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RECOGNIZING DECOMPOSITION OF A PARTIAL BOOLEAN FUNCTION 

Arkadij Zakrevskij 

Abstract: A hard combinatorial problem is investigated which has useful application in design of discrete devices: 
the two-block decomposition of a partial Boolean function. The key task is regarded: finding such a weak partition 
on the set of arguments, at which the considered function can be decomposed. Solving that task is essentially 
speeded up by the way of preliminary discovering traces of the sought-for partition. Efficient combinatorial 
operations are used by that, based on parallel execution of operations above adjacent units in the Boolean space 

Keywords: Partial Boolean function, non-disjunctive decomposition, weak partition, search by traces, recognition 
of solution.  

Setting the problem 
One of the major problems of the theory of Boolean functions is the problem of functional decomposition, which 
has useful application in design of logic circuits. Enough to say, that its positive solution can significantly simplify 
the logic circuits implementation of regarded Boolean functions (for example, at logical synthesis in the basis of 
LUTs, look up tables). It was set originally in papers [Povarov, 1954], [Ashenhurst, 1959] and [Curtis,1962] as the 
following problem of disjoint two-block sequential decomposition. Suppose a Boolean function f (x) = f (x1, x2, …, 
xn) is given, and it is required to represent it as a composition f (x) = g (h (u), v) of two functions g and h of 
smaller number of variables constituting subsets u and v. By that x = u ∪ v and u ∩ v = ∅.  
A necessary and sufficient condition of existing of such a composition was found. Let F (u × v) be the Boolean 
matrix presenting all values of function f for different values of vector x in such a way, that its rows correspond to 
values of vector u, and its column correspond to values of vector v. The condition is formulated as follows: the 
rows of that matrix can have not more than two different values.  
The more general, non-disjoint decomposition was investigated afterwards, at which the given function f (x) 
should be represented as a composition  

f (x) = g (h (u, w), w, v), 
where three subsets of arguments are connected with the relations  x = u ∪ w ∪ v, u ∩ w = u ∩ v = w ∩ v =∅, 
and the couple of sets u and v is regarded as a weak partition on set x and is designated u/v. Both types of 
decomposition are illustrated by Fig. 1. 
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Fig  1. Examples of sequential two-block decomposition of Boolean function f (x) = f (x1, x2, …, x7): 
a) disjoint, b) non-disjoint  (u = (x1, x2, x3), w = (x4, x5) and v = (x6, x7)). 

 

To solve the formulated task it is necessary, first of all, to find such a weak partition u/v, at which the variables of 
set u enter in number of arguments of function h only, and variables of v − only in number of arguments of 
function g. The conditions |u| > 1 and |v| > 0 should be fulfilled also, otherwise the composition will appear trivial 
(exists always). Let's name this partition appropriate, and the function f (x) − separable, or decomposable at this 
partition. 
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The finding of appropriate partition is a difficult task, for which solution an effective combinatorial algorithm was 
offered [Zakrevskij, 2007a], in case of a completely specified Boolean function. This task becomes even more 
complicated, when the function f (x) appears to be partial, being defined not on all sets of values of variables from 
set x. Just this case is considered below. 

Recognizing solution 
It] was shown [Zakrevskij, 2007a], that the probability of decomposability of a random completely defined Boolean 
function fast tends to zero with growth of number of variables n, so already at n > 9 such a function, most likely, is 
not decomposable. In case of partial functions this probability arises with growth of uncertainty, however even in 
this case it remains small enough, as will be shown below.  
Taking into account the given remark, let's assume, that it is known beforehand, that the considered function f (x) 
is separable, being obtained as a result of composition g (h (u, w), w, v) of some two Boolean functions g and h 
on a weak partition u/v on the set of arguments x. It is required to detect (to recognize) this partition, after which 
the obtaining of functions g and h is not a difficult task.  
A method of checking a partial Boolean function for decomposability at some given weak partition was offered in 
[Zakrevskij, 2007b]. An arbitrary Boolean function f(x) = f(x1, x2, …, xn) was represented there by a “long” Boolean 
vector f = (f0, f1, …, f2n-1), which 2n components present the values of the function corresponding to values of 
vector x enumerated in conventional order. For example, vector f = 10011011 represents the function f(x1, x2, x3) 
taking value 1 on values 000, 011, 100, 110, 111 of vector x and value 0 on values 001, 010, 101. The more 
convenient for visual perception matrix form of vector f is used below in examples: vector f is divided into parts 
corresponding to different sets of values of several left components of vector x, and these parts play the role of 
matrix rows. 
For example, presenting a Boolean function f(x1, x2, x3, x4, x5, x6) vector  

f  =  0110110101011110001001000001011011001010011100010100010111010011 

accepts the following matrix shape, where by thick lines are marked columns and rows where corresponding 
arguments of the function take value 1: 
 

           --------     3 
       ----    ----    4 
     --  --  --  --   5 
    - - - - - - - -  6 
   0110110101011110    
 | 0010010000010110    
|  1100101001110001    
|| 0100010111010011    
1 2 

 

In the case, when the appropriate partition is not known a priori, it is possible to organize its search, sorting out 
different weak partitions and checking the function on decomposability at them. However, such a way is rather 
labor-consuming, as the number of different weak partitions on the set of variables is approximated from above 
by value 3n, fast growing with increase of number of variables n.  
In the present paper the method of search for appropriate partition u/v by its traces is suggested, which 
sufficiently cuts down the number of analyzed partitions. Originally, it was designed for completely specified 
Boolean functions [Zakrevskij, 2007a], but here it is extended on the case of partial Boolean functions.  

Search by traces 
The method of decomposition suggested below is based on the following reasons which key moments are given 
in the form of assertions. They were formulated before for the case of completely specified Boolean functions 
[Zakrevskij, 2007a], but remain valid when partial Boolean functions are considered.  
Suppose two partitions u/v and u*/v* are given, such that u* ⊆ u and v* ⊆ v. Let's speak, that partition u*/v* 
submits to partition u/v, and call it a trace of u/v, 
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Assertion 1. If a partial Boolean function f(x) is decomposable at partition u/v, it is decomposable as well at 
partition u*/v*.  
Corollary. If the function f(x) is not decomposable at partition u*/v*, it is not decomposable also at partition u/v. 
Let's assume |u| = k and |v| = m. Partition with k = 2 and m = 1 we shall term as a triad. It is the simplest of 
partitions, at which some nontrivial decomposition can take place. 
Assertion 2. A partial Boolean function is decomposable, if and only if it is decomposable if only at one of triads. 
Therefore the search for the partition u/v may be started with the search of its traces on the set of triads, i.e. with 
looking for an appropriate triad. The needed checking of triads can be fulfilled fast enough, as their number is not 
large, being significantly less than the number of all weak partitions. 

Assertion 3. The number of triads is equal to Cn
2 (n – 2) = 

2
21 ))(( −− nnn . 

Suppose that some appropriate triad (xp, xq)/xr. is detected. If it submits to the required partition u/v, we can find 
the latter, having put for the beginning u = (xp, xq) and v = (xr), and then sequentially expanding these two sets, 
sorting out remaining variables and testing them on possibility of inclusion into set u or v.  
By reviewing some concrete triad u/v the Boolean space M = {0, 1}n, where the partial Boolean function f(x) is 
presented, is divided into 2n-3 intervals corresponding to different values of vector w = x / (u ∪ v). On each of 
them the corresponding coefficient fi of disjunctive decomposition of the function by variables of set w is given. It 
represents some partial Boolean function of variables xp, xq, xr. As a matter of convenience of subsequent 
reasoning we shall present each of these coefficients by a ternary matrix size 4×2, which rows correspond to 
values of the two-component vector u, and columns – to values of the one-component vector v. Let's designate 
this matrix Ti and name it a fragment. Thus, the 2n-element ternary matrix representing function f(x), is 
decomposed into 2n-3 eight-element fragments specifying functions fi (xp, xq, xr). 
A concrete example of such splitting into eight fragments for a partial Boolean function f(x1, x2, x3, x4, x5, x6) and 
triad (x1, x2)/ x6 is shown below.  
 

            -----------    3 
      -----       -----   4 
   --    --    --    --  5 
 -  -  -  -  -  -  -  - 6  

     10 0- 1- 11 0- 10 -1 10   
  |  -1 00 -1 1- 00 -1 1- -0 
 |   0- 1- -0 10 10 0- 11 -1 
 ||  1- 01 11 -1 00 10 -0 11 
 1 2 

 

Assertion 4. The function f(x) can be decomposed at triad (xp, xq)/xr, if and only if each of the coefficients 
fi (xp, xq, xr) is decomposable also at the same triad. 
It follows from here, that the probability of decomposability of function f(x) at a concrete triad is equal to γ k, where 
k is the number of coefficients equal 2n-3 and γ − the probability of decomposability of one coefficient. In the case 
of a completely specified Boolean function the last probability is approximated by the value 1/3, and with growth 
of uncertainty decreases. Nevertheless, the probability of decomposability of the function f(x) quickly decreases 
with growth of the number of its arguments. 

Checking triads for fitness 
So, a triad is appropriate, if each fragment of the corresponding splitting of the ternary matrix is suitable. That 
means, the partial function f(x) can be completely defined in such a way, that each fragment will contain no more 
than two types of Boolean rows (each having equal rows). In other words, a fragment is suitable, if it contains no 
more than two classes of compatible rows. Remind that two ternary rows are compatible, i.e. they could become 
equal by changing values “−“of some components for 1 or 0, if they are not orthogonal. It follows from here, that 
the fragment is suitable, if the graph of orthogonality of its rows is bichromatic [Harary, 1969].  
Let us offer the following way of checking fragments with the purpose of detection of suitable ones among them. 
Any fragment contains four rows, therefore the graph of orthogonality has four vertices. It is bichromatic, if it has 
no cycle of length three. Let's select arbitrary two different vertices. If such a cycle exists, then one of the selected 
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vertices will belong to it. Therefore, it is enough to test each of these two vertices on belonging to a cycle of 
length three. If such belonging will not be revealed, graph is bichromatic, and the triad is suitable. 
Necessary and sufficient condition of entering a vertex, i.e. corresponding row, in a cycle of length three could be 
formulated as follows: among rows orthogonal to the given one, there exist mutually orthogonal rows. 
For example, the left of the shown below fragments appears to be suitable, and the right − no, as there is a cycle 
of length three, composed by three last rows: each of them is orthogonal to the other two (look at Fig. 2). 
 

 10    -1   1   
 -1    00   2   
 0-    1-   3   
 01    01   4 
 

1     2           1     2 
 
 

3     4           3     4 
 

Fig. 2. Graphs of orthogonality of rows of fragments 
 

It is not difficult to check any fragment separately, but the problem is how to check all 2|w| fragments for the 
examined triad and how to find an appropriate partition fast enough. The next part of the paper is devoted to that 
problem.  

Basic operations in Boolean space 
A compact and effective set of basic combinatorial operations, which can greatly facilitate the program 
implementation of the regarded method of search for appropriate partitions, is described below. The parallelism of 
efficient operations over long Boolean vectors is laid into its foundation, and that essentially accelerates the 
fulfilled calculations.  
First, let us include into our set the two-place Boolean operations f ∨ g, f ∧ g, f ⊕ g, f ∼ g, f → g which are easily 
implemented as parallel component-wise operations over corresponding Boolean vectors. They are designated 
f ∨ g, f ∧ g (or, simpler, f g), f ⊕ g, f ∼ g, f → g.  
Second, we shall supplement them by some useful operations of interaction between adjacent (neighboring) 
components within the framework of one Boolean vector [Zakrevskij, 2007c]. 
Let's remind, that the function f(x) can be represented as Shannon disjunctive decomposition by an arbitrary 
variable xi   –   f(x) = ⎯xi fi 0 ∨ xi fi 1,  which coefficients fi 0 and fi 1 are Boolean functions obtained as a result of 
substitution of values 0 or 1 for variable xi 

Using vector representation of the function, we shall designate these operations of substitution accordingly 
through f - i and f + i. They are easily implemented in the Boolean space on couples of elements adjacent by the 
variable xi. When executing the operation f -i  both elements of the couple gain the value of the element defined 
by the condition xi = 0, at execution of the operation f + i – gain the value of the other element corresponding to 
value 1 of variable xi.  
Let's show examples of such operations, and also of their compositions: 
 

          f                  f-5              f-5-2 
           --------           --------           --------    3 
       ----    ----       ----    ----       ----    ----   4 
     --  --  --  --     --  --  --  --     --  --  --  --  5 
    - - - - - - - -    - - - - - - - -    - - - - - - - - 6 
   0110110101011110   0101111101011111   0101111101011111 
 | 0010010000010110   0000010100000101   0101111101011111 
|  1100101001110001   1111101001010000   1111101001010000 
|| 0100010111010011   0101010111110000   1111101001010000 
 
   1101110111101110   1010101000010001   0000000000110011 
 | 0100010001100110   0101010100110011   0000000000110011 
|  1010101000010001   1010101000010001   1100110011111111 
|| 0101010100110011   0101010100110011   1100110011111111 
1 2        f+4               f+4+1              f+6-4+2 
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By interaction of adjacent units there are implemented also the operation Invi f of inverting the function f at the 
variable xi (adjacent elements interchange their values), and so-called operations of symmetrization Si * f, in 
which both elements get value defined by the two-place operation *∈ { ∨ , ∧ , ⊕ , ∼ g, → } above their initial 
values [Zakrevskij, 1963]. As a result of these operations the function  f(x) = ⎯xi fi0 ∨ xi fi1 
is transformed correspondingly into functions  ⎯xi fi1 ∨ xi fi0 , ⎯xi (fi0 *  fi1) ∨ xi (fi0 *  fi1). 
Examples of these operations are shown below. 
 

          f                Inv3 f               S3∨ f 
     
           --------           --------           --------    3 
       ----    ----       ----    ----       ----    ----   4 
     --  --  --  --     --  --  --  --     --  --  --  --  5 
    - - - - - - - -    - - - - - - - -    - - - - - - - - 6 
   0110110101011110   0101111001101101   0111111101111111 
 | 0010010000010110   0001011000100100   0011011000110110 
|  1100101001110001   0111000111001010   1111101111111011 
|| 0100010111010011   1101001101000101   1101011111010111 
 
   0000110000001100   0011001100110011   0111111101111111 
 | 0000000000000000   0011001000110010   0111111101111111 
|  1100000000110000   1011101110111011   1111111111111111 
|| 0000000011000011   1001011010010110   1111111111111111 
1 2 
        S6∧ f               S3⊕ f              S3,2∨ f 

 

Here  S3,2
∨ f  means composition S3

∨ (S2
∨ f). 

Algorithm of checking triads 
The suggested way of checking triads is implemented by the following algorithm, which is remarkable by that it 
checks on fitness simultaneously all 2n-3 fragments generated by the given triad, and finds out by that if the triad is 
appropriate.  
The regarded function f(x) is represented by a couple of Boolean vectors f 0 and f 1, in first of which by 1s are 
marked the values 0 of the function and in the second - values 1. The splitting of space into fragments is fulfilled 
by the triad (xp, xq) / xr. 
To begin with, first rows of fragments are selected, which form together the initial coefficient f − of decomposition 
of the function f(x) by variables xp and xq (that coefficient corresponds to values xp = 0, xq = 0). The rows 
orthogonal to this row, are marked by value 1 in the corresponding parts of computed vector g, and their values 
are fixed by the couple of vectors h0 and h1, checked up further for orthogonality. Alike vectors f 0  и  f 1, they are 
Boolean vectors with 2n components.  

h 0 := (f 0 − p) − q     Getting the initial coefficient  f −   
h 1 := (f 1− p) − q                          
g := Sr

∨ (h 0f 1 ∨ h 1f 0)        Finding coefficients orthogonal to  f − 
h 0 := Su

∨ (f 0g)     Computing their intersection  
h 1 := Su

∨ (f 1g)  

If it turns out that  h 0 h 1 ≠ 0, the triad is accepted as not appropriate. In case if h 0 h 1 = 0 the final rows of 
fragments are checked, which constitute the final coefficient f + (corresponding to values xp = 1, xq = 1). 

h 0 := (f 0 + p) + q     Getting the final coefficient    f +   
h 1 := (f 1+ p) + q                        
g := Sr

∨ (h 0f 1 ∨ h 1f 0)        Finding coefficients orthogonal to  f + 
h 0 := Su

∨ (f 0g)     Computing their intersection 
h 1 := Su

∨ (f 1g)  
If h 0 h 1 ≠ 0, then the triad is not appropriate. On the other hand, if h 0 h 1 = 0, the triad is accepted as 
appropriate. 



International Journal "Information Theories & Applications" Vol.15 / 2008 
 

 

264

Example. Let’s return to regarding the partial Boolean function f(x1, x2, x3, x4, x5, x6), representing it by a couple of 
Boolean vectors (rolled up into matrices)  f 0 and f 1: 
 

             -----------    3 
       -----       -----   4 
    --    --    --    --  5 
  -  -  -  -  -  -  -  - 6 

     10 0- 0- 11 0- 10 -1 10   
  |  -1 10 -1 1- 00 -1 0- -0 
 |   0- -1 -0 00 10 0- 11 -1 
 ||  1- -0 11 -1 -0 10 -0 11 
1 2 
   01 10 10 00 10 01 00 01   f0  
   00 01 00 00 10 00 10 01 
   10 00 01 11 00 10 00 00 
   00 01 00 00 00 01 01 00 
 
   10 00 00 11 00 10 01 00   f1 
   01 10 01 10 00 01 00 00   
   00 01 00 00 10 00 11 01 
   10 00 11 01 00 10 00 01 

 

The check of the function for decomposability at triad  (x1, x2) / x6  is reduced to testing in parallel all of fragments 
for fitness. In the given example all of eight fragments are suitable, therefore the function can be decomposed at 
that triad. 
We shall illustrate that operation by the case of testing one of the fragments, third at the left, demonstrating initial 
values of appropriate components of the ternary vector f and of vectors obtained sequentially by the algorithm:  

f 0,  f 1,  h 0,  h 1,  h 0 f 1,  h 1 f 0,  g,  f 0 g,  f 1 g,  h 0  and  h 1. 
The check is carried out first on initial coefficient  f −, and then on finite coefficient  f +.  
 

f   f0  f1   h0  h1  h0f1 h1f0 g  f0g  f1g  h0  h1   
0-  10  00  10  00  00  00  00  00  00  00  11   Initial 
-1  00  01  10  00  00  00  00  00  00  00  11  coefficient 
-0  01  00  10  00  00  00  00  00  00  00  11    f- 

11  00  11  10  00  10  00  11  00  11  00  11 
                                                h0h1 = 0   
            00  11  00  10  11  10  00  11  00   Final 
            00  11  00  00  00  00  00  11  00  coefficient 
            00  11  00  01  11  01  00  11  00    f+ 

            00  11  00  00  00  00  00  11  00    
                                                h0h1 = 0  
The triad is appropriate  

Search for appropriate partition  
If the considered triad (p, q) / r has appeared suitable, it is possible to assume, that it is a trace of the sought-for 
appropriate partition. In this case the latter can be found by moving along the track generated from the found 
trace. By that the value of vector g obtained at the previous stage is used, and sets u and v are sequentially 
expanding, beginning with initial values u = (p, q) and v = (r). 
Expanding set v. Let's begin from set v. Sorting out sequentially all elements s from set x \ (u ∪ v), we shall 
discover among them such ones, at which inclusion in set v the partition u/v remains appropriate. With this 
purpose three operations are fulfilled for each element s: 
 e := Ss

∨ g 
 h 0 := Su

∨ (f 0e) 
 h 1 := Su

∨ (f 1e)  
and if  h 0 h 1 = 0, then s  is included into  v  by implementing operations 
 v := v ∪{s},  g := e. 
So the final value of set v is found. 
 

Expanding set u. The maximum expansion of set u is found similarly. If it is known, that the required partition u / v 
is strict (i. e. w = ∅), it is possible to put u = x / v  and, probably, to test the function for decomposability, as the 
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algorithm used is heuristic. Let's remark, however, that the probability of obtaining by this algorithm erroneous 
solution fast tends to zero with growth of the number of variables n.  
If the required partition could be non-strict, it is necessary to test all elements from initial value of set x \ (u ∪ v) 
for the possibility of including them into set u.  
Check of the immediate element s can be fulfilled by the following heuristic algorithm, which partly implements the 
procedure circumscribed in [Zakrevskij, 2007a]. The algorithm considers the initial coefficient f − of the function f 
decomposition by the current value of set u, finds orthogonal to it coefficients, checks them for compatibility and, 
in case of compatibility, includes element s in set u without further check.  
 e := u ∪ {s} 
 h 0 := f 0 – e 
 h 1 := f 1 – e 
 g := Sv

∨ (h 0f 1 ∨ h 1f 0) 
 h 0 := Su

∨ (f 0g) 
 h 1 := Su

∨ (f 1g) 
If  h 0 h 1 = 0, then  s  is included into  u by operation  u := e. 
In such a way the set u is found and, therefore, the whole partition u/v.  
Note, that the operation of looking for coefficient f −  is presented in this algorithm in abbreviated form, by 
expressions h 0 := f 0 – e  and  h 1 := f 1 – e, instead of more detailed  
  h 0 := (…((f 0 − e1) − e2) – …) – et, 
  h 1 := (…((f 1 − e1) − e2) – …) – et, 
where e = (e1, e2, …, et).  

Results of experiments 
To estimate the efficiency of suggested methods and algorithms and determine the area of their practical 
application, an experimental system was used based on principles described in [Zakrevskij, 2006a]. It includes a 
generator of a flow of random examples of initial data, which essentially supplements the well known and widely 
spread mechanism of Benchmarks, because it enables statistical investigation of regarded algorithms.  
The suggested heuristic algorithm was programmed in C++ and tested on computer (Pentium IV, 2.8 GHz) 
[Zakrevskij, 2006b]. In a series of experiments with completely defined Boolean functions the values n, k = |u|, 
m = |w| were set, a random partition u/v on the set x and functions g, h were generated, then function f(x) was 
calculated. After that the given algorithm was fulfilled, which found partition u/v for the function f(x), the number q 
of triads scanned by search for traces was fixed, and the total time t (in seconds) spent during search for the 
partition was measured.  
The obtained results are represented in the following table, which right part corresponds to splitting of the set of 
arguments x in three parts u, w and v, whenever possible the same size, and left part - in two: u and v. 
It should be noted that the table begins with n = 14, because t ≤ 0.00, if n ≤ 14.  
 

Table 1. Results of experiments over 15 examples  
with increasing number of variables n from 14 up to 28 

 

n k/m q t k/m q t
14 7/7 3 0.00 5/5 39 0.00 
15 8/7 2 0.00 5/5 78 0.02 
16 8/8 1 0.00 6/5 18 0.01 
17 9/8 11 0.02 6/6 34 0.05 
18 9/9 4 0.02 6/6 42 0.09 
19 10/9 3 0.03 7/6 39 0.17 
20 10/10 9 0.11 7/7 3 0.16 
21 11/10 1 0.11 7/7 3 0.39 
22 11/11 3 0.48 8/7 6 2.41 
23 12/11 9 2.17 8/8 16 7.05 
24 12/12 3 2.48 8/8 26 18.17 
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25 13/12 4 5.61 9/8 19 33.16 
26 13/13 4 11.64 9/9 3 52.11 
27 14/13 19 60.13 9/9 36 187.55 
28 14/14 19 1280.67 10/9 3 1585.03

 

As can be seen from the table, the regarded task of Boolean function decomposition is solved in less than one 
minute, when the number of arguments does not exceed 26. The amount of memory for representation of 
Boolean function f(x) grows quickly, reaching, for example, 228 = 268 435 456 bits for representation of one long 
Boolean vector, when n = 28. Because of the restrictions on the used operation memory that leads to an essential 
decrease of the calculation speed. 

Conclusion 
In this paper, the heuristic algorithm is offered for finding such weak two-block partition on the set of variables of a 
partial Boolean function, on which the function can be decomposed. The algorithm is effective, if there exists a 
good solution "hidden" in vector representation of the function of many variables. In this case the search of the 
partition is reduced to recognition of the latter.  
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