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Abstract: It is known that the minimal number of the steps in a proof of a tautology in a Frege system can be 
exponentially larger than in a substitution Frege system, but it is an open problem whether Frege systems can 
polynomially simulate substitution Frege systems by sizes. Many people conjecture that the answer is no. We 
prove that the answer is yes. As a bridge between substitution Frege systems and Frege systems we consider 
the Frege systems, augmented with restricted substitution (single renaming) rule. We prove that Frege systems 
with single renaming rule polynomially simulate by size Frege systems with substitution rule without any 
restrictions, and Frege systems without substitution rule polynomially simulate Frege systems with single 
renaming rule both by steps and by size. 
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1. Introduction 

It is well known that the investigations of the propositional proof complexity are very important due to their relation 
to the main problem of the complexity theory: P ≟ NP. 

One of the most fundamental problems of the proof complexity theory is to find an efficient proof system for 
propositional calculus. There is a wide spread understanding that polynomial time computability is the correct 
mathematical model of feasible computation. According to the opinion, a truly “effective” system must have a 
polynomial size, p(n) proof for every tautology of size n. In [Cook, Reckhow, 1979] Cook and Reckhow named 
such a system, a super system. They showed that if there exists a super system, then NP = coNP. 

It is well known that many systems are not super. This question about Frege system, the most natural calculi for 
propositional logic, is still open. It is interesting how efficient can be Frege systems augmented with new, not 
sound rules, in particular, Frege systems with different modifications of substitution rules. 

In the field of proof complexity the relation of Frege systems (ℱ-systems) to Frege systems with substitution (Sℱ-
systems) has been discussed in [Cejtin, Chubaryan, 1975], [Krajicek, 1989], [Buss, 1995]. It has been proved that 
there exist tautologies which have n line substitution Frege proofs, but which require Frege proofs of 2cn lines for 
some constant c. It has also been proved, that substitution Frege proofs of these tautologies can be transformed 
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into Frege proofs only with quadratic increase of size [Buss, 1995], [Chubaryan, 2000]. It is an open problem 
whether Frege systems can polynomially simulate substitution Frege systems [Buss, 1995]. 

In [Chubaryan, 2000] a special construction of substitution Frege proofs is described. By their transformation into 
Frege proofs the maximum (exponential) increase in the number of lines is obtained, although increase in size is 
at most polynomial (it seems, the latter size increase is maximal). The paper [Chubaryan, 2000] reveals also 
some important properties of substitution Frege proofs, which can be simulated by Frege systems. 

In [Chubaryan et al. 2008], [Chubaryan, Nalbandyan, 2009] the substitution rules with two different restrictions are 
introduced: 

a) if for any constant k ≥ 1 we allow substitution instead of occurrences of no more than k different 
variables at a time (k – bounded substitution) 

b) if for any constant  d ≥ 0 we allow substitution of formulas, depth of which is no more than d (d – depth 
restricted substitution). 

For every type restriction in [Chubaryan et al. 2008] and [Chubaryan, Nalbandyan, 2009] it is proved that: 

1) the minimal numbers of steps (the minimal sizes) of the proofs of tautology in any two restricted 
substitution Frege systems are polynomially related 

2) the minimal sizes of the proofs of tautology in without restrictions substitution Frege system and in 
restricted substitution Frege system are also polynomially related 

3) the minimal number of steps of a tautology in restricted substitution Frege system can be exponentially 
larger than in the system with substitution rule without restrictions. 

Here it is proved that: 

4) the minimal number of steps of a tautology in Frege system without substitution rule can be 
exponentially larger than in Frege system with restricted substitution rule 

The question about the increase of sizes by transformation in the case 4) was also open. 

Here we consider the substitution rule with double restriction: 1 – bounded (single) and 0 – depth (renaming).  

We prove that Frege systems with such double restricted substitution rule and Frege systems without substitution 
rule are polynomially equivalent both by steps and by size. 

2. Preliminary 

We shall use generally accepted concepts of Frege system and Frege system with substitution. 

A Frege system ℱ uses a denumerable set of propositional variables, a finite, complete set of propositional 

connectives; ℱ has a finite set of inference rules defined by a figure of the form    (the rules of inference 

with zero hypotheses are the axioms schemes); ℱ must be sound and complete, i.e. for each rule of inference 

  every truth-value assignment, satisfying A1, A2, ..., Am, also satisfies B, and ℱ must prove every 

tautology. 
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A substitution Frege system Sℱ consists of a Frege system ℱ augmanted with the substitution rule with 

inferences of the form  for any substitution σ = , s ≥ 1, consisting of a mapping from 

propositional variables to propositional formulas, and  denotes the result of applying  the substitution to 
formula A, which replaces each variable in A with its image under σ. This definition of substitution rule allows to 
use the simultaneous substitution of multiple formulas for multiple variables of A without any restrictions. The 
substitution rule is not sound. 

If the depths of formulas  (1 ≤ j ≤ s) are restricted by some fixed d (d ≥ 0), then we have d-restricted 

substitution rule and we denote the corresponding system by Sdℱ. 0-restricted substitution rule is named 
renaming rule. 

If for any constant k ≥ 1 we allow substitution instead of occurrences of no more than k different variables at a 
time, then we have k – bounded substitution rule. The k – bounded substitution Frege system Skℱ consists of a 
Frege system augmented with the k – bounded substitution rule. 

We use also the well-known notions of proof, proof complexities and  p – simulation given in [1]. The proof in any 
system Φ (Φ-proof) is a finite sequence of such formulas, each being an axiom of Φ, or is inferred from earlier 
formulas by one of the rules of Φ. 

The total number of symbols, appearing in a formula φ, we call size of φ and denote by | φ |. 

We define – complexity to be the size of a proof (= the total number of symbols) and t – complexity to be its 

length (= the total number of lines). 

The minimal – complexity (t – complexity) of a formula φ in a proof system Φ we denote by ( ). 

Let Φ1 and Φ2 be two different proof systems. 

Definition 1. The system Φ2 p--simulates Φ1 (Φ1 


Φ2), if there exists a polynomial p( ) such that for each 

formula φ, provable both in Φ1 and Φ2, we have  ≤ p( ). 

Definition 2. The system Φ1 is p--equivalent to system Φ2 (Φ1 ~


 Φ2), if Φ1 and Φ2 p--simulate each other. 

Similarly p-t-simulation and p-t-equivalence are defined for t – complexity. 

Definition 3. The system Φ2 has exponential -speed-up (t-speed-up) over the system Φ1, if there exists a 

sequence of such formulas φn, provable both in Φ1 and Φ2, that    >   . 

In this paper we compare under the p-t-simulation relation S0ℱ and ℱ, S1ℱ and ℱ, and under p-t (p-)-simulation 

 ℱ and ℱ. 

For proving the main results we use also the notion of essential subformulas, introduced in [Chubaryan et al. 
2008], and the notion of τ – set of subformulas, introduced in [Cejtin, Chubaryan, 1975]. 
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Let F be some formula and Sf(F) is the set of all non-elementary subformulas of formula F. 

For every formula F, for every φ ∈ Sf(F) and for every variable p   denotes the result of the replacement of 

the subformulas φ everywhere in F with the variable p. If φ ∉ Sf(F), then  is F. 

We denote by Var(F) the set of variables in F. 

Definition 4. Let p be some variable that p ∉ Var(F) and φ ∈ Sf(F) for some tautology F. We say that φ is an 
essential subformula in F iff  is non-tautology. 

We denote by Essf(F) the set of essential subformulas in F. 

If F is minimal tautology, i.e. F is not a substitution of a shorter tautology, then Essf(F) = Sf(F). 

The formula φ is called determinative for the ℱ-rule    (m ≥ 1) if φ is essential subformula in formula   

A1 & (A2 & … & (Am-1 & Am) …) ⊃ B. By the Dsf(A1, …, Am, B) the set of all determinative formulas for rule 

 is denoted. 

We say that the formula φ is important for some ℱ-proof (Sℱ -proof) if φ is essential in some axiom of this proof 
or φ is determinative for some ℱ-rule. 

In [Chubaryan et al. 2008] the following statement is proved. 

 

Proposition 1. Let F be a minimal tautology and φ ∈ Essf(F), then in every Sℱ-proof of F, in which the employed 
substitution rules are  

; ; … ;  

either φ must be important for this proof or it must be the result of the successive employment of the substitutions  

, , … ,  for 1 ≤ , , … ,  ≤  in any important formula. 

τ – set of subformulas for some formula F with the logical connectives &, ∨, ⊃ and ¬ is defined as follows: 

τ(F) = {F} ∪ τ1(F), where 

τ1(F) = Ø, if F is propositional variable 

τ1(F1 & F2) = τ(F1) ∪ τ(F2), if F = F1 & F2 

τ1(F1 ∨ F2) = τ(F1) ∩ τ(F2), if F = F1 ∨ F2 

τ1(F1 ⊃ F2) = τ(F2) \ τ(F1), if F = F1 ⊃ F2 

τ1(¬F1) = , if F = ¬F1 

In [Nalbandyan, 2010] the following 3 auxiliary statements are proved. 

1. For every minimal tautology F τ(F) ⊆ Essf(F). 
2. For every formula F if subformula φ ∈ τ(F), then every occurrence of φ in F is positive. 
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The notions of positive (negative) occurrence of some subformula in the formula are well known (see, for example 
[Buss, 1995]), as well as 0-1 numeration of subformulas in formula. 

3. If formula F has only the connectives ⊃ and ¬, then the number of every subformula from the set τ(F) is 
in the form ( ) for the corresponding n. 

The main results, connected with comparison of different substitution rule modifications, are the followings. 

 

Theorem 1.  

1. given arbitrary k1 ≥ 1 and k2 ≥ 1    ℱ ~


 ℱ    ℱ ~t  ℱ 

2. given arbitrary k ≥ 1  Skℱ ~


 Sℱ 

3. given arbitrary k ≥ 1 Sℱ has exponential t -speed-up over the system Skℱ   
4. given arbitrary k ≥ 1 Skℱ has exponential t -speed-up over the system ℱ. 

 

Theorem 2.  

1. given arbitrary d1 ≥ 1 and d2 ≥ 1    ℱ ~


 ℱ    ℱ ~t  ℱ 

2. given arbitrary d ≥ 0 Sdℱ ~


 Sℱ 

3. given arbitrary d ≥ 0 Sℱ has exponential t -speed-up over the system Sdℱ 
4. given arbitrary d ≥ 0 Sdℱ has exponential t -speed-up over the system ℱ. 

The proofs of the points 1., 2., 3. for both theorems are given in [Chubaryan et al. 2008] and [Chubaryan, 
Nalbandyan, 2009], [Chubaryan et al. 2009] accordingly. Note that the proofs of the points 1. and 2. are based on 

the result of Buss [Buss, 1995], who proved that renaming Frege systems p--simulate Frege systems with 

substitution without any restrictions. 

The proof of point 4. for k = 1 from Theorem 1., using the formulas 

 φn =  ⊃ (  ⊃ p1) … ), is given in [Cejtin, Chubaryan, 1975], where only single 
substitution rule is considered, therefore the proof for every k ≥ 1 follows from point 1. 

To prove the statement of point 4. from Theorem 2. we show that for the formulas  

Ψn  = (p1 ⊃ p1) & (p2 ⊃ p2) & (p3 ⊃ p3) & … & (pn ⊃ pn) 

are true the following results 

 = O( ) and  = Ω(n). 

Really, the formula Ψn can be derived in S0ℱ as follows: 

1. p1 ⊃ p1 
2. p2 ⊃ p2   (renaming ) 
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3.  (p1 ⊃ p1) & (p2 ⊃ p2)   (   rule) 

4. (p3 ⊃ p3) & (p4 ⊃ p4)   (renaming ) 

5. ((p1 ⊃ p1) & (p2 ⊃ p2)) & ((p3 ⊃ p3) & (p4 ⊃ p4))   (   rule)   
 

2k + 1.    (p1 ⊃ p1) & …………… & (  ⊃ )   (   rule) 

2k + 2.    (  ⊃ ) & …………… & (  ⊃ )   (renaming ) 

2(k+1) + 1.   (p1 ⊃ p1) & …………… & (  ⊃ )   (   rule) 

On the other hand τ – set of  has 2k+1 formulas, and therefore from above auxiliary statements 1. and 2., 
follows that the number of steps in ℱ - proof of  must be no less than c ∙ 2 k for some c, depending only from 
choice of system ℱ.   

Note that if we compare the sizes of ℱ - proof and S1ℱ - proof for φn and the sizes of ℱ - proof and S0ℱ - proof 
for Ψn, then we obtain only polynomial increase. 

 

3. Main result 

Here we will consider the Frege system augmented with double restrictions substitution rule(single renaming). 
According to above notations, such system must be denoted by ℱ. 

In [Cook, Reckhow, 1979] it is proved that every two Frege systems are polynomially equivalent both by size and 
by length, therefore without loss of generality we assume that ℱ is a Frege system, whose language contains 
only the connectives ⊃ and ¬. 

The axiom-schemas are: 

1. A ⊃ (B ⊃ A) 
2. (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)) 
3. (¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A)  

and inference rule is Modus ponens. 

The main result of the paper is the following statement. 

Main Theorem.  

Sℱ ~


 ℱ 

First we will prove that ℱ ~


 ℱ and obtain the statement of the Main Theorem as a corollary. 

Let us recall some notions in addition. 
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Note that every Φ-proof has an associated graph with nodes, labeled by formulas, and edges from A to B if 
formula B is the result of applying of some inference rule to A (perhaps with another formulas). A proof is said to 
be tree-like if the associated graph is tree. It is obvious, that any derivation can be made tree-like by merely 
repeating parts of the derivation if need be. It is also obvious that by such natural transformation we have tree-like 
proof, the steps of which can be much more than the steps in original proof-sequence, nevertheless in [Krajicek, 
1994] a transformation of proof-sequence into tree-like proof is suggested such that the following statement is 
hold: 

 for every Frege system there exists a polynomial p() such that for every tautology φ if n is the steps of its proof in 
the sequence form, then steps of its tree-like proof is no more than p(n). 

Without making some important corrections in the proof of this statement, we prove 

 

Lemma 1. There exists a polynomial p() such that for every tautology φ if n is the number of steps of its ℱ-
proof in the sequence form, then the number of steps of its tree-like ℱ-proof is no more than p(n). 

In [Cejtin, Chubaryan, 1995] a natural method of transformation of a given Sℱ-proof into ℱ-proof is described. 
This method is following: let some formula ψ of Sℱ-proof be inferred from φ by substitution rule, i.e. there is a 
substitution σ such that ψ = φσ. To prove the formula ψ in ℱ we have to repeat the proof of φ, applying the 
substitution σ to all formulas of this proof. 

As the sequence of successive substitution is closed under composition, then described transformation method 
must be applied in the case when both formulas φ and φσ are used for the inference of some next formulas in the 
given Sℱ-proof, and therefore, as it is pointed in introduction, the number of steps of ℱ-proof can be much more 
than the number of steps of Sℱ-proof, but if Sℱ-proof is in tree-like form, then the number of formulas in 
corresponding ℱ-proof is no more than in Sℱ-proof, so we obtain the following statements. 

 

Lemma 2.  ℱ ~t ℱ 

Now we must compare the size of the proofs for arbitrary formula in ℱ and in ℱ. 

Let us recall the notion of right-chopping proof, introduced in [Nurijanyan, 1981]. For Intuitionistic and Minimal 
(Johansson’s) Logic there is proved the following statements: 

If the axiom F1 ⊃ (F2 ⊃ ( … ⊃ (Fm ⊃ G) … ) and the formulas F1, F2, … , Fm are used from the minimal (by steps) 
derivation of formula G by the successive applying of the rule modus ponens, then m ≤ 2, i.e. the length of 
branch, going to right and upwards from every node of the corresponding graph, is no more than 2. Such graph 
and hence the corresponding proof are called right-chopping. 

The analogous statement for classical Hilbert style systems is not valid, but using 1) the method of Nurijanyan, 2) 
proved in [Cejtin, Chubaryan, 1975] fact that every formula from τ – set of arbitrary derivable formula must be an 
element from τ – set at least of one axiom from this derivation, and 3) that the τ – sets of our axioms are the 
following: 
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1. τ(A ⊃ (B ⊃ A)) = {A ⊃ (B ⊃ A), B ⊃ A } 
2. τ((A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C))) = {(A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)),  

(A ⊃ (B ⊃ C)) ⊃ (A ⊃ C), A ⊃ C} 
3. τ((¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A)) = {(¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A), (¬A ⊃ ¬B) ⊃ A)}, 

we obtain the following statements. 

Lemma 3. Every ℱ-proof of a formula φ can be transformed into right-chopping proof of φ, the t-complexity of 
which is no more than t-complexity of original proof. 

Note that the depth of occurrence of each formula from τ – set of any above axioms is no more than 2. 

In [Buss, 1995] it is showed that a Frege proof for a formula can be transformed into new one, where the symbol-
size is related to line-size and the depth of the original proof. Recall that the depth of the proof is the maximum 
and/or depth of a formula ψ, occurring in the proof. 

More precise result is the following: 

a depth d Frege proof with m lines can be transformed into a depth d Frege proof with O(md) symbols. 

Using 1) the main idea of the proof of this result, 2) above remark about depth of formulas from τ – set of axioms, 
3) the possibility of evaluating of the sizes for interpolants and two contrary formulas, deduced from counter- 
factural hypothesis in right-chopping proof, we obtain the following statement. 

 

Lemma 4. If t is the number of steps in right-chopping ℱ-proof of tautology φ, then the size of this proof is no 
more than t3∙|φ|. 

 

Now we can proof the following 

 

Main Lemma.  ℱ ~


 ℱ 

Really, let we have some ℱ proof of arbitrary tautology φ with the size L. It is obvious that |φ| < L and               
t-complexity of this proof also is < L. At first we transform this proof into tree-like proof, then into ℱ-proof, and 
finally into right-chopping ℱ-proof. 

Using the statements of above Lemmas, we can state that there is a polynomial p(), depending only on the choice 
of Frege system such that  = O(p(L)). 

So ℱ p--simulates ℱ. The reverse p--simulation is obvious. 

Now the proof of Main Theorem follows from the results of Theorem 1, Theorem 2 and Main Lemma. 
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