
International Journal “Information Theories and Applications”, Vol. 17, Number 1, 2010

10

REPRESENTING TREE STRUCTURES BY NATURAL NUMBERS

Carmen Luengo, Luis Fernández, Fernando Arroyo

Abstract: Transformation of data structures into natural numbers using the classical approach of gödelization
process can be a very powerful tool in order to encode some properties of data structures. This paper presents
some introductory ideas in order to study tree data structures under the prism of Gödel numbers, and presents a
few examples of using this approach to trees.

Keywords: Data structures, Trees, Gödelization

ACM Classification Keywords: E.1 Data Structures - Trees

Introduction

In [Luengo, 2008] was introduced a very interesting method in order to describe a Transition P system as a
natural number. The process is based on the classical and very well known gödelization method. That paper
described the way to find out the corresponding Gödel number to a transition P systems. A very important part of
the process is to represent the membrane systems, a tree structure, as a natural number. In that paper the
membrane structure was represented in a very naïf way, which it has been demonstrated to be not enough in
order to recover the tree structure from the natural number that represents it. Following with this idea, in this
paper it is depicted a sketch for assigning natural numbers to tree structures, which permits recover the tree from
the natural number.

Tree definitions

A tree is an undirected simple graph T = (V, E) satisfying that it is connected and has no cycles.

A tree T is said to be directed if it is a directed graph which would be a tree if directions on edges are not
considered.

A tree T is said to be rooted if one vertex is designed as root, in which case the edges have a natural orientation,
towards or away from the root.

In rooted trees, the parent of a vertex is the vertex connected to it on the path to the root. Every vertex on the tree
has a unique parent except for the root. A child of a vertex v is a vertex of which v is the parent. And finally, a leaf
is a vertex without children.

Rooted trees are the key element to define tree data structure and, on this context, vertexes are usually denoted
as node and edges are usually denoted as links.

In Membrane Systems literature, a membrane structure is defined by a language MS over the alphabet { [,] }, as
follows:

1. []  MS

2. if 1, … , n  MS for some n  1, then [1, … , n]  MS

Once the language is established, in order to properly define membrane structure is needed to consider the
following relation over the elements of MS: m1 ~ m2 if and only if we can write the two strings in the form

m1=μ1μ2μ3μ4, m2=μ1μ3μ2μ4, for μ14  MS and μ2, μ3  MS. That is, if two neighbouring pairs of parentheses are

International Journal “Information Theories and Applications”, Vol. 17, Number 1, 2010

11

interchanged, together with their contents, then we obtain the same membrane structure. If we represent by ~*
the transitive and reflexive closure of the relation ~. Clearly we have defined an equivalence relation over MS and
membrane structures are equivalence classes.

 It is very easy to translate this concept into graph theory. A membrane structure is a rooted tree, where the
nodes are called membranes, the root is called skin and the leaves are called elementary membranes.

 Finally, a recursive definition of membrane structure coming from graph theory is given:

A membrane structure is:

1. 0 = []0  MS

2. ([]0, 1, … , n) where 1, … , n  MS for some n  1

That is a membrane –the external one or skin- encloses a set of membrane structures. It is considered the same

membrane structure every permutation of the different i belonging to MS. Moreover, there is a unique link vi

connecting the membrane []0 with the membrane structure i = ([]i , i1, … , in) where i1, … , in  MS for

some n  0.

Now 0 is the ancestor of 1, …, n and each one of them are connected by the link vi. Obviously, the definition is
extended to the other internal membrane structures in a natural way.

Let us say that every membrane system considered here has a finite number of membranes, m1.

Figure 1: Two equivalent membrane structures

Tree Numbering Process

The purpose of the numbering process is to assign a natural number to each one of the different trees with m
nodes or membranes and given a natural number associated to a tree with m nodes to recover the tree structure.

In [Luengo, 2008] we defined in a very simple way to assign natural numbers to membrane structure. The
process was the following:

Let T = (N, E) be a tree data structure with m nodes labelled in L={1,2, …, m}, and let Pm = {p1, p2, …, pm } be the
set of the m first natural number starting in 2.

For the set of nodes of the tree T, it is defined the following map:

Lkpn

PNG

kk

mm





,

:
 (1)

International Journal “Information Theories and Applications”, Vol. 17, Number 1, 2010

12

From this map it was defined the number associated to a tree T with labels in L as follows:

LknGG
m

k
kmm 



,)()T(
1

 (2)

It is very easy to see that the process is not useful to extract the tree structure. In fact, it is possible to have
several trees to which the map Gm gives the same natural number.

If we want to recover the tree structure from a natural number provide by a Gm map, it is needed to consider some
particularities of the tree structure such as: number of branches, depth of each one of the branches, etc.
Following with these ideas, we are going to consider branches and depth in order to assign natural number to
nodes of the tree.

First of all we are going to map links instead of nodes as follows:

Let T = (N, E) be a tree data structure with m nodes labelled in L={1,2, …, m}, and let Pm-1 = {p1, p2, …, pm-1 } be
the set of the m-1 first natural number starting in 2. Every edge or link is numbered in pre-order starting from left
to right in depth. This process is shown in figure 2.

Figure 2: Numbering vertexes

As we did before, for the set of vertexes of the tree T, we define the map:

{m}Lk,pe

PE:G

kk

1mm


  (3)

And then, for the set of nodes of the tree T, it is defined the following map:










 

ik

kjkjmik

kk

km

kk

1mm

μsubtreetheofnodeaisnand

elinkthebynofdescendentdirectaisnif)(nGpp
noderootorskintheofdescendentdirectaisnifp

)(nG

:whereLk),G(nn

PN:G

(4)

Figure 3 shows this process.

This process permits to embedded information about tree structure into each one of the number associated to
nodes, in particular, each one of the leaves of the tree have encoded the information corresponding to the branch
to which they belong and the depth of each one of them.

Finally, it is possible to assign a natural number to the tree taking into account the leaves nodes of the tree as
follows:

International Journal “Information Theories and Applications”, Vol. 17, Number 1, 2010

13

Let T=(N, V) be a tree with m nodes and the set of leaves Leaves ={l1, l2, ..., ls}, 1 ≤ s ≤ m then the natural number
associated to T is defined be the expression:





eavesk Ll

kkm)(lG(T)G (5)

Figure 3: numbering nodes

This process permits to have some information about the tree structure, that is:

 For each one of the leave nodes, the last prime factor is the label corresponding to the link which connects
the node with its father.

 The exponent of the minimum prime corresponds to the depth of the leave in the tree.

 Two equivalent trees have different natural number associated, which permits recover tree information
independent of the equivalent relation defined before.

However when all the information is collected into only one unique natural number for the tree, there is some lost
of information which is necessary in order to recover tree structure in the inverse process. In particular it is
needed not only the number of branches the tree has, but also it is needed to know the depth of each one of
them.

Figure 4 show different trees with four leaves with different structures depending on the number of nodes and
branches.

Figure 4: Trees whit 4 leaves

International Journal “Information Theories and Applications”, Vol. 17, Number 1, 2010

14

As it was said before, what is important for recovering tree structure information is the number of leave nodes on
the tree and, also, the depth of each one of them. If we incorporate these two data into the natural number
associated to the tree, then it is possible to recover the tree structure from that number; and it is not very difficult.

Incorporating the information of number of leaves and their corresponding depth into expression (5), we have:

Let T=(N, E) be a tree with m nodes, let L={l1, l2, ..., ls}, 1 ≤ s ≤ m be the set of leaves, let D={d1, ...,ds} be the
corresponding depth for each one of the branches of the tree T, let Pm the set of the m-1 first prime number, and

let p0 a prime number such as p0 Pm-1; then the natural number associated to T is defined be the expression:





Ll

km
...pp

0m
p

k

sd
s

1d
10)(lGp(T)G (6)

Where Gm for nodes is defined by expression (4)

Recovering tree structure

In order to build a tree from a natural number, there is needed that the number satisfied some constrains, that is:

 Its factorization into prime numbers has to have m different prime factors

 p0 has to be known

Let Gp0m be a natural number which encodes a tree T with m-1 vertexes and m nodes, let p0 be the prime which
define the tree structure and let Pm-1 be the rest of primes appearing in the factorization of Gp0m; then this number
can be also expressed by:





1}-m ..., {1,i

e
i

...pp
0m

p i
sd

s
1d

10 pp(T)G (7)

From this prime factorization, it is possible to recover the tree structure as follows:

 Primes {pi | 1≤ i ≤ m-1}, are ordered in an increasing way.

 Exponent of the p0 factor encodes the number of leaves in the tree and the depth of each one of them.

 For each one of the rest of prime factor the exponent of the factor tell us about its position on the tree,
factors having exponent equals to one are links to leaves nodes on the tree, or links to intermediate nodes
without branches, because they appear only once; the rest of factor tell us the number of times the link is
counted in order to encode the tree structure.

Let us to show some examples about these facts, for instance, considering the following number:

The number establish the tree structure as follows: the prime factor 13 determines that the tree has 2 leaves with
3 nodes each one. The rest of prime factors explicit the rest of the tree structure as follows:

 The root node is connected directly by a link labelled with the prime number 2 to the next node by the left.
This is the first step in order to form the first path from the node to the leave which is two more levels below.
In order to build the path it is needed two more nodes connected by one more link labelled with the prime 5.
This path consumes 3 times the number 2, 1 time the number 3 and 1 time the number 5. Hence we have
now 3 times prime number 2, 0 times numbers 3 and 5 and 1 time numbers 7 and 11 in order to build the
second path from the root to the second leave of the tree.

 The second path starts in the root node and how we have 3 times the number 2, so the path has also to
pass by the node connected to the root by the link labelled with 2 in order to consume the rest of 2’s we

International Journal “Information Theories and Applications”, Vol. 17, Number 1, 2010

15

have. Now, the path cannot pass by the link labelled with number 3, we have no more 3’s, so we need to
open a second way and we consume one new prime, the next one in the factorization which is 7, and finally,
we arrive to the last node of the tree trough a new link labelled with the 11 prime number. On this process
we have consumed the rest of primes we have in the factorization, ending the building process of the tree.

Figure 5: The built tree associated to G6 13(T)

Next figure shows some other examples of this process of recovering tree structures from a given natural
number. In that figure it is considered that there are three leaves which are at depth of 4, 4 and 2 from the root
node. In that figure is possible to see how important the multiplicity of the prime factors is in order to recover tree
structures.

Figure 6: Several tree structures with 3 leaves and same depth

In terms of determining the general process for building a tree from a given natural number Gp0m like in (7) we
propose the following algorithmic description:

International Journal “Information Theories and Applications”, Vol. 17, Number 1, 2010

16

Gp0m provides the following data:

 s = number of leaves in the tree.

 D = {d1, ..., ds} the set of number determining the depth for each one of the leaves.

 P = {(p1, e1), ..., (pm-1, em-1)} the set of prime factor with their multiplicities ordered in an increasing way.

Then we consider the initial tree T to be built defined by:

T = (N={1},L={ })

The idea is to add nodes linked by edges labelled by paired of natural number, the corresponding to the initial
node and the final node as it is shows in Figure 7.

Figure 7: labeling nodes and links in the building process

The algorithm for building the tree from the natural number Gp0m is the following:

for (i=1; i ≤ s; i++) {

 npos = 1;

 for (j=1 ; j ≤ ds ; j++) {

 take (pj , ej)  P;

 if ((npos , pj)  L)

 then {

 N = N  {pj};

 L = L  {(npos , pj)};

 }

 ej --;

 npos = pj ;

 } //end for_ j

 Pm-1 = Pm-1 – { (pi , 0) | 1 ≤ m-1 };

} //end for_i

International Journal “Information Theories and Applications”, Vol. 17, Number 1, 2010

17

Conclusions

 This paper describes a way in order to transform tree structures into natural number. The process is based on
the very well known gödelization process. Moreover, the process can be inverted in order to generate a tree from
a natural number accomplishing several constrains. However, the paper is only introductory in this field; it is
needed to follow up with the study in order to determine the real power of this approach in the study of tree
structures. There are several open questions such as:

 Is it possible to determine that two trees are equivalent when they are represented by natural numbers?

 What happens with insertion / deletion of nodes on the tree on the natural number?

 Etc.

One more problem comes from dealing with big natural numbers. We are aware that the whole process is
supported by natural number with a big digit number, and that is a problem itself in many cases.

This paper is only one preliminary study of coding tree by numbers, and we hope to continue our work with
significant results and to apply to membrane computing and other natural computing fields in which such data
structures are relevant.

Bibliography

[Luengo 2008] Carmen Luengo, Luís Fernández, Fernando Arroyo; P systems Gödelization, International Book Series
Number 1, pp 29 -34, ISSN 1313-0455, Bulgaria

[Păun 2002] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002

[Suzuki 2000] Y. Suzuki, H. Tanaka, On a LISP Implementation of a Class of P Systems, Romanian J. of Information Science
and Technology, 3, 2 (2000), 173-186.

[Turing 1936] A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the
London Mathematical Society, 2-42, (1936-7), 230-265

 [P system Web page] http://ppage.psystems.eu/ (july 2010)

Authors' Information

Carmen Luengo Velasco – Dpto. Lenguajes, Proyectos y Sistemas Informáticos de la Escuela Universitaria de
Informática de la Universidad Politécnica de Madrid; Ctra. Valencia, km. 7, 28031 Madrid (Spain);
e-mail: cluengo@eui.upm.es

Luis Fernández Muñoz – Dpto. Lenguajes, Proyectos y Sistemas Informáticos de la Escuela Universitaria de
Informática de la Universidad Politécnica de Madrid; Ctra. Valencia, km. 7, 28031 Madrid (Spain);
e-mail: setillo@eui.upm.es

Fernando Arroyo Montoro - Dpto. Lenguajes, Proyectos y Sistemas Informáticos de la Escuela Universitaria de
Informática de la Universidad Politécnica de Madrid, Ctra. Valencia, km. 7, 28031 Madrid (Spain);
e-mail: farroyo@eui.upm.es

