

International Journal "Information Theories & Applications" Vol.16 / 2009

2

International Journal
INFORMATION THEORIES & APPLICATIONS

Volume 16 / 2009, Number 1

Editor in chief: Krassimir Markov (Bulgaria)

International Editorial Staff

Chairman: Victor Gladun (Ukraine)

Adil Timofeev (Russia) Ilia Mitov (Bulgaria)
Aleksey Voloshin (Ukraine) Juan Castellanos (Spain)
Alexander Eremeev (Russia) Koen Vanhoof (Belgium)
Alexander Kleshchev (Russia) Levon Aslanyan (Armenia)
Alexander Palagin (Ukraine) Luis F. de Mingo (Spain)
Alfredo Milani (Italy) Nikolay Zagoruiko (Russia)
Anatoliy Krissilov (Ukraine) Peter Stanchev (Bulgaria)
Anatoliy Shevchenko (Ukraine) Rumyana Kirkova (Bulgaria)
Arkadij Zakrevskij (Belarus) Stefan Dodunekov (Bulgaria)
Avram Eskenazi (Bulgaria) Tatyana Gavrilova (Russia)
Boris Fedunov (Russia) Vasil Sgurev (Bulgaria)
Constantine Gaindric (Moldavia) Vitaliy Lozovskiy (Ukraine)
Eugenia Velikova-Bandova (Bulgaria) Vitaliy Velichko (Ukraine)
Galina Rybina (Russia) Vladimir Donchenko (Ukraine)
Gennady Lbov (Russia) Vladimir Jotsov (Bulgaria)
Georgi Gluhchev (Bulgaria) Vladimir Lovitskii (GB)

IJ ITA is official publisher of the scientific papers of the members of
the ITHEA® International Scientific Society

IJ ITA welcomes scientific papers connected with any information theory or its application.

IJ ITA rules for preparing the manuscripts are compulsory.
The rules for the papers for IJ ITA as well as the subscription fees are given on www.ithea.org .

The camera-ready copy of the paper should be received by http://ij.ithea.org.
Responsibility for papers published in IJ ITA belongs to authors.

General Sponsor of IJ ITA is the Consortium FOI Bulgaria (www.foibg.com).

International Journal “INFORMATION THEORIES & APPLICATIONS” Vol.16, Number 1, 2009

Printed in Bulgaria

Edited by the Institute of Information Theories and Applications FOI ITHEA®, Bulgaria,
in collaboration with the V.M.Glushkov Institute of Cybernetics of NAS, Ukraine,

and the Institute of Mathematics and Informatics, BAS, Bulgaria.

Publisher: ITHEA®
Sofia, 1000, P.O.B. 775, Bulgaria. www.ithea.org, e-mail: info@foibg.com

Copyright © 1993-2009 All rights reserved for the publisher and all authors.
® 1993-2009 "Information Theories and Applications" is a trademark of Krassimir Markov

ISSN 1310-0513 (printed) ISSN 1313-0463 (online) ISSN 1313-0498 (CD/DVD)

International Journal "Information Theories & Applications" Vol.16 / 2009

53

METHOD AND ALGORITHM FOR MINIMIZATION OF PROBABILISTIC AUTOMATA

Olga Siedlecka

Abstract: The theory of probabilistic automata is still evolving discipline of theory of information. As in classical
theory of automata, it might be a base for computations, can be exploited in design and verification of circuits
and algorithms, in lexical analyzers in compilers computers in future. Minimization of any type of automata gives
always saving in resources and time, and is important problem that has been analyzed for almost sixty years.
Different types of automata are used for modeling systems or machines with finite number of states.

In this article we show few specific type of probabilistic automata, especially the reactive probabilistic finite
automata with accepting states (in brief the reactive probabilistic automata), and definitions of languages
accepted by it. We present definition of bisimulation relation for automata's states and define relation of
indistinguishableness of automata states, on base of which we could effectuate automata minimization. Next we
present detailed algorithm reactive probabilistic automata’s minimization with determination of its complexity and
analyse example solved with help of this algorithm.

Keywords: minimization algorithm, reactive probabilistic automata, equivalence of states of automata,
bisimulation relation.

ACM Classification Keywords: F. Theory of Computation, F.1 Computation by Abstract Devices, F.1.1 Models
of Computation, Automata; F.4 Mathematical logic and formal languages, F.4.3 Formal Languages

Introduction

The automata theory is older than any physical computer, after defining abstract machines like Turing machine,
scientist searched for equally simple model that resolve problems that doesn't need to write symbols, but only
read - they created automata. Like in Turing machine occurred many types of this model: deterministic,
nondeterministic, finite, probabilistic, and many others. They could be used for simulation of circuits, algorithms,
and every system that have states and read symbols, or react on some action. If we have states as a simulation
of real resources, it is welcomed to narrow down their number.

The problem of finite automata minimization appeared in the end of fifties of last century and its main point is to
find automata with the minimum number of states accepting the same language as input automata. During last
fifty years many algorithms for minimization of finite deterministic automata came into existence, most of which
(except Brzozowsky algorithm which is based on derivatives [Brzozowski, 1962]), is based on equivalence of
states. One of the most popular minimization algorithms is Hopcroft and Ullman's algorithm with running time
O(|Σ|n2) (where |Σ| is the number of symbols in the alphabet, n is the number of states) [Hopcroft, 2000]. Another
algorithm with the same time complexity, but better memory complexity (O(|Σ|n)) is Aho-Sethi-Ullman's algorithm
[Aho, 2006]. The most efficient deterministic finite automata minimization algorithm is Hopcroft's algorithm
[Hopcroft, 1971] with time complexity O(|Σ|nlogn).

In the same period of time scientists were searching for another models of computation. They developed
probabilistic automata [Rabin, 1963], which are extensions of Markov chains with read symbols [Sokolova, 2004],
models of finite automata over infinite words [Thomas, 1990], timed automata [Alur, 1994], hybrid automata
[Henzinger, 1998] etc. We can find their ontological review in article: [Kryvyi, 2007]. In last few years new type of

International Journal "Information Theories & Applications" Vol.16 / 2009

54

automata is researched by scientist - quantum automata, the probabilistic automata is intermediate way to
understand them. It became important to find minimization algorithms for new types of automata. So far
minimization of reactive probabilistic automata hasn't been described and it also is a step to minimize quantum
automata.

Probabilistic Automata

A probabilistic automata, just like nondeterministic, has no consistently specified state, in which it will remain after
reading symbol. But for probabilistic automata we have probability of reaching a state.

There exist many types of probabilistic automata which differ with properties, applications or probability
distributions (continuous or discrete). Hereunder we itemize few of probabilistic automata's types with discrete
probability distribution:

– reactive automata,

– generative automata,

– I\O automata,

– Vardi automata,

– alternating model of Hansson,

– Segala automata,

– bundle probabilistic automata,

– Pnueli-Zuck automata and others.

The algorithm showed in article was formulated for the reactive probabilistic automata.

A Markov chain is a transitive system, which has a probability of reaching state, but has no symbols to read, so it
is the middle course to the probabilistic automata.

A Markov chain is a tuple PA=(Q, δ), where

– Q is the finite set of states,

– δ is the transition probability function given by δ:Q → D(Q) (where D(Q) is the set of all discrete
probability distribution on the set Q) [Sokolova, 2004] .

If q is a member of Q and δ(q) = P with P(q') = p > 0, then we say that Markov chain comes from state q to state
q' with probability p (it may be written in many ways: δ(q) = P(q) or δ(q)(q') = p.

Fig.1. The Markov chain

The example of Markov chain is shown on figure 1, on which we can see probability of going out from state q0.

International Journal "Information Theories & Applications" Vol.16 / 2009

55

The reactive probabilistic automata is a type of automata that react on reading symbol by going to another or the
same state with given probability (sometimes we can interpret symbol as an action of simulated system).

A reactive probabilistic automata is a triple PA=(Q, Σ, δ), where

– Q is the finite set of states,

– Σ is the finite set of input symbols (an alphabet),

– δ is the transition probability function given by δ:Q × Σ → D(Q) (where D(Q) is the set of all discrete
probability distribution on the set Q) [Sokolova, 2004] .

An initial reactive probabilistic automata with accepting states is a five PA=(Q, Σ, δ, q0, F), in which we have
additionally two elements:

– q0 - a member of Q, is the start state,

– F Q is the set of final (accepting) states.

After reading given symbol automata is in state of superposition of states:

p0q0 + p1q1 + … + pnqn,

where p0 + p1 + … + pn=1. Henceforth we will use shorter name of probabilistic automata within the meaning of
initial reactive probabilistic automata with accepting states. An example of this type of automata we show on
figure 2.

Fig.2. The initial reactive probabilistic automata with accepting states

Language Accepted by PA

Every type of automata is strictly connected with idea of language accepted by it. In deterministic and
nondeterministic finite automata we say, that language is accepted by given automata if and only if for all words
from this language, automata after reading of those words is always in its final state. In probabilistic automata we
must also consider the probability of acceptance.

International Journal "Information Theories & Applications" Vol.16 / 2009

56

The probability of going from state q1 to state q2 after reading symbol σ we denote as δ(q1,σ)(q2)=p. An extended
transition probability function, for given word v and prefix w, so v = w σ, denoted by the same notation, is given
by [Cao, 2006]:

The language accepted by the probabilistic automata is defined as function:

LPA:Σ*→[0,1],

such that [Cao, 2006]:

We say that language L is recognized with bounded error by a probabilistic automata PA with interval (p1,p1), if
p1<p2 and

p1 = sup{Pw|wL}, p1 = inf{Pw|wL} [Golovkins, 2002].

We say that language L is recognized with probability p, if the language is recognized with interval (1-p,p)
[Golovkins, 2002].

We say that language L is recognized with probability 1 --ε, if for every ε >0 there exist an automata which

recognizes the language with interval (ε1,1--ε2), where ε1, ε2 ε [Golovkins, 2002].

Bisimulation and Indistinguishableness

When two automata accept the same language? When they possess equivalent states? Maybe one of them has
smaller number of states and accepts the same language? These questions are very important for automata
minimization problem. So, if we can find equivalent states, we can minimize some types of automata, but
relevant relation is needed. One of the manners is to find first bisimulation relation and on the base of it define
indistinguishableness of states.

Firstly we say that two deterministic finite automata are equivalent if they accept the same language, and two
states are equivalent, if for every given word, reading this word after going out from these states always will finish
for both states in accepting state or finish for both states in nonaccepting state. Automata is called minimal if all
its states are nonequivalent.

For two deterministic finite automata: DFA1=(S, Σ, δ) and DFA2=(T, Σ, δ) exists a strong bisimulation relation

RST if for all (s,t)R and for all σΣ:

– if δ(s,σ)=s' then there exists t'T such that δ(t,σ)=t' and (s',t')R and

– if δ(t,σ)=t' then there exists s'S such that δ(s,σ)=s' and (s',t')R [Kozen, 1997].

The relation of strong bisimulation R has such properties as:

– a diagonal ΔS S S is bisimulation on (S, δ),

– an inverse relation R-1 is bisimulation,

– a sum of bisimulation relations is also bisimulation.

The equivalence relation R is a congruence on set of automata states for (q1,q2)Q and symbols σ Σ if
q1Rq2 and δ(q1,σ)Rδ(q2. σ) [Gecseg, 1986].

The relation of strong bisimulation R is a congruence [Milner, 1989].

International Journal "Information Theories & Applications" Vol.16 / 2009

57

For two initial deterministic finite automata with accepting states DFA1=(S, Σ, δ, q0, FS) and DFA2=(T, Σ, δ, q0, FT)

exists an indistinguishableness relation NST, if for all (s,t)N and for all σΣ:

– (s,t)N0 if and only if ((sFS tFT) (s FS t FT)),

– (s,t)Nk if and only if (s,t)Nk-1 and

– if δ(s,σ)=s' then there exists t'T such that δ(t,σ)=t' and (s',t')Nk-1and

– if δ(t,σ)=t' then there exists s'S such that δ(s,σ)=s' and (s',t')Nk-1.

The relation of indistinguishableness N is a congruence [Milner, 1989].

For Markov chain the bisimulation relation was defined in article [Sokolova, 2004], and its construction is helpful
for defining the same relation for reactive probabilistic automata.

Let R be an equivalence relation on the set S, and let P1,P2 D(S) be discrete probability distributions. Then

P1R P2 CS/R: P1[C] = P2[C],

where C is an equivalence class [Sokolova, 2004].

Let R be an equivalence relation on the set S, let A be a set, and P1,P2D(S) be discrete probability distributions.
Then:

P1R,A P2 CS/R, aA: P1[a,C] = P2[a,C]

[Sokolova, 2004].

Fig.3. The bisimulation relation on MC

The equivalence relation on the set Q of states of Markov chain (Q, δ) will be strong bisimulation relation

RST then and only then when for all (q,t) R:

if δ(q)=P1 then there exists a distribution P2 with tT such that δ(t)=P2 and P1R P2 [Sokolova, 2004].

On figure 3 we have five pairs in bisimulation relation: {(q0,t0), (q1,t1), (q1,t2), (q2,t3), (q2,t4)}.

On base of bisimulation relation on Markov chain states we can define the same type of bisimulation for reactive
probabilistic automata.

Let PA1=(S, Σ, δ) and PA2=(T, Σ, δ) be two reactive probabilistic automata. A bisimulation relation RST

exists if for all (s,t)R and for all σΣ:

if δ(s,σ)=P1 then there exists a distribution P2 with tT such that δ(t,σ)=P2 and P1 R,Σ P2 [Sokolova, 2004].

States (s,t)R we call bisimilar, what is denoted by s≈t.

International Journal "Information Theories & Applications" Vol.16 / 2009

58

On figure 4 we have six pairs in bisimulation relation: {(s0,t0), (s1,t1), (s2,t1), (s3,t2), (s4,t2), (s5,t3)}.

Fig.4. The bisimulation relation on PA

Let PA1=(S, Σ, δ, q0, FS) and PA2=(T, Σ, δ, q0, FT) be two initial reactive probabilistic automata with accepting

states. We can define indistinguishableness relation NST, if for all (s,t)N and for all σΣ:

(s,t)N0 if and only if ((sFS tFT) (s FS t FT)),

(s,t)Nk if and only if (s,t)Nk-1 and

if δ(s,σ)=P1 then exists the probability distribution P2 with tT such that δ(t,σ)=P2 and P1R,ΣP2.

For n=|Q|, we have

NNn-2Nn-3...N1N0.

States s,t we call indistinguishable, what is denoted by s t, if there exists indistinguishableness relation N, such

that (s,t)N.

On figure 5 we have six pairs in indistinguishableness relation: {(s0,t0), (s1,t1), (s2,t1), (s3,t2), (s4,t2), (s5,t3)}.

Fig.5. The indistinguishableness relation on PA

International Journal "Information Theories & Applications" Vol.16 / 2009

59

The indistinguishableness relation is a congruence in set of states of automata PA=(Q, Σ, δ, q0, F) - for adequate
transition function δ, in analogical way as bisimulation relation, if two results of transition function belong to

relation, also states from which we go out belong to relation: for (q1,q2)Q and symbols σ Σ if q1Rq2 and
δ(q1,σ)Rδ(q2. σ).

Minimization of Reactive Probabilistic Automata

The indistinguishableness relation defined in prior section give us possibilty to create minimization methods and
algorithms for reactive probabilistic automata.

A probabilistic automata PA=(Q, Σ, δ, q0, F) recognizing language L with probability p we call minimal, if there
doesn't exist automata with smaller number of states recognizing language L with not smaller probability.

In minimal automata there are no two states that could be equivalent in terms of indistinguishableness relation.

A minimization of probabilistic automata parts on two steps:

- elimination of unreachable states (probability to reach those states is 0),

- joining of indistinguishable states (using indistinguishableness relation).

First we show on below code elimination of unreachable states:

Alg.1. Algorithm of elimination of unreachable states:

INPUT: PA=(Q,Σ,δ,q0,F)- reactive probabilistic automata.
OUTPUT: PA’=(Q’,Σ,δ’,q0,F’) - reactive probabilistic automata without
unreachable states, recognizing the same language as PA.

1. FOR ALL {qQ} DO
2. markedStates[q]0;
3. END FOR
4. S.push(q0);

5. markedStates[q]1;

6. pr0;

7. WHILE {S} DO

8. pS.first();
9. S.pop();

10. FOR ALL {σΣ} DO
11. FOR ALL {qQ} DO
12. prδ(p,σ)(q);

13. IF {pr0 markedStates[q0]=0} THEN
14. S.push(q);

15. markedStates[q]1;
16. END IF
17. END FOR
18. END FOR
19. END WHILE

20. FOR ALL {qQ} DO

International Journal "Information Theories & Applications" Vol.16 / 2009

60

21. IF {markedStates[q]=1} THEN
22. Q’.push(q);
23. END IF
24. END FOR

25. F’FQ;
26. FOR ALL {qQ} DO
27. IF {markedStates[q]=1} THEN

28. FOR ALL {pQ} DO
29. IF {markedStates[p]=1} THEN

30. FOR ALL {σΣ} DO
31. δ’(q,σ)(p) δ(q,σ)(p);
32. END FOR
33. END IF
34. END FOR
35. END IF
36. END FOR

In this algorithm S is auxiliary stack, on which we put states, which we can reach with non-zero probability going
out from the start state q0. The transition probability function σ(p,σ)(q) gives probability pr of reaching state q,
going out from state p, reading symbol σ. The running time of the algorithm time is bounded by:

T(n,|Σ|) a(7+9n+2|Σ|n+2n2+6|Σ|n2)+c(4+8n+2|Σ|n +3n2 +5|Σ|n2) ,

where a is time of an assignment and c is time of comparison, clearly O(|Σ|n2) is the time complexity of this
algorithm.

In the algorithm of joining indistinguishable states we use already defined indistinguishableness relation. In one
word, states to be indistinguishable, have to be in the same equivalence class, and must have the same
probability distribution for symbols and equivalence classes, which can be reach from this states. Inspired by
Hopcroft-Ullman's algorithm [Hopcroft, 2000], first we assume that all pairs of states are indistinguishable, above
that, that first element of pair is member of final states' set and second isn't. Next analyzing all pair of states and
all symbols we find distinguishable states, until the moment that any change is made. Algorithm analyses
probability distributions of reaching state from state.

Alg.2. Algorithm of joining indistinguishable states:

INPUT: PA=(Q,Σ,δ,q0,F) - reactive probabilistic automata.
OUTPUT: PA’=(Q’,Σ,δ’,q0’,F’) - minimal reactive probabilistic
automata recognizing language LPA.

1. FOR {i0; i<|Q|; ii+1} DO

2. FOR {j0; ji; jj+1} DO

3. IF {(qiF qjF) (qiF qjF)} THEN
4. Dqi,qj1;
5. ELSE

6. Dqi,qj0;
7. END IF

International Journal "Information Theories & Applications" Vol.16 / 2009

61

8. END FOR
9. END FOR

10. FOR {i1; i<|Q|; ii+1} DO

11. FOR {j0; j<i; jj+1} DO
12. IF {Dqi,qj=0} THEN

13. FOR ALL {σΣ} DO
14. E10;

15. E20;

16. N10;

17. N20;

18. FOR ALL {pQ} DO
19. IF {Dqi,p=0} THEN

20. E1E1+δ(qi,σ)(p);
21. ELSE

22. N1N1+δ(qi,σ)(p);
23. END IF
24. IF {Dqj,p=0} THEN

25. E2E2+δ(qj,σ)(p);
26. ELSE

27. N2N2+δ(qj,σ)(p);
28. END IF
29. END FOR

30. IF {E1E2 N1N2} THEN

31. Dqi,qj1;
32. break;
33. END IF
34. END FOR
35. END IF
36. END FOR
37. END FOR

38. Q’Q;

39. F’F;

40. q0’q0;

41. FOR {i1; i<|Q|; ii+1} DO

42. FOR {j0; j<i; jj+1} DO
43. IF {Dqi,qj=0} THEN

44. Q’Q’\{qi,qj};

45. Q’Q’{qij};
46. IF{qiF} THEN
47. F’F’\{qi,qj};

48. F’F’{qij};
49. END IF

International Journal "Information Theories & Applications" Vol.16 / 2009

62

50. IF {j=0} THEN

51. q0qj;
52. END IF
53. END IF
54. END FOR
55. END FOR

56. FOR ALL {q1 q2 σ Q’Q’Σ } DO
57. IF {q1 = q2 q1Q q1=p1p2 : p1p2Q} THEN
58. δ’(q1,σ)(q2) δ(p1,σ)(q2) + δ(q2,σ)(p2);

59. IF {q1Q q1=p1p2 : p1p2Q} THEN
60. δ’(q1,σ)(q2) δ(p1,σ)(q2);

61. ELSIF {q2Q q2=p1p2 : p1p2Q } THEN
62. δ’(q1,σ)(q2) δ(q1,σ)(p1)+ δ(q2,σ)(p2);
63. ELSE

64. δ’(q1,σ)(q2) δ(q1,σ)(q2);
65. END IF
66. END FOR

Analyzing algorithm in details: on input we have reactive probabilistic automata; on output we get minimal
automata that accept the same language as input automata. In lines 1 to 9 we tentatively fill structure D, which is
lower triangular matrix of all combination of automata's states. In place where one of the states is final and
second isn't, we set value 1, because states are distinguishable. In other case we set 0, providing that all other
pairs of states are indistinguishable. In lines 10 to 33 is the main part of algorithm, which decides if states are
equal or not, comparing probability distributions. First (line 12) we verify if pair of states is indistinguishable
Dqi,qj=0 (otherwise it makes no sense in analyzing them). For every symbol from alphabet Σ we reset value of
auxiliary variables E1, E2, N1, N2, in which we will sum probabilities of reaching distinguishable states N or
indistinguishable states E. States will be generally recognized as indistinguishable if values of E1, E2 and N1, N2
will be respectively equal. If for two analyzed states, for any symbol of alphabet, we get different values of those
variable, loop is interrupted (line 32), because states are distinguishable and we go to next iteration. In the last
part of algorithm (from line 38) we create output automata, so we replace indistinguishable states by single
states, and calculate values for transition probability function (from line 54). Depending, if we analyze reaching
state or going out from new state, values of probability will be summed or copied. The running time of the
algorithm is bounded by:

T(n,|Σ|) a(5 + 4.5n - 3.5|Σ|n + 7.5n2 + 2|Σ|n2+ 3n3 + 1.5|Σ|n3)+

c(2 + 7n - 2.5|Σ| n + 7n2 + |Σ| n2 + 7n3 + 1.5|Σ|n3),

so complexity will be O(|Σ|n3).

Lets analyze steps of both algorithms on example from figure 2. First we reset table markedStates[qi], which size
is 7 (automata has 7 states). We push on stack start state. Next we mark with 1 field for this state in table
markedStates[q0]. We pop from the stack start state and push those, which we can reach from start state reading
symbol 0, with nonzero probability (those will be q1, q2) and for symbol 1, respectively q3, q4, in every case
marking them with 1 in table markedStates[qi]. In next iteration we search for states we can reach from states put
on the stack. Finally, the only state, which wasn't marked, is q6. In next steps we exclude it from the set of states
of automata (figure 6).

International Journal "Information Theories & Applications" Vol.16 / 2009

63

The algorithm of joining indistinguishable states in first part fill structure Dqi,qj with 1 in those places where one of
states is final, and second isn't – for all combinations of other states with state q5. Next we check successively all
combinations of states and sum probabilities of going out from this states in variables E1, E2, N1, N2, for
example for states q1, q0, values for this variables are E1=0, E2=1, N1=0, N2=0, so this pair of states is
distinguishable and Dqi,qj=1. Finally structure Dqi,qj has value 1 only for pairs: q1, q2 and q3, q4, which will be
replaced by new single states q12, q34. Probabilities for reaching those states will be summed, and for going out
from them will be copied (figure 7).

Fig.6. Elimination of unreachable states

Fig.7. Joining of indistinguishable states

Conclusion

In this article we defined indistinguishableness relation for reactive probabilistic automata, what give us
opportunity to build minimization algorithm, with complexity O(|Σ|n3). Algorithms will terminate, because number of
states or symbols in alphabet is always limitation for iterations (and we work on finite sets). Probabilities for
accepting words don’t change because they are respectively summed or copied.

Minimization of any types of automata is important problem that has its practical application – less number of
states – less amount of resources. So, this definition of indistinguishableness relation and minimization algorithm
is the base for further work on adequate algorithm for quantum automata.

Bibliography

[Aho, 2006] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, 2006.

[Alur, 1994] R. Alur, D.L. Dill, A theory of timed automata. Theoretical Computer Science 126, 2 (1994), pp. 183 - 235.

[Brzozowski, 1962] J. A. Brzozowski, Canonical regular expressions and minimal state graphs for definite events. In
Proceedings of the Symposium on Mathematical Theory of Automata (1962), vol. 12 of MRI Symposia Series,
Polytechnic Press of the Polytechnic Institute of Brooklyn, pp. 529 - 561.

[Cao, 2006] Y. Cao, L. Xia, M. Ying, Probabilistic automata for computing with words. ArXiv Computer Science e-prints
(2006).

[Gecseg, 1986] F. Gecseg, Products of automata. Monographs on Theoretical Computer Science, Springer-Verlag (1986).

International Journal "Information Theories & Applications" Vol.16 / 2009

64

[Golovkins, 2002] M. Golovkins, M. Kravtsev, Probabilistic reversible automata and quantum automata. Lecture Notes In
Computer Science 2387 (2002), p. 574.

[Henzinger, 1998] T.A. Henzinger, P.W. Kopke, A. Puri P.Varaiya, What s decidable about hybrid automata? Journal of
Computer and System Sciences 57 (1998), pp. 94 - 124.

[Hopcroft, 1971] J.E. Hopcroft, An n log n algorithm for minimizing the states in a finite automaton. In The Theory of
Machines and Computations, Z. Kohavi, Ed. Academic Press, 1971, pp. 189 - 196.

[Hopcroft, 2000] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation (2nd
Edition). Addison Wesley, 2000.

[Kozen, 1997] D.C. Kozen, Automata and Computability. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, (1997).

[Kryvyi, 2007] S. Kryvyi, L. Matveeva, E. Lukianova, O. Siedlecka, The Ontology-based view on automata theory. In
Proceedings of 13-th International Conference KDS-2007 (Knowledge-Dialog-Solution) (Sofia, 2007), ITHEA, Ed., vol. 2,
pp. 427 – 436.

[Milner, 1989] C. Milner, Communication and Concurrency. Prentice-Hall, Inc., upper Saddle River, NJ, USA (1989).

[Rabin, 1963] M.O. Rabin, Probabilistic automata. Information and Controle 6 (1963), pp. 230 - 245.

[Sokolova, 2004] A. Sokolova, E. de Vink, Probabilistic automata: System types, parallel composition and comparison. In
Validation of Stochastic Systems: A Guide to Current Research (2004), LNCS 2925, pp. 1 – 43.

[Thomas, 1990] W. Thomas, Automata on infinite objects. Handbook of theoretical computer science: formal models and
semantics B (1990), pp. 133 – 191.

Authors' Information

Siedlecka Olga – Institute of Computer and Information Sciences, Czestochowa University of
Technology, ul. Dabrowskiego 73, 42-200 Czestochowa, Poland; e-mail:
olga.siedlecka@icis.pcz.pl

Major Fields of Scientific Research: Theory of automata, quantum computing, quantum automata

