/IEEE Design Automation Conference, 2002 – P. 747–750.
[4] Goldberg E., Novikov Y. BerkMin: A fast and robust SAT-Solver // Proc. European Design and Test Conference, 2002. –

P. 142–149.
[5] Zakrevskii A.D., Pottosin U.V. Cheremisinova L.D. Foundations of logic design. Book 3. Design of logic control devices. –

Minsk: National Academy of Sciences of Belarus, United Institute of Informatics Problems of National Academy of
Sciences of Belarus, 2006. – 252 p. (in Russian).

[6] Kuznetzov O.P. Orthogonal systems of Boolean functions and their application to analysis and synthesis of logical nets //
Automation and remote control, 1970. – N 10, – P. 117–128 (in Russian).

[7] Pottosin U.V., Shestakov E.A. Orthogonalization of systems of completely defined Boolean functions // Logic design. –
Minsk: The Institute of Engineering Cybernetics of National Academy of Sciences of Belarus. – 2000. – Vol. 5. – P. 107–
115 (in Russian).

[8] Vasilkova I.V., Romanov V.I. Boolean vectors and matrices in C++ // Logic design. – Minsk: The Institute of Engineering
Cybernetics of National Academy of Sciences of Belarus. – 1997. – Vol. 2. – P. 150–158 (in Russian).

[9] Cheremisionov D.I., Cheremisinova L.D. Ternary vectors and matrices in C++ // Logic design. – Minsk: The Institute of
Engineering Cybernetics of National Academy of Sciences of Belarus. – 1998. – Vol. 3. – P. 146–156 (in Russian).

Authors' Information
Liudmila Cheremisinova – Doctor of Sciences, Principal researcher, The United Institute of Informatics
Problems of National Academy of Sciences of Belarus, Surganov St., 6, Minsk–220012, Belarus;
e-mail: cld@newman.bas-net.by
Dmitry Novikov – Post-graduate student, The United Institute of Informatics Problems of National Academy of
Sciences of Belarus, Surganov St., 6, Minsk–220012, Belarus; e-mail: yakov_nov@tut.by

