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ONTOLOGY VIEW ON AUTOMATA THEORY 

Sergey Krivoi, Lyudmila Matveyeva, Yelena Lukianova, Оlga Sedleckaya 

Abstract: The summary of automata theory ontology is presented in the paper. It is based on the following 
dependences: a type of an automaton – the language accepted by the automaton – applications. The given 
ontology does not claim to be exhaustive as automata theory is very extensive and it is a complicated problem to 
survey all its aspects within one article. Only the main properties of automata and their applications are 
considered. 

1. Introduction  
Correct design and verification of hardware and software systems are very important current problems. Design 
problem is difficult to formalize and consequently difficult to automatize; verification problem is hard as it 
accumulates a variety of different tasks engaged from adjacent scientific domains. One of such adjacent scientific 
domains is automata theory which is applied for partial solution of design and verification problems. Automata 
theory plays a crucial role particularly for reactive systems properties verification since such important problems 
as properties recognition, a definite state or a set of states reachability, and accepted language emptiness are 
decidable for most types of automata. 
The paper presents brief automata theory ontology based on the following dependences: an automaton – the 
language accepted by this automaton – applications. Only the main properties of automata and their 
applications are considered here due to limited size of the given paper. 

2. Finite Automata on Finite Words 
All the main problems in theory of finite automata working on finite words are already decided, so from this point 
of view the theory is complete. The main results received at present in this domain have an applied nature, i.e. 
methods of automata theory are used now for specified applied domains tasks solving. However, finite automata 
theory has exerted influence on further development of general automata theory. It is showed up via numerous 
variations of the finite automaton notion: finite automata over infinite words [3, 12], timed automata [2], hybrid 
automata [9], automata over trees [10], etc. 
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The notion of a finite automaton on finite words (finite sets of symbols) in finite alphabet is a basic notion on which 
ontology is built up. Three types of such automaton are in common use: Mealy automata, Moore automata, and 
X–automata (or automata without outputs). Let us define these types. 
 

Mealy Automata. Let X = {x, x,…, x } and Y = {y, y,…, y } be finite alphabets, i.e. finite sets of pair-wise different 
elements, which are named as symbols or signals. 
Definition 1. Mealy automaton is the 5-tuple (A, X, Y, f, g) such that A is a finite set of automaton states, X is a 
finite set called the input alphabet, Y is a finite set called the output alphabet, f : A ×  X →  A is a transition 
function, and g: A ×  X →Y is an output function. 
Usually, an automaton is denoted by a symbol of a set of its states, i.e. A = (A, X, Y, f, g). If f(a,x) = a', then it is 
said, that automaton A passes on to the state a' under the action of input signal x ∈  X or the signal x transfers 
the automaton A from the state a to the state a'. If g(a,x) = y, then it is said, that the automata A transforms input 
signal x∈X into output signal y∈Y being in the state a. 
An automaton operation is described in the following way. A signal (symbol) x∈X is given at the input of the 
automaton, then the automaton state is changed as a result in accordance with the current automaton state and 
its transition and output functions; and an output signal (symbol) y∈Y appeared at its output. A word (a sequence 
of output symbols) appears at an automaton output if a word (a sequence of input symbols) is given at its input 
too. One may consider in that case the automaton A as an alphabetical information transformer which maps 
semigroup F(X) words into the semigroup F(Y) words. One may consider the sequence of input signals as a 
function of the natural argument – discrete automaton time. This circumstance allows us to consider an 
automaton as a discrete dynamic system which changes its states in time under the action of internal and 
external factors. 
Automaton A is named initial, if a certain state a 0 is chosen (which is named initial (start) state) in the automaton 
set of states. It is considered that initial automaton is at initital state a 0  at initial point of time (before giving some 
word p ∈  F(X) at its input). 
Automaton A = (A, X, Y, f, g) is named finite if all three sets A, X, and Y are finite and — infinite if even one of 
them is infinite. 
An automaton is called complete or completely specified if its transition function and output function are 
completely specified and — partial if even one of these functions is partial.  
An automaton, which component f is not a function but is a certain relation (i.e. the condition of a transition 
univocacy is not carried out in that sort of automata), is called nondeterministic. If the relation f is the function then 
the automaton is called deterministic. Therefore, the state b is unambiguously found for deterministic automaton 
A with start state a 0 , when the automaton passes on in state b under the action of the word p∈F(X). But there 
may be several states of this kind in a nondeterministic automaton. It is clear that the class of Mealy 
nondeterministic automata is the subclass of the nondeterministic automata class. 
 

Moore Automata. Moore automaton presents the special case of Mealy automaton.  
Definition 2. The automaton (A, X, Y, f, g) is named Moore automaton if its output function g(a,x) can be 
expressed by means of a transition function f(a,x) via the eguation g(a,x) = h(f(a,x)), where h: A →  Y. The 
function h is named as an automaton marking function and its value h(a) on the state a is named as the mark of 
this state. 
Despite the fact that Moore automaton is the special case of Mealy automaton, Moore automata are studied 
separately in automata theory as far as in a number of cases their specific properties provide the opportunity to 
build more substantial theory then Moor automata one. 
 

X-automata. X-automaton is 4-tuple (A, X, f, F), but if X-automaton is initial, then it is 5-tuple (A, X, f, a 0 , F), 
where f: A ×  X →  A is the transition finction, F ⊆  A is a certain subset of the automaton states which elements 
are called final states and a 0 ∈  A is a start state of the automaton. 
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3. Brief Finite Automata Ontology  
Brief finite automata ontology is introduces in figure 1 which is presented in the form of a graph. Arcs of the graph 
link together different scientific domains which are sided with one or another automata theory or its applications. 
 

 

 
Figure 1 
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4. Finite Automata on Infinite Words  

Let X be a finite alphabet. ϖ -language is an arbitrary subset Xϖ of all infinite words in the alphabet X. A ϖ -
automaton is finite object for the acceptance of ϖ -languages over a certain alphabet X. Several types of a 
ϖ -automata exist. Büchi automata and Muller automata are the main of them. 

4.1. Büchi Automata and Muller Automata  
Definition 3. A Büchi automata is 5-tuple (A, X, f, A 0 , F), where X is a finite input alphabet, A is a set of the 
automaton states, A 0 ⊆  A is a set of start states, f ⊆  A×X×A is a set of arcs (a transition relation), and F ⊆  A 
a set of final states. The tuple (A, X, f, A 0 ) is called a transition table. So, a Büchi automaton is the extension of a 
finite state automaton to infinite inputs. It accepts an infinite input sequence, iff there exists a run of the 
automaton (in case of a deterministic automaton, there is exactly one possible run) which has infinitely many 
states in the set of final states. 
The automaton starts in one of the start states and if (s, x, s') ∈  f, then the automaton is able to change its state 
from s to s' by means of reading input symbol x ∈  X. One can say that r = s 0 x 1 s 1 x 2 s 2 x 3 … is the trace of the 
automathon A over the word σ  = x 1 x 2 x 3 … in the alphabet X, which joins s 0  ∈  A 0  and (s 1i− ,x i , s i ) ∈  f for 
all i ≥ 1. The set inf(r) for the trace r consists of the states s ∈  A such that s = s i  infinitely often, i ≥  0. The trace 
r of the automaton A on the word σ  ∈  Xϖ is called the accepting trace iff inf(r) ∩  F ≠ ∅ . In other words, the 
trace r is accepting trace iff a certain state from the set F is repeated infinitely ofter in the trace r. The language 
L(A) is called the language accepted by automaton A if it consists of the words σ  such that the automaton A has 
the trace r which accepts σ . 
ϖ -language is named regular ϖ -language if it is accepted by a certain Büchi automata. 
Let L(А) = {p∈  Xϖ | A accepts p} be theϖ -language which is accepted by a certain automaton A. If L = L(A) for 
a certan Büchi automaton, then one can say that the language L is Büchi accepted. Muller atomata are the 
generalization of Büchi automata relatively the set of final states. 
Definition 4. А Muller atomata over an alphabet X is 5-tuple A = (A, X, f, a 0 , F), where X is the finite alphabet, A 
is a finite set of states, a 0 ∈A is a start state, f ⊆  A×X×A is transition relation, F⊆ B(A) is a set of subsets of 
the set of final states. It is said, that an automaton trace σ  = s 0 x 1 s 1 x 2 s 2 x 3 …is effective, if certain of the trace 
states appear infinite of times and serve as states from the set F. Automaton A accepts the word p ∈  Xϖ , if the 
trace which corresponds to the word p is effective. ϖ -language L ⊆  X ϖ is named as accepted by Muller 
automaton, if it consists of all ϖ -words which this automaton accepts. 

4.2. Properties of Regular ϖ –languages  
All the results for ϖ –languages and ϖ -automata are presented in table 1. They mean that the operations are 
closed with respect to given classes of automata. 

Table 1 
Class of ϖ language Operations 

МА = ВА = DМА 
∪  

DВА 

union, intersection, complement 
 

union, intersection 

5. Timed Automata  
Let B be a set of clock variables which are nonnegative rational quantities D+. The set of timing constraints С(B) 
is defined as the following: 

a) all the elements, which belong to C(B), are inequalities and look like y ≺  c and c ≺  y, where ≺  
means < or ≤ , and c is nonnegative rational quantity (number); 
b) if φ  and ψ  belong to C(B), then φ  ∧ψ  ∈  C(B). 
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Let us notice, that if B includes k clocks, then every timing constraint defines some convex set of k-dimensional 
Euclidean space. Therefore, if two points satisfy timing constraint, then all the points which belong to the segment 
connecting these points also satisfy this timing constraint.  
Definition 5. Timed automaton (TA) А is 6-tuple (X, A, A 0 , B, I, T), where X is a finite alphabet TА, А is a finite 
set of states, A 0  ⊆  A is a set of start states, B is a set of clocks, I : A →  C(B) is the mapping of a set of states 
into timing constraints, which is named states invariants; T⊆ S ×X×C(B)×2 B ×A gives the set of transitions. 
Every 5-tuple (a, x, φ , λ , a') corresponds to the transition from the state a into the state a' marked with the 
symbol x ∈X. The constraint φ  defines the moment of time when this transition becomes possible and clock 
values from the set λ ∈B are nulled when this transition is occurred. That is, a transition may be taken only if the 
current values of the clocks satisfy the associated constraints. 

5.1. The Timed Automaton Model  
The transition graph T(B) = (X, V, V 0 , R) with infinite nodes number serves as the model of TА A. 
Every node from V corresponds to the pair (a, v) which consists of the state a ∈  A ans clock value v: B →  D+ 
(D+ — nonnegative rational quantities). The set of start nodes is the following: V 0  = {(a,v) : a ∈  A 0 ∧ ∀ y ∈  
B[v(y) = 0]}. 
It is necessary to introduce some notation for the definition of transitions in T(B). Let us define v[λ  = 0] as the 
value of clocks for λ ⊆ B, at that the values coincide with v for clocks from B \λ and all the clocks from λ  have 
the value 0. 
Let us define v+d for d∈D+ as the clock values v(y)+d which are taken for all clocks from y∈B, and the clock 
values v-d are defined similarly.  
It follows from the definitions above that there are two main types of TA transitions: 

- transition by delay d corresponds to defined time in case when the automaton is in some state а. At that it 
is written: (a, v){d} (a, v + d), where d∈D+, if for all 0 ≤  e ≤ d the invariant I(a) is true for v + e; 

- transition by action corresponds to running transition from the set T. In that case it is written: (a, v){x}(a', 
v'), where x ∈  X, in case if such transition (a, x, φ , λ , a') exists that v satisfies φ  and v' = v[λ = 0]. 

One can receive transition relation R for T(B) via joining a set of transitions by delay and a set of transitions by 
action. The notation (a,v)R(a', v') or (a, v){x}(a', v') means: such elements a" and v" exist, that (a, v){d} (a", v"){x} 
(a', v'), for some d ∈  D+ and x ∈  X. 

5.2. Timed Languages  
Let X = {x 1 ,…,x n } be an alphabet and R is the set of rational quantities. A time sequence τ = τ 1 τ 2 … is a 
infinite sequence of time values τ ∈  R with τ i  > 0, satisfying the following constraints: 
(1) Monotonicity: τ increases strictly monotonically; that is, τ i  > τ 1i+  for all i ≥ 1; 
(2) Progress: For every t ∈R, there is some i ≥ 1 such thatτ i  > t. 
A timed word over an alphabet X is a pair (σ , τ ), where σ = σ 1 σ 2 … is a infinite word over X and τ  is a 
time sequence. A timed language over X is a set of timed words over X. 
A timed word (σ , τ ) is named input word of an automaton; if this timed word is viewed as an input to an 
automaton, it presents the symbol σ i  at time τ i .  
Timed languages language-theoretic operations such as union, intersection, and complementation are defined 
the same way as for regular languages. In addition we define the Untime operation (for timed language L over X) 
which discards the time values associated with the symbols, that is, it considers the projection of a time trace 
(σ ,τ ) on the first component. That is, Untime(L) is ϖ -language which include all the words σ  such that 
(σ ,τ )∈L for some time sequence τ . Main results for languages and language operations are presented in 
table 2. 
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Table 2 
Timed languages class Operations 

ТМА = ТВА 
∪  

DТМА 
∪  

DТВА 

union, intersection 
 

union, intersection, complement 
 

union, intersection 

6. Hybrid Automata  
Hybrid automata generalize timed automata. A hybrid automaton (HА) is a dynamical system wih both discrete 
and continuous components. For example, an automobile engine whose fuel injection (continuous) is regulated 
by a microprocessor (discrete) is a hybrid system. HA provide a mathematical model for different real systems 
like digital computer systems that interact with analog environment in real time. Particularly, distributed processes 
with drifting clocks, real-time schedulers, and protocols for the control of manufacturing plants, vehicles, and 
robots would be modeled by means of HA. 
Two problems, that are central to the analysis of HA theory are: 

- the reachability problem and  
- ϖ -language emptiness problem (more general problem). 

Let us present here basic notions and main results of the HA theory. Let D 0≥  means the set of nonnegative real 
numbers: D 0≥  = {x ∈D | x ≥ 0}.  

Rectangular regions. Given a positive integer n > 0, n ∈N, a subset of D n is called a region. A bounded and 
closed region is compact. The region R ⊆  D n  is called rectangular if it is Cartesian product of n intervals 
(possibly unbounded), all of whose finite endpoints are rational. R i means the projection of R on i-th coordinate, 
so that R = R 1 ×  R 2 ×…×R n . The set of all rectangular regions in D n  is denoted R n . 
Definition 6. n-dimensional rectangular automaton (RA) A is 9-tuple A = (G, X, init, inv, flow, pre, post, jump, 
obs), where G = (V, E) – finite directed graph, X is finite observation alphabet, three vertex labeling functions 
init: V→R n , inv: V→R n , and flow: V→R n , and four edge labeling functions pre: E→R n , post: V→R n , 
jump: E→ 2 {1,2,..., }n , and obs: E→X.  
RA may have so-called ε -moves (empty transitions). n-dimensional RA withε  moves differs from RA presented 
above in that the function obs : E →  X ε , where X ε  = X ∪ {ε } augments the observation alphabet with the null 
observation ε ∉X. 
The function init defines the set of initial states of RA. When the discrete state begins at vertex v ∈V, the 
continuous state must begin in the initial region init(v).  
The functions pre, post, and jump constraint the behavior of the automaton state during edge steps. The edge 
e = (v, w) may be traversed only if the discrete state resides at vertex v and the continuous state lies in the region 
pre(v). For every i in the jump set jump(e), the i-th coordinate of the continuous state is nondeterministically 
assigned a new value in the interval post(e) i . For each i ∉  jump (e), the i-th coordinate of the continuous state is 
not changed and must lie in post (e) i .  

The observation function obs identifies every edge traversal with an observation from X or X ε . 
The invariant function inv and flow function flow constrain the behavior of the automaton state during time steps. 
While the discrete state resides at vertex v, the continuous state nondeterministically follows a smooth (C ∞ ) 
trajectory within the invariant region inv(v), whose first time derivative remains within the flow region flow(v). RА 
withε -moves may traverseε -edges during time steps. 
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If we replace rectangular regions with arbitrary linear regions in the definition ofRA, we obtain the linear hybrid 
automata (LHA). Thus RA are the subclass of LHA in which all defining regions are rectangular. 
Initialization and bounded nondeterminism. RА A is initialized if for every edge e=(v, w) of A, and every 
coordinate i ∈  [1,2,…,n] with flow(v) i≠  flow(w) i , we have i ∈  jump(e). 
It follows that whenever the i-th continuous coordinate of an initialized automaton changes its dymanics, as given 
by the flow function, then its value is nondeterministically reinitialized according to the post function. 
RA A has bounded nondeterminism if 
(1) for every vertex v ∈  V, the regions init(v) and flow(v) are bounded, and 
(2) for every edge e ∈  E, and every coordinate i ∈  [1,…,n] with i ∈  jump(e) the interval post(e) i  is bounded. 
Note that bounded nondeterminism does not imply finite branching. It ensures that the edge and time successors 
of a bounded region are bounded.  

7. Automata Applications for Systems Verification  
Finite-state automata are well used for modeling of concurrent and interacting reactive systems. This modeling 
imposes that either the set of an automaton states, or the symbols of its input alphabet represent the states of 
modeled system. Main advantage at that automata use for systems verification is the following: both the system 
model and its specification are presented equally. In that case, Kripke model is directly correlated with ϖ -
automaton (Büchi or Muller automaton), which all states are final, and the set of possible system behaviors is set 
by ϖ -language L(A), which is accepted by corresponding automaton A. At that, the algorithm exists which 
translates a temporal logic formula into ϖ -automaton. 
Let AP be a set of atomic propositions, then Kripke model (S, R, S 0 , f), where f : S →  2 AP , one may translate 
into the automaton A = (A ∪ a 0 , X, Q, a 0 , А ∪  a 0 ), which input alphabet is the powerset of the set of atomic 
propositions X = 2 AP . At that for every pare of states a, a' ∈  A relation Q includes the triple (a,x,a') iff (a,a') ∈  R 
and x = f(a'), in which connection (a 0 ,x,a) ∈  Q iff a 0  ∈  S 0  and x = f(a), where R – consequence relation in 
Kripke model.  

8. Examples of Some Properties and Their Specification  
Let us consider some hypothetical reactive system. The properties of such systems are divided into two classes:  

- safety properties, usually state that something bad never happens; 
- liveness properties, which state that something good eventually happens. 

Safety properties are usually expressed by means of the following temporal logic formula , ¬ p, where formula p 
expresses an unwanted event (a state) in a system.  
The example of safety property is mutual exclusion property:, (¬ p∨ ¬ q), where formulas p and q defines the 
states at which a system can never be at the same time. The example of liveness property is fairness property; it 
states that a system must some time answer received inquiry, so fairness is concerned with guaranteeing that 
processes get a chance to proceed. 
Let us extend this list of properties by some additional properties which belong to the class of liveness properties 
and are the following: 
- guarantee states, that some event occurs at least once, but its repetition is not guaranteed. This property is 
expressed by LPTL-formula as . p;  
- obligation states, that formula p must always be executed or formula q is executed in the same state as 
formula p. This property is expressed by LPTL-formula as , p∨  . q. obligation property can be obtained by 
disjunciton of safety and guarantee properties; 
- response states, that the event defined by formula p occurs infinitely often. This property is expressed by LPTL-
formula as , . p; 



International Journal "Information Theories & Applications" Vol.15 / 2008 
 

 

344

- persistence states, that the event defined by formula p occurs continuously from a certain point on. This 
property is expressed by LPTL-formula as . , p; 
- reactivity can be obtained by disjunciton of persistence and response properties. This property is expressed 
by LPTL-formula as . , p ∨  , . p; 
- unconditional fairness states, that eligible process eventually run or the event, which is defined by formula q, 
occurs infinitely often irrespective of property p. This property is expressed by LPTL-formula as , . p; 
- weak fairness states, if an activity is continually enabled (no temporary disabling) than it has to be executed 
infinitely often; or in other words, when formula p is true all the time, then formula q must be true infinitely often. 
This property is expressed by LPTL-formula as , p → , . q; 
- strong fairness states, if an activity is infinitely often enabled (not necessarily always) then it has to be 
executed infinitely often; or in other words, when formula p is true infinitely often, then formula q must be true 
infinitely often also. This property is expressed by LPTL-formula as , . р→  , . q. 
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