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REPRESENTING TREE STRUCTURES BY NATURAL NUMBERS 

Carmen Luengo, Luis Fernández, Fernando Arroyo 

Abstract: Transformation of data structures into natural numbers using the classical approach of gödelization 
process can be a very powerful tool in order to encode some properties of data structures. This paper presents 
some introductory ideas in order to study tree data structures under the prism of Gödel numbers, and presents a 
few examples of using this approach to trees. 
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Introduction 

In [Luengo, 2008] was introduced a very interesting method in order to describe a Transition P system as a 
natural number. The process is based on the classical and very well known gödelization method. That paper 
described the way to find out the corresponding Gödel number to a transition P systems. A very important part of 
the process is to represent the membrane systems, a tree structure, as a natural number. In that paper the 
membrane structure was represented in a very naïf way, which it has been demonstrated to be not enough in 
order to recover the tree structure from the natural number that represents it. Following with this idea, in this 
paper it is depicted a sketch for assigning natural numbers to tree structures, which permits recover the tree from 
the natural number. 

Tree definitions 

A tree is an undirected simple graph T = (V, E) satisfying that it is connected and has no cycles. 

A tree T is said to be directed if it is a directed graph which would be a tree if directions on edges are not 
considered. 

A tree T is said to be rooted if one vertex is designed as root, in which case the edges have a natural orientation, 
towards or away from the root. 

In rooted trees, the parent of a vertex is the vertex connected to it on the path to the root. Every vertex on the tree 
has a unique parent except for the root. A child of a vertex v is a vertex of which v is the parent. And finally, a leaf 
is a vertex without children. 

Rooted trees are the key element to define tree data structure and, on this context, vertexes are usually denoted 
as node and edges are usually denoted as links. 

In Membrane Systems literature, a membrane structure is defined by a language MS over the alphabet { [, ] }, as 
follows: 

1. [ ]  MS 

2. if 1, … , n  MS for some n  1, then [1, … , n]  MS 

Once the language is established, in order to properly define membrane structure is needed to consider the 
following relation over the elements of MS: m1 ~ m2 if and only if we can write the two strings in the form 

m1=μ1μ2μ3μ4, m2=μ1μ3μ2μ4, for μ14  MS and μ2, μ3  MS. That is, if two neighbouring pairs of parentheses are 
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interchanged, together with their contents, then we obtain the same membrane structure. If we represent by ~* 
the transitive and reflexive closure of the relation ~. Clearly we have defined an equivalence relation over MS and 
membrane structures are equivalence classes. 

 It is very easy to translate this concept into graph theory. A membrane structure is a rooted tree, where the 
nodes are called membranes, the root is called skin and the leaves are called elementary membranes. 

 Finally, a recursive definition of membrane structure coming from graph theory is given: 

A membrane structure is: 

1. 0 = [ ]0  MS 

2. ([ ]0, 1, … , n) where 1, … , n  MS for some n  1 

That is a membrane –the external one or skin- encloses a set of membrane structures. It is considered the same 

membrane structure every permutation of the different i belonging to MS. Moreover, there is a unique link vi 

connecting the membrane [ ]0 with the membrane structure i = ([ ]i , i1, … , in) where i1, … , in  MS for 

some n  0. 

Now 0 is the ancestor of 1, …, n and each one of them are connected by the link vi. Obviously, the definition is 
extended to the other internal membrane structures in a natural way. 

Let us say that every membrane system considered here has a finite number of membranes, m1. 

 

 

Figure 1: Two equivalent membrane structures 

 

Tree Numbering Process 

The purpose of the numbering process is to assign a natural number to each one of the different trees with m 
nodes or membranes and given a natural number associated to a tree with m nodes to recover the tree structure. 

In [Luengo, 2008] we defined in a very simple way to assign natural numbers to membrane structure. The 
process was the following: 

Let T = (N, E) be a tree data structure with m nodes labelled in L={1,2, …, m}, and let Pm = {p1, p2, …, pm } be the 
set of the m first natural number starting in 2. 

For the set of nodes of the tree T, it is defined the following map: 
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From this map it was defined the number associated to a tree T with labels in L as follows: 

LknGG
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

,)()T(
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 (2) 

It is very easy to see that the process is not useful to extract the tree structure. In fact, it is possible to have 
several trees to which the map Gm gives the same natural number.   

If we want to recover the tree structure from a natural number provide by a Gm map, it is needed to consider some 
particularities of the tree structure such as: number of branches, depth of each one of the branches, etc. 
Following with these ideas, we are going to consider branches and depth in order to assign natural number to 
nodes of the tree. 

First of all we are going to map links instead of nodes as follows: 

Let T = (N, E) be a tree data structure with m nodes labelled in L={1,2, …, m}, and let Pm-1 = {p1, p2, …, pm-1 } be 
the set of the m-1 first natural number starting in 2. Every edge or link is numbered in pre-order starting from left 
to right in depth. This process is shown in figure 2. 

 

 

Figure 2: Numbering vertexes 

 

As we did before, for the set of vertexes of the tree T, we define the map: 
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And then, for the set of nodes of the tree T, it is defined the following map: 
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Figure 3 shows this process. 

This process permits to embedded information about tree structure into each one of the number associated to 
nodes, in particular, each one of the leaves of the tree have encoded the information corresponding to the branch 
to which they belong and the depth of each one of them. 

Finally, it is possible to assign a natural number to the tree taking into account the leaves nodes of the tree as 
follows: 
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Let T=(N, V) be a tree with m nodes and the set of leaves Leaves ={l1, l2, ..., ls}, 1 ≤ s ≤ m then the natural number 
associated to T is defined be the expression: 





eavesk Ll

kkm )(lG(T)G  (5) 

 

Figure 3: numbering nodes 

This process permits to have some information about the tree structure, that is: 

 For each one of the leave nodes, the last prime factor is the label corresponding to the link which connects 
the node with its father. 

 The exponent of the minimum prime corresponds to the depth of the leave in the tree. 

 Two equivalent trees have different natural number associated, which permits recover tree information 
independent of the equivalent relation defined before. 

However when all the information is collected into only one unique natural number for the tree, there is some lost 
of information which is necessary in order to recover tree structure in the inverse process. In particular it is 
needed not only the number of branches the tree has, but also it is needed to know the depth of each one of 
them. 

Figure 4 show different trees with four leaves with different structures depending on the number of nodes and 
branches. 

 
Figure 4: Trees whit 4 leaves 
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As it was said before, what is important for recovering tree structure information is the number of leave nodes on 
the tree and, also, the depth of each one of them. If we incorporate these two data into the natural number 
associated to the tree, then it is possible to recover the tree structure from that number; and it is not very difficult. 

Incorporating the information of number of leaves and their corresponding depth into expression (5), we have: 

Let T=(N, E) be a tree with m nodes, let L={l1, l2, ..., ls}, 1 ≤ s ≤ m be the set of leaves, let D={d1, ...,ds} be the 
corresponding depth for each one of the branches of the tree T, let Pm the set of the m-1 first prime number, and 

let p0 a prime number such as p0 Pm-1; then the natural number associated to T is defined be the expression: 


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Where Gm for nodes is defined by expression (4) 

Recovering tree structure 

In order to build a tree from a natural number, there is needed that the number satisfied some constrains, that is: 

 Its factorization into prime numbers has to have m different prime factors 

 p0 has to be known 

Let Gp0m be a natural number which encodes a tree T with m-1 vertexes and m nodes, let p0 be the prime which 
define the tree structure and let Pm-1 be the rest of primes appearing in the factorization of Gp0m; then this number 
can be also expressed by: 
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From this prime factorization, it is possible to recover the tree structure as follows: 

 Primes {pi | 1≤ i ≤ m-1}, are ordered in an increasing way. 

 Exponent of the p0 factor encodes the number of leaves in the tree and the depth of each one of them. 

 For each one of the rest of prime factor the exponent of the factor tell us about its position on the tree, 
factors having exponent equals to one are links to leaves nodes on the tree, or links to intermediate nodes 
without branches, because they appear only once; the rest of factor tell us the number of times the link is 
counted in order to encode the tree structure. 

Let us to show some examples about these facts, for instance, considering the following number:  

 

The number establish the tree structure as follows: the prime factor 13 determines that the tree has 2 leaves with 
3 nodes each one. The rest of prime factors explicit the rest of the tree structure as follows: 

 The root node is connected directly by a link labelled with the prime number 2 to the next node by the left. 
This is the first step in order to form the first path from the node to the leave which is two more levels below. 
In order to build the path it is needed two more nodes connected by one more link labelled with the prime 5. 
This path consumes 3 times the number 2, 1 time the number 3 and 1 time the number 5. Hence we have 
now 3 times prime number 2, 0 times numbers 3 and 5 and 1 time numbers 7 and 11 in order to build the 
second path from the root to the second leave of the tree. 

 The second path starts in the root node and how we have 3 times the number 2, so the path has also to 
pass by the node connected to the root by the link labelled with 2 in order to consume the rest of 2’s we 
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have. Now, the path cannot pass by the link labelled with number 3, we have no more 3’s, so we need to 
open a second way and we consume one new prime, the next one in the factorization which is 7, and finally, 
we arrive to the last node of the tree trough a new link labelled with the 11 prime number. On this process 
we have consumed the rest of primes we have in the factorization, ending the building process of the tree. 

 

 

Figure 5: The built tree associated to G6 13(T) 

 

Next figure shows some other examples of this process of recovering tree structures from a given natural 
number. In that figure it is considered that there are three leaves which are at depth of 4, 4 and 2 from the root 
node. In that figure is possible to see how important the multiplicity of the prime factors is in order to recover tree 
structures. 

 

Figure 6: Several tree structures with 3 leaves and same depth 

 

In terms of determining the general process for building a tree from a given natural number Gp0m like in (7) we 
propose the following algorithmic description: 
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Gp0m provides the following data: 

 s = number of leaves in the tree. 

 D = {d1, ..., ds} the set of number determining the depth for each one of the leaves. 

 P = {(p1, e1), ..., (pm-1, em-1)} the set of prime factor with their multiplicities ordered in an increasing way. 

Then we consider the initial tree T to be built defined by: 

T = (N={1},L={ })  

The idea is to add nodes linked by edges labelled by paired of natural number, the corresponding to the initial 
node and the final node as it is shows in Figure 7. 

 

 

Figure 7: labeling nodes and links in the building process 

 

The algorithm for building the tree from the natural number Gp0m is the following: 

 

for (i=1; i ≤ s; i++) { 

 npos = 1; 

 for (j=1 ; j ≤ ds ; j++) { 

  take ( pj , ej)  P; 

  if ( (npos , pj)  L) 

   then { 

    N = N  {pj}; 

    L = L  {(npos , pj)}; 

   } 

  ej --; 

  npos  = pj ; 

 } //end for_ j 

 Pm-1 = Pm-1 – { (pi , 0) | 1 ≤ m-1 }; 

} //end for_i 
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Conclusions 

 This paper describes a way in order to transform tree structures into natural number. The process is based on 
the very well known gödelization process. Moreover, the process can be inverted in order to generate a tree from 
a natural number accomplishing several constrains. However, the paper is only introductory in this field; it is 
needed to follow up with the study in order to determine the real power of this approach in the study of tree 
structures. There are several open questions such as: 

 Is it possible to determine that two trees are equivalent when they are represented by natural numbers? 

 What happens with insertion / deletion of nodes on the tree on the natural number? 

 Etc. 

One more problem comes from dealing with big natural numbers. We are aware that the whole process is 
supported by natural number with a big digit number, and that is a problem itself in many cases. 

This paper is only one preliminary study of coding tree by numbers, and we hope to continue our work with 
significant results and to apply to membrane computing and other natural computing fields in which such data 
structures are relevant. 
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