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SOME PROPERTIES IN MULTIDIMENSIONAL 
MULTIVALUED DISCRETE TORUS 

Vilik Karakhanyan 

 

Abstract: Current research concerns the following issues: n-dimensional discrete torus generated by cycles of 
even length is considered; the concept of standard arrangement in the torus is defined and some basic   
properties of this arrangement are investigated. The issues considered are similar to discrete isoperimetry 
constructions, being related to concept of neighbourhood in terms of linear arrangements of vertices. Considered 
are the basic properties of solving the discrete isoperimetry problem on torus.  
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Introduction 

Isoperimetric problems appeared in the variational calculus of Euler and Lagrange as a classic mathematical 
issue. The similar considerations in discrete spaces are completely different in research technologies which can 
be easily seen by early works on isoperimetry [1-6]. The difference and the problem novelty appear on the 
boundary of the subset considered to be isoperimetric. First results were delivered in terms of linearization of 
domain elements. After this studies appeared example problems that exempt this property. And appeared one 
more model, - with cylindrical coordinates like the torus [5-6]. In which extend the rules of [1, 3] are extendable to 
this domain? This is the main topic of study of current investigation. 

Basic Definitions 

For any integers  ∞<≤≤≤≤ nkkk 211  the multivalued n-dimensional torus n
kkk n

T
21

 has been defined 

as the set of vertices: },,/),,,{( niZxkxkxxxT iiiin
n

kkk n
≤≤∈≤≤+−= 112121





, where 

two vertices ),,,( nxxxx 21=  and ),,,( nyyyy 21=  of n
kkk n

T
21

 are considered neighbours, if they differ 

by exactly one coordinate for which either 1=− || ii yx ; or the values equal 1+− ik  and  ik  respectively. The 

sum and difference of these vectors has been defined in the following way: 
,),,,(),,,( nnn zzzyxyxyxyxz  212211 =±±±=±=  where iii kzk ≤≤+− 1   and 

))(mod( iiii kyxz 2±≡ .  
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We will consider discrete isoperimetric problem for the torus. First let us define the concept of interior and 
boundary vertices for subsets of n

kkk n
T

21
.   

Definition 1 n
kkk n

TA
21

⊆  For a given subset  we say that a vertex Ax ∈  is an interior A point of , if all its 

neighbouring vertices belong to .A  Otherwise Ax ∈  is called  a  boundary .A vertex of  We denote by )(AB  

and ,)(AΓ  respectively, the subset of all interior and boundary points of .A  

 

||, n
kkk n

Taa
21

0 ≤≤

Discrete isoperimetric problem 

Given an integer . Determine a subset  ,n
kkk n

TA
21

⊆ ,|| aA = that have the largest 

number of  interior points among all subsets of size a : 

                                  .|)(|max|)(| '

|| '

'
ABAB

aA
TA

nkkk
=

⊆
=

21
 

Sets, being the solution of the discrete isoperimetric problem, we call optimal.  

In case when 121 ==== nkkk  , n
kkk n

T
21

 becomes n-dimensional unit cube nE ; the solution of the 

discrete isoperimetric problem in nE is given in [1-4]. In case of ∞==== nkkk 21 , the solution is given in 

[5]. Notice that in [4,5] the subset of boundary vertices of n
kkk n

TA
21

⊆  is defined as the set of vertices from 

,\ AT n
kkk n21

that have at least one neighbouring vertex from .A  

We denote by |||| x  the norm of a vertex ),,,( nxxxx 21=  where ∑
=

=
n

i
ixx

1
|||||| , and denote by ),( yxρ  

the distance between the vertices ),,,( nxxxx 21=  and ),,,( nyyyy 21=  where .||||),( yxyx −=ρ  

Now we define the concepts of sphere and envelope with a given centre and radius. 

Definition 2 }),(/{),( kyxTykxS n
kkk

n
n

≤∈= ρ
21

 The set   is called a sphere n
kkk n

Tx
21

∈ with the centre 

and radius k , and the set }),(/{),( kyxTykxO n
kkk

n
n

=∈= ρ
21

 is the envelope x with centre  and radius 

.k  

Let ),,,( nie ααα 21=  denote the unit vector of i-th direction, where 1=iα  and 0=jα  for ij ≠  , and let 

1~ and 0~  be the vectors with all 1 and all 0 coordinates respectively: 1~ = ),,,( 111   and 0~ = .),,,( 000   

For any subset n
kkk n

TA
21

⊆  and any nii ≤≤1, and ii kjkj ≤≤+− 1,  we make the following designation: 

.}/{ AxjexjeA ii ∈+=+  

We will consider partition of n
kkk n

T
21

 (respectively partition of n
kkk n

TA
21

⊆ )  on i-th direction, ni ≤≤1  and j -

th value, ii kjk ≤≤+− 1  and will denote by )( jT n
i  (respectively by )( jAi ): 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

162 

 ,}/),,,({)( jxTxxxxjT i
n

kkkn
n

i n
=∈==





2121  

)(}/),,,({)( jTAjxAxxxxjA n
iini  ==∈== 21 .  

 

Notice that the intersections of the sphere ),( kxS n  and the envelope ),( kxOn  with the (n-1)-dimensional 

torus )( jxT i
n

i + , are respectively the sphere and envelope with the centre ijex + and radius || jk−  in 

)( jxT i
n

i + . We make the following designations: 

          ;)(),(}/),({|)|,( jxTkxSjxykxSyjkjexS i
n

i
n

ii
n

i
n
i +=+=∈=−+   

,)(),(}/),({|)|,( jxTkxOjxykxOyjkjexO i
n

i
n

ii
n

i
n
i +=+=∈=−+   

where in case of 0<− || jk  these sets are empty: =−+=−+ |)|,(|)|,( jkjexOjkjexS i
n
ii

n
i ∅.  

It is clear that  




i

i

n

k

kj

n
i

n
kkk jTT

1
21

+−=

= )(  , ,)(


i

i

k

kj
i jAA

1+−=

=  ,|)|,(),(


i

i

k

kj
i

n
i

n jkjexSkxS
1+−=

−+=

,|)|,(),(


i

i

k

kj
i

n
i

n jkjexOkxO
1+−=

−+=   

for each ., nii ≤≤1   

For each )( jAi  in the partition of 


i

i

k

kj
i jAA

1+−=

= )(  we denote by ))(( jAB i  and ))(( jAiΓ , respectively, the 

subsets of its interior and boundary vertices in )( 1−n  -dimensional torus .)( jT n
i  

For any vertex ),,,( nxxxx 21=  of n
kkk n

T
21

, we denote by || x  and )(xδ  the vectors 

|)|,|,||,(||| nxxxx 21=  and ),,,()( nx αααδ 21= , where 1=iα  for  01 >+−inx  and 0=iα  for 

.01 ≤+−inx  

In general, for n -dimensional vectors ),,,( nxxxx 21=  and ),,,( nyyyy 21=  with nonnegative integer 

coordinates, we say that the vector x  lexicographically precedes y  (written by yx  ), if there is a number 

,1, nrr ≤≤  such that ii yx =  for ri <≤1  and .rr yx <  

Now we order the vertices of the torus n
kkk n

T
21

 as follows:  

vertex x  precedes vertex  y  written by yx ⇐ ), if and only if  

1. ,|||||||| yx <  or  

2. |||||||| yx = and )(yδ  lexicographically precedes )(xδ  , or  

3. ,|||||||| yx = )()( yx δδ =  and || y  lexicographically  precedes .|| x  
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It is easy to check that this ordering between the vertices of the torus n
kkk n

T
21

 is a linear order.  

The first a  vertices of the torus n
kkk n

T
21

by the above determined liner order we call standard arrangement

.||, n
kkk n

Taa
21

0 ≤≤

 of 

cardinality  

Basic properties of the standard arrangement 

In this section we investigate the basic properties of the standard arrangement. 

 

Theorem 1. A  If a set  is the standard arrangement in n
kkk n

T
21

, then its interior vertices precede the boundary 

vertices.  
 

Proof. Prove that if )(),,,( ABxxxx n ∈=21  and xy ⇐  , then )(),,,( AByyyy n ∈=21 . It suffices to 

show that Aey i ∈±  for nii ≤≤1, . Clearly, Aey i ∈+  for 0<iy  or ii ky =  and Aey j ∈−  for 

0>jy , such that |||||||| yey i <+  and |||||||| yey j <− , i.e. yey i ⇐+  and yey j ⇐− . On the 

other hand, it is clear that ii eyey −⇐+ , if 0=iy . Consequently, to complete the proof, it suffices to show 

that Aey i ∈⊕ , for ii ky ≠  , where 




≤−
>+

=⊕
0
0

ii

ii
i yifey

yifey
ey

,
,, . Starting from the definition of the linear 

ordering  ⇐ , consider the following three cases:  

I. .|||||||| xy <  

If ∑
=

=
n

i
ikx

1
|||| , then n

kkk n
TABA

21
== )( , and then the vertex y is also interior. And if ∑

=

≠
n

i
ikx

1
|||| , then 

there exists  0i , that 
00 ii kx ≠ . Then |||||||||||| ii eyxex ⊕≥>⊕

0
  for each nii ≤≤1, , that is 

0ii exey ⊕⇐⊕ . Hence Aey i ∈⊕ , for ni ≤≤1 . 

 

II. |||||||| xy =  and ).()( yx δδ   

Let ),,,,,()(  021 rnx −= αααδ  and ),,,,,()(  121 rny −= αααδ . If there is a number 0i  that  

• 0
0
>ix  and 

00 ii kx ≠ , or  

•  0
0
≤ix  and ri <0 ,or  

•  10
000
+−≠≤ iii kxx ,  and ri ≥0 , then  

for every ii ky ≠ , the vertex iey ⊕  precedes the vertex 
0i

ex ⊕ , as ||||||||
00 ii eyex ⊕=⊕  and 

)()(
00 ii eyex ⊕⊕ δδ  . Hence Aey i ∈⊕ , when ii ky ≠ .  
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Otherwise, if  ii kx =  for ri <≤1 , 1+−= rr kx  and ii kx =  or  1+−= ii kx  for  nir ≤<  then from  the 

condition |||||||| yx =  we find: 

01
1

1

1
=−+−−+− ∑∑

+=

−

=

n

ri
iirr

r

i
ii yxykyk |)||(|)(|)|(  (1) 

 

Since  0≥− || ii yk  for ri <≤1 ,  11 −≥−− rr yk  and  0≥− |||| ii yx , for  nir ≤<  (according to 

condition )()( yx δδ   ), then it follows from (1) that the following cases take place:  

a) ii ky =  for ri <≤1 , 1−= rr ky  and ii yx =  for ;nir ≤<  then it is clear, that for ri >  vertex  

iey ⊕ precedes vertex iex ⊕ , and  rr exey −=+ , therefore Aey i ∈⊕  for any ;ii ky ≠   

b) ii ky =   for ri ≤≤1 , and there is a unique number ri >0  such,  that 1
00

+= |||| ii yx  and 

ii yx = , for 0iinir ≠≤< , ,  then the vertex iey ⊕  is preceded by the vertex iex ⊕ , for 

0iiri ≠> , , and ,ri exey −=⊕
0

so again Aey i ∈⊕ , for any  ;ii ky ≠   

c) there is a unique number  ri <1  such that iiii kyky =−= ,|| 1
11

 for ,, 1iinir ≠≤≤ and ii yx =  

for .nir ≤<  In this case ,ri exey −=⊕
1

and vertex  iey ⊕  is preceded by the vertex iex ⊕  

for .nir ≤<  Hence Aey i ∈⊕ , when  ii ky ≠ . 

 

III. )()(,|||||||| xyxy δδ ==  and |||| yx  . 

Suppose that ii yx =  for ,nri ≤<≤1  and  .|||| rr yx <  

In this case if ,1+−= ii ky then Aey i ∈− , since .ri exey ⊕⇐−  When ii ky ≠  and 1+−≠ ii ky  , 

if  
•  ,ri ≤≤1 or  

• ri > and  ,|||| 1>− rr xy or  

•  1=−> ||||, rr xyri and there is a number ri >0 ,  that is 

,
0000

1 iiii kxorkx ≠+−≠  

then Aey i ∈⊕ , since in the first case, the vertex iey ⊕  precedes the vertex iex ⊕ , in the second case – 

precedes the vertex rex ⊕ , and the third – precedes the vertex .
0i

ex ⊕  

Otherwise, if ,|||| 1=− rr xy iiii kxorkx =+−= 1   for ,ri > then from the condition  

|||||||| yx =  we find  

∑
+=

=−
n

ri
ii yx

1
1 .|)||(|  (2) 
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Since )()( yx δδ =  then 0≥− |||| ii yx , for any ri > . Then ( 2 ) implies that there exists a unique number 

ri >0 , such that 1
00

+= |||| ii yx , and for 0iiri ≠> , , iii kyx ==  or .1+−== iii kyx It is  clear that  

.ri exey ⊕=⊕
0

  

Thus, we proved that the vertex  iey ±  belongs to ,A for any  ,, nii ≤≤1  i.e. vertex y  is an interior vertex 

of the set  .A  The theorem is proved. 

 

Corollary 1. If A  and C  are standard arrangements in the n
kkk n

T
21

 and |||| CA ≥ , then )()( CBAB ⊇  

and )()( jCjA ii ⊇  for any i and j, ni ≤≤1  , .ii kjk ≤≤+− 1  

For a subset A  of  n
kkk n

T
21

 , we denote by }),(/{)( AysomeforyxTxAO n
kkk n

∈≤∈= 1
21

ρ


. 

Then the following statement takes place: 

 

Lemma 1.  If A  is a standard arrangement, then )(AO  is a standard arrangement too.  

 

Proof. Let A  is the standard arrangement. Suppose that )(AOx ∈  and xy ⇐ . All we have to show is that 

y  belongs to )(AO . In case when Ax∈  , the proof is obvious. Now assume that Ax∉ . Then there exists a 

vertex Ax ∈1  and a direction 0i , that
0

1
iexx += , where 

00

10 ii kx <≤ , or 
0

1
iexx −=  where 01

0
≤ix . It 

is clear, that in both cases, )()( xx δδ =1  or )()( xx δδ 

1  and ||)||,~()( 10 xSAO n⊇ . Next we will find 

such a vertex that belongs to A  and is located at distance one from the vertex y .  

Since xy ⇐   then, according to the definition of ordering ⇐ , the following three cases are possible: 

Case I. ||;|||||| xy <  

Case II. |||||||| xy =  and )()( yx δδ  , where ),,,,,()(  021 rnx −= αααδ ,  

),,,,,()(  121 rny −= αααδ ;  

Case III. |||||||| xy = , )()( xy δδ =  and |||| yx  , where ii yx =  for nri ≤<≤1  and |||| rr yx < . 

In the first case, it is obvious that ||)||,~( 10 xSy n∈ ,  therefore y   belongs )(AO  too.  

In case II, if there is a number 1i   that 0
1
≠iy , for  ri <1 , or 0

1
≠iy  and 1

1
≠iy , when ri ≥1 , then  vertex 

1i
ey −  precedes 1x   in case of 0

1
>iy , and in case when 0

1
<iy , vertex

1i
ey +  precedes 1x  since  

• |||||||| 1
1

xey i =−  and )()(
1

1
ieyx −δδ   when 0

1
>iy ;  

• |||||||| 1
1

xey i =+  and )()(
1

1
ieyx +δδ   when 0

1
<iy .  
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Thus, in case of 0
1
>iy , the vertex Aey i ∈−

1
 and in case of 0

1
<iy  the vertex 

1i
ey +  belongs to A , 

hence )(AOy ∈ . Otherwise, if 0=iy , ,ri <≤1  1=ry  and 0=iy  or 1=iy  for ,nir ≤< then the  

conditions |||||||| xy =  and )()( yx δδ   imply the existence of a unique number 2i  such that the following 

conditions hold: 

a) iiri yxandxxri ==−=≠ 01
22 ,,   for any rii ,2≠ , or 

b) iii yxandxri =−== 1
22 ,   for any 2ii ≠ , or  

c) iiri yxandxxri ===< 01
22 ,,    for any rii ,2≠ , or  

d)  iiri yxandxxri ===> 02
22 ,,   for any rii ,2≠ .  

 

These conditions in their turn imply that if 20 ii ≠ , then 1
0

xey i ⇐− ,  and  if ,20 ii =  then 1xey r =−  . So 

the vertex 
0i

ey −  or the vertex rey −  belongs to A , hence, )(AOy ∈ .  

In case III, if 1>− |||| rr xy , or 1=− |||| rr xy and there is such number ri >3  that 10
3

,≠iy , then vertex 
1x  is preceded by 

4i
ey −  in case of 0

4
>iy , or is preceded by 

4i
ey +  in case of 0

1
<iy , (where ri =4  

for  1>− |||| rr xy  and 34 ii =   for 1=− |||| rr xy ), as 

||,|||||| 1
4

xey i =−  )()( 1
4

xey i δδ =−  and ||||
4

1
ieyx − , for ,0

4
>iy  

||,|||||| 1
4

xey i =+ )()( 1
4

xey i δδ =+  and ||||
4

1
ieyx + , for .0

4
<iy  

Thus, either vertex 
4i

ey −  or vertex 
4i

ey +  belongs to A , and hence )(AOy ∈ .  

Now consider the cases when 1=− |||| rr xy and 0=iy  or 1=iy , for any niri ≤<, .  

In both cases it follows from the conditions |||||||| xy = and )()( yx δδ = , that there is a unique number 

ri >5  such, that  

• 01
55
=−= ii yx ,  and ii yx = , for rii ,5≠  , or  

• 12
55
== ii yx ,  and ii yx = , for rii ,5≠ . 

Now if 05 ii ≠ , then either vertex 
0i

ey −  (for 0
0
>iy ) or vertex 

0i
ey +  (for 0

0
<iy ) precede the vertex 1x .  

If 05 ii = , then vertex rey −  coincides with 1x  when 0>ry , or vertex rey +  coincides with 1x  for 0<ry . 

Therefore, again we get a vertex belonging to A  and located at distance one from the vertex y . Hence 

)(AOy ∈ . Lemma is proved. 

 

Now let us derive some properties of the standard arrangement in the torus. 
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Let A  be a standard arrangement. Consider its partitions by i -th direction, ni ≤≤1 :  


i

i

k

kj
i jAA

1+−=

= )( .  

Further in this section we will prove the following properties:  

10. each subset )( jAi  is a standard arrangement  of ;)( jT n
i  

20. for any ));(()(,, 11 +−⊆+−<≤ jABejAkjj nnnn  

30. for any ));(()(,, 11 −⊆−≤< jABejAkjj nnnn  

40. for any ))(()()()(,, jABejjAjAkjj nnnnn −⊇+−+⊇−<≤ 1210  

or )()( jTjA n
nn −=− and  )};,,,,{(\)()( 111 121 ++=+ − jkkkjTjA n

n
nn   

50. for any ))(()()(,, jABjejAjAkjj nnnnn ⊇+−⊇<< 20  or )()( jTjA n
nn =  and 

)}.,,,,{(\)()( jkkkjTjA n
n

nn −−=− −121   

 

10 . This property is obvious.  

 

20. Let, )(),,,( , jAjxxxx nn −∈−= −121  , where nkj <≤1  . Then obviously  

• ||,|||||| xex n <+  

• ||,|||||| nin exeex +<++  when 0<ix  or ii kx = , 

• ||,|||||| nin exeex +<−+  when 0>ix ,  

• |||||||| xeex in =−+  and )()( in eexx −+δδ   when 1+−= ii kx ,  

• )()(||,|||||| inin eexxxeex ⊕+=⊕+ δδ   and |||| in eexx ⊕+ ,  when 

iii kkx ,1+−≠ , 

• |||||||| xeex in =++ and  )()( in eexx ++δδ   when .0=ix  

From these conditions follows that xex n ⇐+  and xeex in ⇐±+ , for any 11 −≤≤ nii, . As A   is 

standard arrangement, then Aex n ∈+  and Aeex in ∈±+  for any 11 −≤≤ nii, , i.e, nex +  is the 

interior vertex of the subset ).( 1+− jAn  

 30.  Can be proved in similar way. 

 40. Let, )(),,,( , 11121 +∈+= − jAjxxxx nn , where nkj <≤0 . Then  xejx n ⇐+− )( 12 , as 

.||||||)(|| xejx n <+− 12  Therefore, the vertex nejx )( 12 +−   belongs )( jAn − , i.e.,

.)()()( nnn ejjAjA 121 +−+⊇−  On the other hand, if ))((),,,( , jABjyyyy nn −∈−= −121   and 

)()( jTjA n
nn −≠− , then there exist such number ,, 11 00 −≤≤ nii  that 

00 ii ky ≠  and  .Aey i ∈⊕
0

Then 
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vertex  nejy )( 12 ++  precedes the vertex ,
0i

ey ⊕  since  ||||||)(||
0

12 in eyejy ⊕=++  and 

.))(()( ni ejyey 12
0

++⊕ δδ  Therefore, the vertex nejy )( 12 ++  belongs A , that is, 

))(()()( jABejjA nnn −⊇+−+ 121 ,  when  .)()( jTjA n
nn −≠−  And if )()( jTjA n

nn −=− , then all the 

vertices ),,,( , 1121 += − jyyyy n  with norm less than or equal to ∑
−

=

+
1

1

n

i
i jk  precede the vertex 

),,,( , jkkky n −= −121  , and only the vertex ),,,( , 1121 += − jkkky n  from )( 1+jT n
n  might not  belong to 

.)( 1+jAn   

 50. The proof is similar. 

 

As a corollary from the above properties we get the following lemma. 

Lemma 2.  If A  is standard arrangement and 1
21

−< |||| n
kkk n

TA


 then 

.|))((||))((||)(||)(||||)(| nnnnnn kABkABAAAAB ++−+−−= 110  

In general, a set n
kkk n

TA
21

⊆  possessing the above properties 10 – 50 of standard arrangement, might be 

itself non standard arrangement. However, we have  

Theorem 2.  Let the partition of some set n
kkk n

TA
21

⊆ satisfies the following conditions: 

))(()( nnn ejAOjA +=+1 , when 0<j  , and ))(()( nnn ejAOjA −+= 1 , for 1≥j , then if there is a 

number ,, 10 11 −≤≤ nkjj  that either  

a) ,),)(()(,),()( 11111 111 SrejSjArejSjA n
n
nnn

n
nn +=++−=−  

),)(( 1111 ++⊆ rejOS n
n
n  and )( 11 +jAn  is standard arrangement in )( 11 +jT n

n , and 

0=r , when 11 −< nkj , or  

b) ,),)(()(,),()( rejSjASrejSjA n
n
nnn

n
nn 11 11011 +=+−=−  ),( 110 +−⊆ rejOS n

n
n  

and )( 1jAn −  is standard arrangement in )( 1jT n
n − , and 0=r ,  when 11 −< nkj , 

then A  is standard arrangement in n
kkk n

T
21

.  

Proof.  

Consider case a). According to the conditions of the theorem and by Lemma 1, we have:  

1. for any  ,, nn kjkj ≤≤+− 1 )( jAn  is  standard arrangement  of )( jT n
n , and ==− )()( jAjA nn ∅,  for 

;11 11 −<+> nkjifjj  

2. "),~( AjrSA n ∪++= 10 1 , where "A  is a set of vertices ),,,( nzzzz 21= , for which 

21 ++= jrz ||||  and 0>nz  (note that for  ="A ∅  theorem is obvious, therefore further will assume that  

≠"A ∅); 
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3. for any 0≤j  the latest vertex of the subset )( jAn  precedes the latest vertex of the subsets )( 1−jAn  in 

;n
kkk n

T
21

 

4. for any 1≥j  the latest vertex of the subset )( jAn  precedes the latest vertex of the subset   )( 1+jAn  in 

.n
kkk n

T
21

 

 

Let ),,( , nxxxx 21=  is the latest vertex of the set A  (clearly, that "Ax ∈ ,  i.e. 0>nx  ), and 
n

kkkn n
Tyyyy





2121 ∈= ),,,(  is an arbitrary preceding x  vertex in the n
kkk n

T
21

. We must show, that  .Ay ∈  

First we notice that if nn xy = , then the vertex y  precedes x  in )( n
n

n xT  too. Then also, y  belongs to 

)( nn xA , so as )( nn xAx ∈  and )( nn xA  is standard arrangement in )( n
n

n xT . Therefore, further, we 

assume, that .nn xy ≠ Since the vertex y  precedes vertex x , then the following three cases are possible:  

 

Case I. ||;|||||| xy <  

In this case 11 ++≤ jry |||| , i.e. ,),~( 10 1 ++∈ jrSy n it means that .Ay ∈  

 

Case II. |||||||| xy =  and )()( yx δδ  . 

Let  ),,,,,()(  0
021 inx −= αααδ and .),,,,,()(  1

021 iny −= αααδ It is clear,  that 0>ny , as .0>nx  

If nn xy <≤1 , then from the condition |||||||| xy =   there exists such 1i  that 0
11
<− |||| ii yx , and if 

01 ii ≠ , then |||||||| yeex in =⊕−
1

 and )()( yeex in δδ 

1
⊕− , and  if 01 ii =   is a unique number for 

which 0
11
<− |||| ii yx , then or 1

11
−<− |||| ii yx  (that means that 1

11
+−≠ ii kx   so again 

|||||||| yeex in =⊕−
1

 and )()( yeex in δδ 

1
⊕− ), or 1

11
−=− |||| ii yx  and then .yeex in =⊕−

1
 

Thus we can always find a vertex 
1

1
in eexx ⊕−= , that either, 1xy ⇐  or 1xy =  and Ax ∈1  , as, 

according to the conditions of the theorem, .))(( 1−∈− nnn xABex  Repeating this process again at 

nn yxk −= , we find a vertex 
kin

kk eexx ⊕−= −1  such that kxy ⇐  or kxy = , and .)( nn
k yAx ∈   

Since )( nn yA  is standard arrangement, then .)( nn yAy ∈  

If 1≥> nn xy  and if we assume that )( nn yAy ∉ , then yzx ⇐⇐  ( according to property 4 ), where z  is 

the latest vertex of the set )( nn yA ,  which contradicts the supposition .xy ⇐ Therefore .)( nn yAy ∈  
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Case III. |||||||| xy = , )()( xy δδ =  and |||| yx  ;  

Suppose that ii yx =  for nri ≤<≤ 01 , and .||||
00 rr yx <  

If nn xy <≤1 , then the condition |||||||| xy =  and )()( xy δδ =  imply  

• ,|||| 2
00
≥− rr xy or  

• 1
00

=− |||| rr xy and there exists such number 011 rrr >, and nr ≠1 ,  that 

,|||| 0
11

>− rr xy or  

• ,|||| 1
00

=− rr xy 1=− nn yx and ii yx = , if ., nri 0≠  

Then it is clear that in the first case  ,
0rn eexy ⊕−⇐ as ||,||||||

0rn eexy ⊕−=  

)()(
0rn eexy ⊕−= δδ , ,|||| yeex rn 

0
⊕−  in the second case ,

1rn eexy ⊕−⇐ so as well 

||,||||||
1rn eexy ⊕−= )()(

1rn eexy ⊕−= δδ and ,|||| yeex rn 

1
⊕−  and  in the third case 

.
0rn eexy ⊕−=  Thus there is always such vertex 

1

1
in eexx ⊕−=  that 1xy ⇐  or 1xy =  , where 

01 ri =   or ,11 ri =  and Ax ∈1 , under the conditions of the theorem. Repeating this process again at 

nn yxk −= , we find such vertex 
kin

kk eexx ⊕−= −1  , that kxy ⇐  or kxy = , and .)( nn
k yAx ∈  

Since )( nn yA  is the standard arrangement in the ,)( n
n

n yT  then .)( nn yAy ∈  

If 1≥> nn xy , then again )( nn yAy ∈ , since otherwise (as in the case II) we would get ,yx ⇐ that would 

contradict  the condition .xy ⇐   

The proof is completed for the case a). Case b) can be proved in similar way. 

Consider a subset n
kkk n

TA
21

⊆  and its partitions: .)(


i

i

k

kj
i jAA

1+−=

=  We replace each )( jAi  by standard 

arrangement in the )( jT n
i  of the same cardinality, and this transformation is called iN - normalization of the set 

A  in respect to i - th direction. The resulting set we denote by .)(ANi  

Below we formulate one more property of the standard arrangement which is a generalization of Lemma 4 of [1] 
and further will be used proving the optimality of the standard arrangement of n - dimensional torus. 

 

Lemma 3. )( 1−n  If the standard arrangement is the optimal subset in the - dimensional torus and 
n

kkk n
TA

21
⊆ is an arbitrary set, then for any nii ≤≤1,  

|)(||))((| ABANB i ≥ . 

For a Boolean vector ),,,( nαααα 21=  the set 

})(/{)( αδα =∈= xTxT n
kkk

n
kkk nn  2121

 will be called α - part of the torus .n
kkk n

T
21

In general for an arbitrary 
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subset n
kkk n

TA
21

⊆ , .})(/{)( αδα =∈= xAxA  It is clear that )( n
kkk

E

n
kkk n

n
n

TT


 2121
α

α∈

=  and all  α -

parts the torus are isomorphic. Notice also that α - parts of n
kkk n

T
21

 are arranged according to order .⇐  

For two vertices ),,,( nxxxx 21=  and ),,,( nyyyy 21=  of ,)( n
kkk n

T
21

α   we define their sum as follows: 

,),,,(),,,( nnn zzzyxyxyxyx  212211 =+++=+  

where iiiiii kzkzyx ≤≤≡+ 1,)(mod  for 1=iα  and 01 ≤≤+− ii zk  for 0=iα  , for any 

.1, nii ≤≤  

In the α - part of n
kkk n

T
21

 we define sphere and envelope with the centre )(
21

n
kkk n

Tx


α∈ and radius k  in the 

following way: }/)({),( krerxykxS
n

i

n

i
iii

n i ≤−+== ∑ ∑
= =

+

1 1

11 α
α  and ),(\),(),( 1−= kxSkxSkxO nnn

ααα  , 

where ir  are non-negative integers, for any ., nii ≤≤1  

For any subset of α - parts of n
kkk n

T
21

, )( n
kkk n

TA
21

α⊆ , the subset of interior vertices is defined as follows:  

.}),(/{)( AxSAxAB n ⊆∈= 1αα  

It is easy to check that the linear order ⇐  between the vertices in each α - part of n
kkk n

T
21

 coincides with a 

diagonal sequence defined in [6], and its each initial segment is again called a standard arrangement.  

It is proven in [6] that if A  is the standard arrangement in )( n
kkk n

T
21

α , and )( n
kkk n

TC
21

α⊆ is an arbitrary set 

of cardinality ,|| A then .|)(||)(| CBAB αα ≥  

 

Now we prove a statement, referring to the standard arrangements  in α - parts,  which is a generalization of 
Lemma 3 in [1].  

 

Lemma 4.  If CandFEA ,,  are such standard arrangements in the α - part of n
kkk n

T
21

, that 

||||||||,|||||||| FECACFEA +=+≥≥≥   and either A  or C   are a sphere in α - part, then 

                                .|)(||)(||)(||)(| FBEBCBAB αααα +≥+  

 

Since all α - parts of the torus n
kkk n

T
21

 are isomorphic, then without loss of generality we will consider only the 

first α  - part,  that is .~),,,( 1111 == α Then the partitions of sets ),( kxS n
α  and ),( kxOn

α  by i -th direction 

are:  
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,),(),( , jkjexSkxS i
n

i

k

j

n
i

−+=
−

=
αα 

1

0

 

 ,),(),( , jkjexOkxO i
n

i

k

j

n
i

−+=
−

=
αα 

1

0

 

where ,))((),(, jxTjkjexS i
n

ii
n

i +⊆−+ αα ))((),(, jxTjkjexO i
n

ii
n

i +⊆−+ αα  and 

=−+=−+ ),(),( ,, jkjexOjkjexS i
n

ii
n

i αα ∅  for .0<− jk  

It is easy to see that if A  is  the standard arrangement in α  - part, then all ,)( jA1 except maybe one, are 

spheres in the )( 1−n -dimensional α - part and  

 



1

1
1

k

j

jABAB
=

= ))(()( αα   

or (3) 

)},,,,{(\))(()( n

k

j

kkkjjABAB 

 320
1

1

1

=

= αα   

when ))(()( 0101 jTjA nα=  and .))(()( 11 0101 +≠+ jTjA nα  

Indeed, if x  is the latest vertex of the set A  and ,)( 11 jAx∈  then any vertex ),,,,( nyyyjy 32= ,  such 

that |||||||| xy <  or |||||||| xy =  and ,1jj >  precedes ,x  and when |||||||| xy >  or |||||||| xy =  and 

,1jj <  none of the vertices ),,,,( nyyyjy 32=  precede the vertex .x Consequently, 













+−−−+⊆
=−−−+

≤<+−−−+
<≤−−−+

=

)||||,)(~(
,,)||||,)(~(

),||||,)(~(
,)||||,)(~(

)(

,

,

,

,

111
11

111
111

1111

11111

1111

111

1

jnxejOSwhere
jjifSjnxejS

kjjifjnxejS
jjifjnxejS

jA

n

n

n

n

α

α

α

α



 

  

It follows that  )())(( 1111 +⊆+ jAejABα  for any ,, 11 kjj <≤  except perhaps the one ,0j for which 

))(()( 0101 jTjA nα=  and .))(()( 11 0101 +≠+ jTjA nα  

 

Now we prove the Lemma 4 .  

The proof is by induction on .n  For 1=n  the proof is obvious. Suppose two standard arrangements are given 

in α - part: '),~( AkSA n
1α=  and ,'),~( CrSC n

1α=  where . Consider the partition of these sets by the 

first direction: 
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,)),)(~((

),)(~()),)(~(()(

,

,,









1

0

01

1
11

1
1

01011

1

11
1

211

111111

k

jj

n

n
i

n
j

j

k

j

jkejSA

jkejSjkejSjAA

+=

−

==

+−−+

+−−++−−+==

α

αα

 

,)),)(~((

),)(~()),)(~(()(

,

,,









1

1

11

1
11

1
1

11111

1

11
1

211

111111

k

jj

n

n
i

n
j

j

k

j

jrejSC

jrejSjrejSjCC

+=

−

==

+−−+

+−−++−−+==

α

αα

 

where ,),)(~(, 211 001
1
1 +−−+⊂ jkejOA i

n
α ∅ ,),)(~(, 211 111

1
1 +−−+⊆≠ jrejOC i

n
α  and  

1111 1111 eaejSajeS nn
i ++−+=+ ),)(~(),~( ,, αα  for .∑

=

=
n

i
ika

2
 

Two cases are possible: 

Case I. 10 jrjk −>−  or 10 jrjk −=−  and .|||| 01
1

1
1 >≥ CA  

In this case, if we remove some number of vertices from the subset 1
1C  of the set )( 11 jC  and add the same 

number of new vertices to the set )( 01 jA  so that the newly formed subsets )( 1
1
1 jC  and )( 0

1
1 jA  also are 

standard arrangements  in ))(( 11 jT nα  and ,))(( 01 jT nα where at least one of them was a sphere, then by 

property (4.4 ) and the induction supposition, the total number of interior vertices of the obtained sets  
                )())(\( 0

1
101

1 jAjAAA =   and )())(\( 1
1
111

1 jCjCCC =  

will not decrease. 

In the next step, instead of subsets )( 11 jC , and )( 01 jA  we consider  

• the subsets )( 111 +jC  and  )( 0
1
1 jA , where on the first step the )( 1

1
1 jC  was a sphere, or  

• the subsets  )( 1
1
1 jC  and  )( 101 −jA , where on the first step the  )( 0

1
1 jA  was a sphere, or  

• the subsets  )( 111 +jC and )( 101 −jA  , where on the first step )( 1
1
1 jC  and  )( 0

1
1 jA  were the 

spheres, 

and apply the above transfer of the vertices. This process continues until at least one of the sets A  and C  
becomes a sphere.  

Case II. 10 jrjk −<−  or 10 jrjk −=−  and .|||| 1
1

1
1 CA <  

In this case, first of all we remove from subset 'A of set A  a certain number of vertices and add the same 
number of new vertices to the set C , so that one of the sets A  and C  will be sphere, and at each step this 
transfer takes place between some of the subsets 01 jjjA ≥,)( , and 11 jjjC ≤,)( . Therefore, by the 

induction assumption, the total number of internal vertices can only increase. Received after this transformation 
sets 1A  and 1C  can only be of two kinds:     
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     a) ,),)(~(),~( , 11111 11
1

1
1

+−−+=+=
=

jrejSrSC n
k

j

n
αα 

 

        
,)),)(~(()),)(~((

)),)(~((''),~(

,,

,









1

2

2

1
11

2
12121

11

1

1

1

211111

1111

k

jj

nn

n
j

j

n

jkejSAjkejS

jkejSAkSA

+=

−

=

+−−++−−+

+−−+==

αα

αα

 

    

     b) ,),)(~(),~( , 1111 11
1

1
1

+−−+==
=

jkejSkSA n
k

j

n
αα 

 

.)),)(~(()),)(~((

)),)(~((''),~(

,,

,









1

3

3

1
11

2
13131

11

1

1

1

211111

1111

k

jj

nn

n
j

j

n

jrejSCjrejS

jrejSCrSC

+=

−

=

+−−++−−+

+−−+==

αα

αα

 

In case a) it is clear that .112 +<+− rjk Hence, if instead of sets 1A  and 1C  we take the set  

 

       ,)),)(~(()),)(~(( ,, 



1

1
1111

1

2 211111
k

rkj

nn
rk

j

jkejSjkejSA
+−=

−

=

+−−++−−+= αα        

     
,)),)(~((

)),)(~((),)(~(

,

,,









1

2

2

1
11

2
1212111

1

1

2

211

111111

k

jkrj

n

nn
jkr

j

jrejS

CjkejkrSjrejSC

++−=

−+−

=

+−−+

+−−+−++−−+=

α

αα

  

 where |||| 2
1

2
1 AC =  and )( 2

2
1 jkrC +−  is  the standard arrangement in the ,))(( 21 jkrT n +−α it is 

obvious that |||||||| 1122 CACA +=+ , and by (3)  

                  .|)(||)(||)(||)(| 1122 CBABCBAB αααα +=+  

So, if one of the sets 2A  and 2C  is sphere, then the lemma is proved; otherwise we come to the case I, since 
.11 2 +−>+ jkr  

In case b), since ,,, 131010 jjkjjrjk ≤≤−<−  then .111 311
+−≤+−≤+− jrkkkr  Hence, if 

instead of sets 1A  and 1C   take the sets  

  ,)),)(~(()),)(~(( ,, 



1

1

1

1
1111

1

2 211111
k

kkrj

nn
kkr

j

jrejSjrejSC
++−=

+−

=

+−−++−−+= αα  



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

175 

   
,)),)(~(()

),)(~((),)(~(

,

,,









1

3

3

1
11

2
1

313111

1

1

2

211

111111

k

jrkj

n

nn
jrk

j

jkejSA

jrejrkSjkejSA

++−=

−+−

=

+−−+

+−−+−++−−+=

α

αα

                     

        
where |||| 2

1
2
1 AC =  and )( 3

2
1 jrkA +−  is the standard arrangement at the ,))(( 31 jrkT n +−α then 

|||||||| 1122 CACA +=+  and, by (3) ,  

        .|)(||)(||)(||)(| 1122 CBABCBAB αααα +=+  

So, if one of the sets 2A  and 2C  is sphere, then the lemma is proved; otherwise we come to the case I, since 
.31 jrkk −<−  The proof is completed. 

Bibliography 

[1] Aslanyan L.H., Karakhanyan V. M., Torosyan B. E., On the compactness of Subsets of Vertices of the n-dimensional unit 
cube, Dokl. Akad. Nauk SSSR,241,  N 1 (1978), pp. 11-14, Translation in Soviet Math, Dokl., American Mathematical      
Society, v.10, 4, 1978, pp. 781-785. 

[2] Aslanyan L.H, The discrete isoperimetric problem and the related extremal problems in discrete spaces (in Russian), 
"Problemy Kibernetiki", 36, Moscow, 1979, pp. 85-127. 

[3] Harper L., H., Optimal numberings and isoperimetric problems on graphs, Journal of Combinatorial theory, 1 (1966), pp. 
385-393. 

[4] Katona G., The Hamming-sphere has minimum boundary, Studia Scient. Math. Hungarica, 10 (1975), pp. 131-140. 

[5] Wang D. L., Wang P., Discrete isoperimetric problems, SIAM J. Appl. Math., Vol. 32, N4 (1977), pp. 860-870. 

[6] Wang D. L., Wang P., External configurations on a discrete torus and a generalization of the generalized Macauley 
theorem, SIAM J. Appl. Math., Vol.33, N1 (1977), pp.55-59. 

Authors' Information 

 
Vilik Karakhanyan – Senior Researcher, Institute for Informatics and Automation Problems, NAS RA, 
P.Sevak St. 1, Yerevan 14, Armenia 

 
  


	Introduction
	On geometry of the n-dimensional unit cube
	Chain split in monotone recognition
	Chain computation
	Association rule mining alternatives through the chain split technique
	Software Implementation
	Bibliography
	Authors' Information
	Introduction
	matrices with different rows
	Greedy approach for solving (P2)
	Local Optimality
	Bibliography
	Authors' Information
	Introduction
	The aim of the paper
	Finite-state Machine Implementations
	Aho-Corasick Automaton
	NL-UNL Dictionary structure
	ACA Construction
	Exporting DOM into a Text Document
	Dictionary Lookup Using the ACA
	Development of Dictionary Lookup Program Using ACA
	Lookup Time Optimization
	Results and Conclusion
	Bibliography.
	Authors' Information
	1. Introduction
	2. Preliminary
	3. Main result
	Bibliography
	Author's Information
	Introduction
	Basic Definitions
	Basic properties of the standard arrangement
	Bibliography
	Authors' Information
	Introduction
	The lattice of MMIS-es
	Duality between the intersection of all MMIS-es and union of all maximum matchings
	Conclusion and further works
	Bibliography
	Authors' information
	Introduction
	System Architecture
	An Outline of Crypto Protocols
	Interaction Protocols in Multi-agent Systems
	NetInt Software System
	Bibliography
	Authors' Information



