
International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

141 

 

IMPLEMENTATION OF DICTIONARY LOOKUP AUTOMATA  
FOR UNL ANALYSIS AND GENERATION 

Igor Zaslawskiy, Aram Avetisyan, Vardan Gevorgyan 

 

Abstract: In this paper we present some research results and propose solutions for natural language string 
lookup techniques. In particular a fast method is suggested for searching dictionary entries for possible matches 
of sentence words without using relational databases or full dictionary load into machine random access memory. 
Such approach is essential for minimizing the speed dependency from dictionary size and available machine 
resources as well as for the scalability of the analyzer software. The mentioned is based on an implementation of 
Aho-Corasick [Aho, Corasick, 1977] automata with a number of optimizations in the indexing and lookup 
algorithm. 

Keywords: UNL, natural language processing, dictionary lookup, indexing, search, XML, pattern matching 
machine, string matching algorithm, information search 

ACM Classification Keywords: F.2.2 Non-numerical Algorithms and Problems – Pattern matching, Sorting and 
searching, I.2.7 Natural Language Processing - Text analysis, Language parsing and understanding, I.7.2 
Document Preparation – Index generation, Markup languages, H.3.1 Content Analysis and Indexing – 
Dictionaries, Indexing Methods, H.3.3 Information Search and Retrieval - Retrieval models, Search process. 

 

Introduction 

UNL (Universal Networking Language) is a meta-language representing semantic information [Uchida, Zhu, 
2005]. Its main purpose is to store “the meaning” of natural language texts in a language independent format. 
Each sentence in UNL is a directed linked graph. Unlike natural languages, UNL expressions are less 
ambiguous. In the UNL semantic networks, nodes represent concepts, and arcs represent relations between 
concepts. These concepts are called “Universal words” (UWs). The UWs’ connections are called “relations”. They 
specify the role of each word in the sentence [Uchida, Zhu, 2005]. 

Many UNL centers and the UNDL Foundation itself have created a number of tools for working with UNL and 
Natural Language (NL) resources. In this paper we are highlighting some aspects of the development of tools for 
natural language text analysis and generation. The core tools of the project are the NL Analyzer and NL 
Generator developed by the UNDL Foundation [Uchida, Zhu, 2005]. 

The aim of the paper  

The NL analyzer uses several types of resources to build semantic UNL graphs of NL sentences: NL-UNL 
dictionary, transformation and disambiguation rule sets. These resources are being used for semi or fully 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

142 

automatic transformation during the analysis process. Many tools were created for working with UNL-NL and NL-
UNL dictionaries, rules and UNL documents, however in the work process of mentioned tools some difficulties 
arise connected with the increase of the volumes of resources. As the amount of data is growing, the queries to 
relational databases require more time to return. In this paper we present a specific dictionary lookup tool which 
was built based on some search algorithms tuned to match specificity of UNL resources and to get better 
performance. 

Finite-state Machine Implementations  

Nowadays the finite-state machine implementation algorithms for string lookup are considered giving 
comparatively effective solutions for the better lookup performance. In particular machines based on algorithms 
like Boyer–Moore, Knuth–Morris–Pratt and Aho–Corasick are considered, they are widely used for string lookup 
purposes.  

One of the most efficient and known string lookup algorithms is the Knuth–Morris–Pratt string searching algorithm 
(KMP) [Knuth, Morris, Pratt, 1977]. This algorithm searches for occurrences of strings in text. The interesting 
point in this algorithm is that when a mismatch occurs, the word itself embodies information to determine where 
the next match can begin, thus bypassing re-examination of previously matched characters. 

Another efficient solution is the Aho–Corasick string matching algorithm invented by Alfred V. Aho and Margaret 
J. Corasick. It has been proved that the running time of the Aho-Corasick Algorithm (ACA), where m is the length 
of the text T, n is the total (cumulative) length of all patterns in P, and k is the total number of matches of P in T, 
is O(n + m + k). If we compare the work of ACA with the native exact matching algorithm then allowing that T is 
searched once for each of the z patterns in P and a single search can run in O(m) time, there are z iterations of T, 
and O(n) amount of work spent looking at the patterns. This results in a total running time of O(n + mz), which is 
significant amount of time compared to the linear search time of the ACA. Clearly, the ACA is more efficient than 
naive exact set matching algorithms [Spreen, Van Slyke, 2010].  

Similar to KMP algorithm Boyer-Moore(BM) string matching algorithm is widely used in string lookup purposes. 
The execution time of the BM algorithm, while still linear in the size of the string being searched, can have a 
significantly lower constant factor than many other search algorithms: it doesn't need to check every character of 
the string to be searched, but rather skips over some of them. Generally the algorithm gets faster as the key 
being searched for becomes longer. Its efficiency derives from the fact that with each unsuccessful attempt to find 
a match between the search string and the text it's searching, it uses the information gained from that attempt to 
rule out as many positions of the text as possible where the string cannot match. In 1991 it was proved that the 
BM time complexity O(m) can have in worst case 3m comparisons, while in best case only m/n comparisons 
[Boyer, Moore, 1977]. 

However it must be noted that both Boyer–Moore and Knuth–Morris–Pratt string search algorithms perform 
lookup in plain text strings, while Aho-Corasick algorithm is capable to search in text documents represented as 
lists of strings (which in our case can be the NL-UNL Dictionary). Thus the ACA implementation was chosen as a 
more suitable solution for NL-UNL Dictionary lookup. 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

143 

Aho-Corasick Automaton 

Let  D = {y1, y2, … , yk} be a finite set of strings that we shall call words which will be the headwords of dictionary 
entries that will be included in the pattern matching machine. And let x be an arbitrary string that we shall call text 
string (natural language sentence). Our problem is to find all the substrings of text string which are words in D. 
Substrings may overlap or include each other. 

The pattern matching machine for D is a machine that takes as input the text string and returns all occurrences 
of text string substrings that are words in D. Thus, if we create a pattern matching machine for a dictionary and 
give to its input a natural language sentence, we shall receive all the dictionary entries that the NL Analyzer may 
need for the further UNL generation. [Aho, Corasick, 1977] 

NL-UNL Dictionary structure 

Like the conventional dictionaries, NL-UNL dictionaries have simple structure, e.g.  [HEADWORD]{UW ID} "UW" 
(ATTRIBUTES) <L,P,F>; (more simplified : [HEADWORD]<WORD DESCRIPTION >). [Uchida, Zhu, 
2005][UNDL, 2007] 

In NL Analysis the keywords for lookup can be any combinations of letters, digits and special characters, which 
means that the string matching machine must be constructed to provide maximum speed for searching any type 
of character combinations. For compilation we created a custom XML-like syntax, the example below illustrates 
the compiled dictionary syntax. 
<root> 

<_h_00000182> 
 <_e_00000164> 

<e>[he]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
   <_r_00000106> 

   <e>[her]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
   <_s_00000047> 
    <e>[hers]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
   </_s> 
  </_r> 
 </_e> 
</_h> 
<_s_00000082> 
 <_h_00000064> 
  <_e_00000046> 

<e>[she]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
  </_e> 

</_h> 
</_s> 
<_u_00000222> 
 <_s_00000204> 

<e>[us]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
  <_h_00000146> 
   <_e_00000128> 
    <_r_00000110> 
     <e>[usher]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
     <_s_00000049> 
      <e>[ushers]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
     </_s> 
    </_r> 
   </_e> 

</_h> 
</_s> 

</_u> 
</root> 

Example 1. 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

144 

Example 1 illustrates a finite state string matching machine compiled from a dictionary containing entries: 

 

[he] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[her] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[hers] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[she] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[us] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[usher] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[ushers] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

 

There are several reasons why we use “XML-like” syntax instead of valid XML. The first reason is that a valid 
XML document cannot contain special characters or digits as node elements (e.g. < ’ > or < 1 > are invalid). The 
second reason is that in a valid XML document the opening and closing tag contents should be identical, while in 
our document each opening tag contains an eight digit number describing the count of characters inside the tag; 
this number enhances the keyword lookup speed by allowing the program to identify the position of the closing 
tag. It is unreasonable to keep that number in closing tag, because it makes the document larger. 

 

ACA Construction 

The first step of ACA implementation is the creation of the Data Object Model (DOM); that is a tree containing all 
the dictionary entries in a structure described below (Fig1). The second step is the exporting of DOM into a “XML-
like” text form file (Example 1). 

DOM constructing algorithm (DOMCA) iterates through the dictionary entries fed in a text file or database. All 
entries are being inserted into the same DOM by the DOMCA. During the process DOMCA receives a new entry 
and separates the headword from the whole entry string, splits the headword into characters and starting from the 
root element of the current DOM inserts the characters into the tree. If the character of headword has not been 
inserted into that level of the tree in previous steps, a new node object representing that character is being 
inserted into that level. After that the pointer shifts to the next character of the headword and repeats same steps 
considering as a start level element the previous character node that was inserted. If the node already exists, 
nothing is being inserted, the program only shifts the pointer to the next character of the headword and repeats 
the same steps considering as a start level element the previous character node that was found inserted in 
previous level. The program repeats these steps recursively until the pointer reaches the end of the headword 
and after that inserts a new node containing information about the whole entry string. As a result, the final output 
will be a single DOM tree with characters as intermediate nodes and dictionary entries as final nodes (Fig1). 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

145 

 

 

Fig1 

. 

Exporting DOM into a Text Document 

 After the pattern matching machine has been created and presented as a DOM, we need to export it into a text 
document for storing and further usage. We use a function that receives a DOM node element to its input and 
returns its content as a string including the string values of sub-nodes which in their turn are presented as text 
string by calling the same function recursively until there are no sub-level nodes left. The final string is an XML-
like document (Example 1) that represents the DOM (Fig1) in a final text form, which will be later used in keyword 
lookup process. 

 

Dictionary Lookup Using the ACA 

String lookup algorithm is applied to a text string T and a dictionary DOM which is constructed as a directed graph 
described above. 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

146 

Let T be a word T = σ1, σ2, …, σL . We define a goto function giving for every state k and every letter σ a new 
state g(k, σ) obtained by applying the letter σ (graph edge) in the directed graph DOM to the state k (graph node). 
For example in Fig. 1, the edges labeled from 0 to 11 indicate that g(0, u) = 11, g(0, s) = 8 and so on. Whenever 
there is no edge σ for the node k in the graph the goto function g(k, σ)  reports fail result. 

In our Machine we also define an output function returning the dictionary entries that match the word generated 
by the current state (may be empty). 

At the beginning the string lookup algorithm considers the words g(…g(g(0, σ1), σ2)…,σk) such that k ≤ L while 
the symbol fail does not arise during the process. Every time when the function output(sk) ≠ empty we add its 
returned entry to the output list of entries. If the failure symbol fail has appeared during the word lookup process 
g(…g(g(0, σ1), σ2)…,σL) the lookup process for the word T = σ1, σ2, …, σL  stops and starts again considering as 
the lookup word T = σ2, …, σL  , and so on. The list of all output entries obtained during these iterations will be the 
final output of the String Lookup Algorithm. 

Initially, the current state of the machine is the start state 0 and the first symbol of the keyword string is the 
current input symbol. The machine then processes the keyword string by making one operating cycle on each 
symbol of the keyword string. [Aho, Corasick, 1977] 

 

Development of Dictionary Lookup Program Using ACA 

The text file of the created pattern matching machine may be very large depending on dictionary size, thus, 
instead of loading the whole document into the machine’s memory, the program reads the document bytes one 
by one. 

Let us assume that we have a keyword w and need to find all the dictionary entries with headwords that match as 
a whole word or as substring to the w.  

The lookup program receives the keyword w and splits it into character array K = { k1, k2, … , kn }. On each 
iteration of i = {1, 2, … , n} loop the program searches for an opening tag “<_ki>” or “<e>” (“<e>” tag indicates a 
dictionary entry or entry set and is different from “<_e>” tag) . When an opening tag “<e>” is found the program 
calls the output(“k1k2…ki-1”) function to print the content of the “<e>…</e>”  tag which is a match for the keyword 
substring “k1k2…ki-1”, and continues search, if a tag “<_ki>” is found, meaning that the i-th character of the 
keyword has matched, the next character of the keyword becomes the current character (i = i+1) and the 
operations repeat (e.g. for the keyword “ushers”, if the “<e>” was found in tag representing the second symbol of 
the keyword, output(“us”) function will be called and the found entries in <e> tag will be printed as the matches 
for a sub-keyword “us”). If no tag “<_ki>” is found on the i-th step, the iteration stops and returns the printed 
values.  

After each circle while |w| > 1, we remove the first character of k keyword and run lookup program with the new 
keyword w’ = “k2k3…kn” again.  



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

147 

For example if the base keyword is “ushers”, the keywords that will be sent to the lookup program input are {w = 
“ushers”, w’ = “shers”, w’’ = “hers”, w’’’ = “ers”, w’’’’ = “rs”, w’’’’’ = “s”}. See Table 1 for the returned results after 
each call of lookup program.  

 

Keyword Matches 

“ushers” “us”, “usher”, “ushers” 

“shers” “she” 

“hers” “he”, “her”, “hers” 

“ers” - 

“rs” - 

“s” - 

Table 1. 

 

Lookup Time Optimization 

Several enhancements were done in order to minimize the time required for lookup. 

1. It was decided to create a mapping file that will contain the byte addresses of the first 6 characters of all 
headwords of dictionary entries used in pattern matching machine creation. Thus for a keyword K = { k1, 
k2, … ..., kn } (n>6), the program can find the byte indexes for sub-keywords {“k1” , “k1k2” , “k1k2k3” , 
“k1k2k3 k4” , “k1k2k3k4k5” , “k1k2k3k4 k5 k6”} from the mapping file and retrieve all dictionary entries that may 
be allocated in those byte addresses of the dictionary file. After that the program starts the dictionary 
lookup starting from the “k1k2k3k4k5k6” index position with a keyword “k7k8…kn”. If n ≤ 6, no lookup will be 
called at all, this significantly minimizes the time required for process. The limit of 6 characters was 
chosen for mapping as the most optimal number in mapping file size and lookup time relation. By 
increasing the length of mapped keyword strings  more time is required for loading the mapping file, less 
time for lookup and vice versa.  

Graph 1 illustrates the efficiency of lookup algorithm in required time in milliseconds (T) and mapping 
characters limit (N) relation. This graph is based on the average of test results held on a PC with dual 
core CPU of 2.0 GHz frequency and 2 GB of RAM. 10 sentences in English of average 180-200 
characters each were chosen as keyword strings for testing with English-UNL dictionaries containing 
100'000 to 400'000 entries. According to the graph, mapping character limit of 6 is the optimal number 
producing the best speed results. 

2. When exporting the dictionary string matching machine into a text file, all character nodes are being 
ordered alphabetically. During the lookup process, when a character tag is found but does not match the 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

148 

current keyword character, the program is supposed to find the next opening tag in that level. But 
considering the fact that the tags are stored in alphabetical order, the program compares the byte codes 
of the current keyword character and the found tag character, if the tag character code is less than the 
keyword character code, we can be sure that there will be no further character tags in that level of tree 
that will match the current character of keyword, thus the failure function is being called, avoiding the 
further lookup actions that will not return any match. Also to ensure that the program will not miss any 
entry tag by performing this action, the entry tags are being placed before all character tags of each level 
of the tree. 

 

 

Graph 1. 

 

Results and Conclusion 

As it was mentioned before there are other alternative ways of dictionary lookup to the string matching machines 
and those methods were also tested and compared to the implemented ACA results. One of the most robust 
search engines nowadays is the Apache Lucene: an open source project created in Java and currently being 
released under the Apache Software License. Currently, Lucene is considered of the leading tools for search and 
is being used as a basis in many powerful search engines. It uses similar search indexing and lookup 
approaches, thus was chosen for our comparison. Table 2 illustrates the lookup results gained by using MySQL 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

149 

database, Apache Lucine and our ACA implementation. Below are listed 5 randomly selected sentences that 
were used in comparison results (Table 2). These results were later confirmed by a bigger test corpus. 

   1. “The flexibility and opportunities that UNL gives are enormous, so we decided to create a project that will be 
a pioneering effort to invest on this technology into real world applications.” 

   2. “The flexibility and opportunities that UNL gives are enormous.” 

   3. “The flexibility and opportunities.” 

   4. “Cyanogenmod is free of charge, but let's face it - it takes time and effort from Cyanogen to make it happen, 
time he could be using to work a salaried position, but instead is working on getting you the ROM you love, and 
doing it without asking anything in return.” 

   5. “Depending on the current state of your handset, there are basically three different ways to upgrade to the 
latest CyanogenMod version.” 

 

Sentence 
No. 

Matched 
entries 

ACA 
 lookup time 

Lucine lookup 
time 

MySQL lookup 
time 

1 111 355 ms 1093 ms 2512 ms 

2 55 154 ms 152 ms 215 ms 

3 36 42 ms 50 ms 162 ms 

4 120 131 ms 789 ms 7300 ms 

5 86 90 ms 149 ms 2048 ms 

 

Table 2. 

 

Thus, we can say that the implemented search engine performance is robust and resolves the performance 
issues on standard desktop machines. 

 

Bibliography. 

[Uchida, Zhu, 2005] Uchida H., Zhu M., “The Universal Networking Language (UNL) specifications” version 7, UNDL 
Foundation, June 2005. 

[Avetisyan, 2009 ] Avetisyan A., “Some approaches to the generation of sentences in natural language from UNL” Institute of 
Informatics and Automation Problems of NAS of RA, 2009. 

[Aho, Corasick, 1977] Alfred V. Aho, Margaret J. Corasick, “Efficient String Matching: An Aid to Bibliographic Search” 
Communications of the ACM, 1977. 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

150 

[Knuth, Morris, Pratt, 1977] D. Knuth, James H. Morris Jr, V. Pratt, “Fast pattern matching in strings”, SIAM Journal on 
Computing, 1977. 

[Spreen, Van Slyke, 2010] T. Spreen, A. Van Slyke, “Exact-Set Matching with the Aho-Corasick Automaton” University of 
Victoria,  2010. 

[Boyer, Moore, 1977] R. S. Boyer, J. S. Moore, “A Fast String Searching Algorithm” Communications of the ACM, 1977. 
[UNDL, 2007] UNDL Foundation, www.unlweb.net/wiki/, 2010 
 
 

Authors' Information 

 

Igor Zaslawskiy – Head of lab., Chief sci. worker, Institute of Informatics and Automation 
Problems of NAS RA, 1, P. Sevak str., Yerevan, Armenia, 0014,  e-mail: zaslav@ipia.sci.am, 

Major Fields of Scientific Research: Mathematical logic and the automated logic conclusion 

 

Aram Avetisyan – Junior sci. worker, Institute of Informatics and Automation Problems of NAS 
RA, 1, P. Sevak str., Yerevan, Armenia, 0014,  e-mail: a.avetisyan@undlfoundation.org 

Major Fields of Scientific Research: Mathematical logic and the automated logic conclusion 

 

Vardan Gevorgyan  –  CEO, ''VTGSoftware'' Ltd., 52a, Sose str., Yerevan, Armenia 0019,  

 e-mail:  vgevorgyan@vtgsoftware.com 

  

mailto:zaslav@ipia.sci.am�
mailto:a.avetisyan@undlfoundation.org�
mailto:vgevorgyan@vtgsoftware.com�

	Introduction
	On geometry of the n-dimensional unit cube
	Chain split in monotone recognition
	Chain computation
	Association rule mining alternatives through the chain split technique
	Software Implementation
	Bibliography
	Authors' Information
	Introduction
	matrices with different rows
	Greedy approach for solving (P2)
	Local Optimality
	Bibliography
	Authors' Information
	Introduction
	The aim of the paper
	Finite-state Machine Implementations
	Aho-Corasick Automaton
	NL-UNL Dictionary structure
	ACA Construction
	Exporting DOM into a Text Document
	Dictionary Lookup Using the ACA
	Development of Dictionary Lookup Program Using ACA
	Lookup Time Optimization
	Results and Conclusion
	Bibliography.
	Authors' Information
	1. Introduction
	2. Preliminary
	3. Main result
	Bibliography
	Author's Information
	Introduction
	Basic Definitions
	Basic properties of the standard arrangement
	Bibliography
	Authors' Information
	Introduction
	The lattice of MMIS-es
	Duality between the intersection of all MMIS-es and union of all maximum matchings
	Conclusion and further works
	Bibliography
	Authors' information
	Introduction
	System Architecture
	An Outline of Crypto Protocols
	Interaction Protocols in Multi-agent Systems
	NetInt Software System
	Bibliography
	Authors' Information



