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SOME PROPERTIES IN MULTIDIMENSIONAL
MULTIVALUED DISCRETE TORUS

Vilik Karakhanyan

Abstract: Current research concerns the following issues: n-dimensional discrete torus generated by cycles of
even length is considered; the concept of standard arrangement in the torus is defined and some basic
properties of this arrangement are investigated. The issues considered are similar to discrete isoperimetry
constructions, being related to concept of neighbourhood in terms of linear arrangements of vertices. Considered
are the basic properties of solving the discrete isoperimetry problem on torus.
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Introduction

Isoperimetric problems appeared in the variational calculus of Euler and Lagrange as a classic mathematical
issue. The similar considerations in discrete spaces are completely different in research technologies which can
be easily seen by early works on isoperimetry [1-6]. The difference and the problem novelty appear on the
boundary of the subset considered to be isoperimetric. First results were delivered in terms of linearization of
domain elements. After this studies appeared example problems that exempt this property. And appeared one
more model, - with cylindrical coordinates like the torus [5-6]. In which extend the rules of [1, 3] are extendable to
this domain? This is the main topic of study of current investigation.

Basic Definitions

For any integers 1<k, <k, <---< K, <oo the multivalued n-dimensional torus Tk’l’kzmk" has been defined
as the set of vertices: Ty x = {(X;s Xy, X)) —k; +1< X, <k;, x; € Z,1<i <n} | where
two vertices x = (x,,X,,...,X,) and y =(y,,¥,,...,y,) of T, _, are considered neighbours, if they differ

by exactly one coordinate for which either | x, — y, |=1; or the values equal —k; +1 and k; respectively. The
sum and difference of these vectors has been defined in the following way:
Z=Xxty=(X,ty, X, £y, X, ty,)=(2,2,,---,z,), Where —k, +1<z, <Kk, and

z; =(x; £ y;)(mod 2k; ).
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We will consider discrete isoperimetric problem for the torus. First let us define the concept of interior and

boundary vertices for subsets of Tk?kzmk,, )

Definition 1 For a given subset Ac T, , we say that a vertex x € A is an interior point of A , if all its

neighbouring vertices belong to A . Otherwise x € A is called a boundary vertex of A. We denote by B(A)

and T(A), respectively, the subset of all interior and boundary points of A .

Discrete isoperimetric problem

Given an integer a,0<a <| Tk’:kz_,,kn | . Determine a subset A c Tk'l’k2,,,kn, | A= a,that have the largest

number of interior points among all subsets of size a:

|B(A)|= max [B(A)].
< kika--kn
|Al=a

Sets, being the solution of the discrete isoperimetric problem, we call optimal.

In case when k, =k, =---=k, =1, Tk?k,..k" becomes n-dimensional unit cube E" ; the solution of the
discrete isoperimetric problem in E"is given in [1-4]. In case of k, = k, =--- =k, = o, the solution is given in
[5]. Notice that in [4,5] the subset of boundary vertices of A < Tk”lkzmkn is defined as the set of vertices from
Tk”lkzmk" \ A, that have at least one neighbouring vertex from A .

We denote by || x || the norm of a vertex x = (x,, x,,...,x,) where || x ||= ZI x; |, and denote by p(x,y)

i=1

the distance between the vertices x = (x,,x,,...,x,) and y =(y,,¥,,....y,) where p(x,y) = x-y .
Now we define the concepts of sphere and envelope with a given centre and radius.

Definition 2 The set S"(x,k)={y €Ty ., /p(X,y) <k} is called a sphere with the centre x € T,

and radius k , and the set O"(x,k)={y €T, ., /p(x,y)=k} is the envelope with centre x and radius
k.

Let e, = (a,,,,...,a,) denote the unit vector of i-th direction, where o, =1 and «; =0 for j =i , and let

Tand 0 be the vectors with all 1 and all 0 coordinates respectively: T = (1,1,...,1) and 0= (0,0,...,0).
Forany subset Ac T, , andany i, 1<i<n and j,—k; +1< j <k, we make the following designation:
A+je, ={x+je, I xeA}.

We will consider partition of T, , - (respectively partition of A < T/, , ) oni-th direction, 1</ <n and j-

th value, — k; + 1< j < k; and will denote by T,"(j) (respectively by A(j)):
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T ={x=(x.Xs,....x,) €T i | X; = J},

A()={x=(x,X,,...x,)e Al x; =} =ANT/"(j).

Notice that the intersections of the sphere S”(x, k) and the envelope O"(x, k) with the (n-1)-dimensional
torus T,"(x; + j), are respectively the sphere and envelope with the centre x + je, and radius kK—| j| in

T."(x; + j). We make the following designations:
S (x+ Je k=1 j1)={y € S"(x, k) [y, = X, + [} = S"(x )N T/ (x, + );
O (x+je, k=1j)={y eO"(x. k) I y; = x; + j} = O"(x, )NT"(x; + j),
where in case of K—| j |< 0 these sets are empty: S (x + je,, k—|j|)=O/ (x + je,, k—|j|)=2.

k,- k,’ ki
tis dear that Ty, = UT (), A= UA(U). S"(xk)= |US!(x+je, k1],

Jj=—k;+1 Jj=—k;+1 Jj=—k;+1

ki
O"(x,k)= [JOI (x+ je, k=1]l),

J=—k;+1

foreach i, 1<i<n.

ki
For each A, (j) in the partition of A= | JA(J) we denote by B(A,(j)) and T'(A,(j)), respectively, the

Jj=—k;j+1

subsets of its interior and boundary vertices in (n —1) -dimensional torus T," ().

For any vertex x=(x,,X,,...,Xx,) of Tk7k2..<k” , we denote by |x| and &(x) the vectors

[ x|=(x, 1,1, 1,1 %, ) and 8(x)=(,,s,...,,), Where a; =1 for x >0 and «; =0 for

n—i+1

X <0.

n—-i+l —

In general, for n -dimensional vectors x = (x,,x,,...,x,) and y =(y,,¥,,...,¥, ) With nonnegative integer
coordinates, we say that the vector x lexicographically precedes y (written by x < y ), if there is a number

r,1<r<mn,suchthat x, =y, forI<i<rand x, <y, .
Now we order the vertices of the torus T, , ~as follows:
vertex x precedes vertex y written by x < y ), if and only if
LA xll<lly Il or
2./l x|I=Ily]l and &(y) lexicographically precedes &(x) , or

B xIl=llyll, o(x)=5(y) and | y | lexicographically precedes | x |.
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It is easy to check that this ordering between the vertices of the torus Tk’.]kz-»‘kn is a linear order.

The first a vertices of the torus T,/, , by the above determined liner order we call standard arrangement of

cardinality a,0<a<|T/ ., |.

Basic properties of the standard arrangement

In this section we investigate the basic properties of the standard arrangement.

Theorem 1. Ifa set A is the standard arrangementin 7,7, , , then its interior vertices precede the boundary

vertices.

Proof. Prove that if (x,,x,,...,x,)=xeB(A) and y < x ,then (y,,y¥,,...,¥,) =y € B(A). It suffices to
show that y +e, € A for j,1<i<n . Clearly, y+e, €A for y, <0 or y, =k, and y—-e; € A for
y; >0, such that ||y +e |l<|yll and |[[y—e; |[<Ilyll,ie y+e <y and y—e;, < y. On the
other hand, itis clearthat y + e, < y —e, , if y, = 0. Consequently, to complete the proof, it suffices to show

y+e;,ify, >0,

. . Starting from the definition of the linear
y—e;,ify, <0

that y @ e, € A, for y, # k; , where y @ e, ={

ordering <, consider the following three cases:

LAy Tl x 11

If || x|I= k; . then A=B(A)=T,, ., ,and then the vertex y is also interior. And if || x [| # >k, , then
i=1

i=1

there exists /., that x, =k, . Then [[x®e, [|>|[x||=]|ly@e; || for each i,1<i<n, thatis

y®e <x®e, .Hence y®e, e A for1<i<n.

Iy [1=11 x 1l and 5(x) < &(y).

Let 5(x)=(a,,a,, ", ,,0,---) and S(y) = (a,,c,, 2, ,1,---) . If there is a number j, that
*x;, >0and x; =k, ,or
* X, <0 andj, <r,or

* X; <0,x, #—k, +1and i, >r,then
0 0 0

for every y, =k, , the vertex y @e, precedes the vertex x@e, , as || x®De, ||=|yDe, || and

0 !

o(x@e; )<o(y@e; ). Hence y ®e, € A, when y, = k.
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Otherwise, if x; =k, for 1<i<r, x, =—k, +1 and x; =k, or x;, =—k, +1 for r <i < n then from the

condition || x ||=]| y || we find:
I’l n
(ki=1y; D+ (k, =1=y, )+ 2 (X 1=1y; =0 (1)
i=1 i=r+1
Since k,—|y, |20 for1<i<r, k,-1-y,>-1and |x,|-|y,|>0, for r<i<n (according to

condition 5(x) < &5(y) ), then it follows from (1) that the following cases take place:

a) y,=k for1<i<r,y. =k -1 and x;, =y, for r <i<n; then it is clear, that for j > r vertex
y @ e, precedes vertex x @ e;,and y +e, = x—e,,therefore y @ e, € A forany y, =k, ;

b) y;=k; for 1<i<r, and there is a unique number i, >r such, that|x, |=|y, |+1 and
x;=y,;, for r<i<n,i#i,, then the vertex y ®e, is preceded by the vertex x @ e, , for
i>ri#i,,and y®e, =x-e, ,soagain y®e €A, forany y, #k;

c) there is a unique number i, <r such that |y, =k, =1y, =k forr<i<n,i#i, and x; =y,
for r<i<n.Inthis case y ®e, =x—e, ,and vertex y @ e, is preceded by the vertex x @ e,

for r<i<n.Hence y@®e, e A, when y, #k;.

WLy =1l x 1 o(y) = 6(x) and [ x [<] y |
Suppose that x, =y, for 1<i<r<n,and | x, |<|Yy, |.

In this case if y; =—k; +1,then y—e, € A ,since y—e, <x@e, . When y, #k, and y, # -k, +1,
if

e 1<j<r,or

e i>rand |y, |-|x, [>1,0r

e i>r,|y,|-1x,|=1 andthereisanumber i, >r , thatis

X, #-k, +1 or x, #k, ,
0 0 0 0

then y @ e, € A, since in the first case, the vertex y @ e; precedes the vertex x @ e, , in the second case —

precedes the vertex x @ e, , and the third — precedes the vertex x @ e, .

Otherwise, if |y, |—-|x,|=1, x,=-k,+1 or X, =k, for i>r, then from the condition

Il x11=Il y I we find

S 1-1y D=1 @

i=r+1
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Since 5(x)=35(y) then | x; | —|y, |>0,forany i >r . Then (2)implies that there exists a unique number
iy >r,suchthat | x;, |=|y, [+1,andfori>r,i=#i,, x; =y, =k, or x; =y, =—k; +1.ltis clear that

yde, =xde,.

Thus, we proved that the vertex y + e, belongs to A ,forany j,1</j<n, ie.vertex y is an interior vertex

of the set A . The theorem is proved.

Corollary 1. If A and C are standard arrangements in the 7,, , and [A[|>|C |, then B(A) 2 B(C)
and A;(j)2C,(j) foranyiandj 1<i<n, -k, +1<j<Kk,.
Forasubset A of T, , ,wedenoteby O(A)={xeT/, , /p(x,y)<1 forsome yeA}.

Then the following statement takes place:

Lemma 1. If A isa standard arrangement, then O(A) is a standard arrangement too.

Proof. Let A is the standard arrangement. Suppose that x € O(A) and y < x. All we have to show is that
y belongs to O(A). In case when x € A , the proof is obvious. Now assume that x ¢ A. Then there exists a

vertex X' € A and a direction iy, thatx = x' +e, , where 0< x; <k, ,or x=Xx'—e, wherex; <0. It

is clear, that in both cases, S(x')=8(x) or 8(x') < &(x) and O(A) 2 S"(0, || x" ||). Next we will find

such a vertex that belongs to A and is located at distance one from the vertex y .
Since y < x then, according to the definition of ordering <, the following three cases are possible:
Case . || y [[<1I xII;

Case 1. |lyll=llxl] and  S(x)<o(y) , where O(x)=(e,,a,,....a,,0..)

YnriVse.

oy)=(a,a,,....a, ,,l...);
Caselll. ||y ||=I x|, o(y)=05(x) and | x |<|y |, where x; =y, for I<i<r<nand|Xx, |<]|y,]|.
In the first case, it is obvious that y € s"(6, || x" |]), therefore y belongs O(A) too.

In case Il, if there is a number 7, that y, #0,for i, <r,or y, #0and y;, #1, when i, >r,then vertex
y —e; precedes x' in case of y; >0,andincasewhen y, <0,vertexy +e; precedes x' since
o Ily—e, lI=llx"ll and 5(x')< 5y —e,) when y, >0;

o lly+e, llI=llx" |l and 5(x') < S(y +e, ) when y, <0.
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Thus, in case of y;, >0, the vertex y —e, € A and in case of y; <0 the vertex y +e; belongs to A,
hence y € O(A). Otherwise, if ¥y, =0,1<i<r, y,=1and y,=0 or y, =1 for r <i<n,then the
conditions || y || =|| x || and &(x) < S(y) imply the existence of a unique number /, such that the following

conditions hold:

a) I,=r, x, =-1, x,=0 and x;=y, foranyi=#i,,r,or

I

b) i,=r, X, =-1 and x; =y, foranyi=i,,or

¢ i,<r, x, =1, x,=0 and x,=y, foranyi=#i,r,or

d i,>r x, =2, x,=0 and x;=y, foranyi=i,r.

These conditions in their turn imply that if i, =i,, then y —e;, < x', and if i, =i, ,then y —e, = x' . So
the vertex y —e, orthe vertex y —e, belongsto A, hence, y € O(A).

Incase lll, if [y, || x, [>1,0r |y, |—|x, |=1and there is such number i, > r that y;, # 0,1, then vertex
x' is preceded by y —e; incase of y; >0, oris preceded by y +e; in case of y;, <0, (where i, =r

for |y, |—-|x, |>1andi, =i, for|y, |—]|x, |=1)as
ly—e, lI=llx"Il, 5(y—e,)=0(x") and | x" |<|y~e, |,fory, >0,
ly+e, lI=ll x|l 5(y+e,)=5(x") and | X" |<|y+e, |, fory, <O.
Thus, either vertex y —e; orvertex y +e,; belongsto A, and hence y € O(A).

Now consider the caseswhen |y, | —| x, |[=1land y;, =0 or y, =1,forany i,r<i<n.

In both cases it follows from the conditions || ¥ ||=]|| X ||and &(x)=(y), that there is a unique number
iy > r such, that
o X =-1 Yi, =0and x;, =y, fori#i,,r ,or

Is

e X, =2y, =land x;, =y, fori=igr.
Now if /5 # iy, then either vertex y —e; (for y, >0)orvertex y +e; (for y, <0) precede the vertex x'.

If iy =i, then vertex y —e, coincides with x' when y, >0, or vertex y + e, coincides with x' for y, <0.
Therefore, again we get a vertex belonging to A and located at distance one from the vertex y . Hence

y € O(A). Lemma is proved.

Now let us derive some properties of the standard arrangement in the torus.
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ki
Let A be a standard arrangement. Consider its partitions by i -th direction, 1<i<n: A= UA,( J).

jeky+
Further in this section we will prove the following properties:
10. each subset A, (j) is a standard arrangement of T,"(j);
20.forany j, 1<j<k,, A, (-j)+e, cB(A, (-j+1));
30.forany j, 1<j<k, A,(j)-e,<B(A,(j-1)
4. forany j, 0<j<k,, A, (-))2A,(j+1)-(2j+1)e, 2B(A,(-/))
or A, (~j) =T/ (~j)and A,(j+1)=T,(j+D\{(K, Kyrook, 4D

S.forany j, 0<j <k, A,(j)2A,(=))+2je, 2B(A,(j)) or A,(j)=T,(j) and

AN =T DK Ky k=)
10, This property is obvious.
20 Let, x =(x;,X, =, X, ,,—j)e A,(—j),wherel < j <k, . Then obviously

o Alx+e, lI<llxIl,

e ||x+e,+e |l<|x+e, ||, when x; <0 or x; =k;,

o |[x+e,—e |l<||x+e, ]|, when x; >0,

e ||x+e,—¢e; =] x|| and 5(x) < S(x+e, —e;) when x; =k, +1,

e |Ix+e, @e ||=]|l x|, 0(x)<5(x+e,De;) and |x|<|x+e,De | , when
X, #-K, +1k;,

e |Ix+e,+e ||=]lx|land &(x)<S(x+e, +e;) whenx; =0.

From these conditions follows that x +e, < x and x+e, te, < x, forany i,1<i<n-1.As A is
standard arrangement, then x+e, € A and x+e, te, € A for any i,1<i<n-1, ie, x+e, is the

interior vertex of the subset A, (—j +1).
30. Can be proved in similar way.

40, Let, x=(x,,X, X, ,j+1)eA,(j+1), where 0<j<k, . Then x-(2j+1)e,<=x , as
[| x—(2j+1)e, [|<|| x||. Therefore, the vertex x-—(2j+1)e, belongs A, (-j) , e,
A (=))2A,(j+1)-(2j+1)e,. On the other hand, if y=(y,y, Y,.—J)eB(A,(~j)) and

A,(=j)# T, (=), then there exist such number i,, 1<i, <n-1,thaty, #k, and y®e;, €A.Then
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vertex ¥y +(2j+1)e, precedes the vertex y®e,, since ||y+(2j+1)e,||=|ly@e; || and
o(y®e; )<o(y+(2j+1)e,). Therefore, the vertex y+(2j+1)e, belongs A , that s,
A,(j+1)-(2j+1e, 2B(A,(-j)), when A (—j)=T,(-j). Andif A, (—j)=T,(—j), then all the

n

n-1
vertices Y =(y,,¥, =¥,/ +1) with norm less than or equal to Zk,-+j precede the vertex

i=1
y =(k.,k, -k, ,,—j), and only the vertex y = (k,,k, ---,k,,,j+1) from T,"(j+1) might not belong to
A, (j+1).

50, The proof is similar.

As a corollary from the above properties we get the following lemma.

Lemma 2. If A is standard arrangement and |A|<|T/ , |-1 then
|B(A)| =1 A=A, 0) | -TA, M) | +]|B(A,(=k, + 1)) | +| B(A,(k,)) .

In general, aset AcT,, ,  possessing the above properties 17 — 5° of standard arrangement, might be
itself non standard arrangement. However, we have

Theorem 2.  Let the partiton of some set AcT,, , satisfies the following conditions:

A, (j+1)=0(A,(j)+e,), when j<0 ,and A,(j)=O(A,(j+1)—e,), for j>1, then if there is a

number j,, 0< j, <k, —1, that either
a) An(_j1)= Srr:(_jlen’r-{—l)’ An(jl +1)= S:((h +1)e,,,r)USl )
S, cO;((j, +1e,,r+1) and A,(j, +1) is standard arrangement in T,"(j, +1), and

r=0,whenj, <k,-1,or
b) An(_jl):S:(_jlen’r)USO g An(jl +1):S:((j1 +1)e,,,r), So gor?(_.hen’r"'l)
and A, (—j,) is standard arrangementin T,'(—j,),and r =0, when j, <k, -1,

then A is standard arrangement in Tk7k2~»kn'

Proof.
Consider case a). According to the conditions of the theorem and by Lemma 1, we have:

1.forany j, -k, +1<j<k,, A, (j)is standard arrangement of T,"(j),and A,(—j)=A,(j) =9, for
j>j+1 it j <k, -1;

2. A= S”(5,r+j1 +1)UA" | where A" is a set of vertices z=(z,z,,~--,z,) , for which
|| z||=r+j,+2 and z, >0 (note that for A"=< theorem is obvious, therefore further will assume that

A"z D),
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3.forany j <0 the latest vertex of the subset A, (j) precedes the latest vertex of the subsets A, (j—1) in

n .
Tk, 3

4. forany j >1 the latest vertex of the subset A, (/) precedes the latest vertex of the subset A, (j +1) in

n
Tk,kzmk .

n

Let x=(x,,X, =, x,) is the latest vertex of the set A (clearly, that x e A", ie. x, >0 ), and

Y=Yy Y, )E Tk’l’kr_kn is an arbitrary preceding x vertex in the Tk”lkz,,‘kn . We must show, that y € A.

First we notice that if y, = x,,, then the vertex y precedes x in T,'(x,) too. Then also, y belongs to
A,(x,), soas xeA,(x,) and A,(x,) is standard arrangement in T,(x,) . Therefore, further, we

assume, that y,, # X, . Since the vertex y precedes vertex x, then the following three cases are possible:

Casel. [| y [I< |l xI;

Inthiscase || y [|<r+j, +1,ie. yeS”(5,r+j] +1),itmeansthat y € A.

Casell. ||y ||=I| x || and &(x) < S(y).

Let o(x)=(a,,a,...,cx,; ,0,...)and S(y) = (,,,,...,cx,; ,1,...) .ltisclear, that y, >0,as x, >0.

’ n,/O’ e ] n—io’““

If 1<y, <x, , then from the condition || y [|=]| x || there exists such i, that | x;, |—|y, |<0, and if
iy #iy, then|[x—e, @e, [|=]|y |l and 5(x-e, ®e, )=<(y), and if i =i, is a unique number for
which | x; [-]y; [<0 , then or |x; [-]y, |[<-1 (that means that x;, #-k, +1 so again

Ix—e, ®e, II=lly |l and 5(x—e, ®e,)<5(y))or | x, ||y, =1 andthen x—e, Be, =y .

Thus we can always find a vertex x' = x—e, ®e, , that either, y < x' or y=x"and x' €A , as,
according to the conditions of the theorem, x—e, € B(A,(x, —1)). Repeating this process again at

k=x,-y, wefindavertex x“ =x"" —e ®e, suchthat y < x“ or y =x*,and x* € A (y,).
Since A,(y,) is standard arrangement, then y € A (y,,) -

If y,>x,>1andif we assume that y ¢ A, (y,) ,then x < z < y (according to property 4 ), where z is

the latest vertex of the set A, (y,) , which contradicts the supposition y < x . Therefore y € A, (y,,)-
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Case lll. || y [I=[I xII, 6(y)=5(x) and | x [< ]y [;
Suppose that x; =y, for 1<i<r,<n,and | X, |<|y, |.

If1<y, <x, ,thenthe condition || y ||=|| x || and &(y)= &(x) imply

e |y, I-Ix,[=2,0r
. |y,0 |—|x,0 |=1 and there exists such number r,, r,>r, and r,#n , that
|.yr] |_|Xr1 |>O’0r
. |y,0|—|x,0|:1,xn—yn=1andx,.=y,.,ifi¢r0,n.
Then it is clear that in the first case y<x-e,®e. , as |[yll=llx-e,®e, |l

o(y)=o(x-e,®e,) , |[x-e,®e, |<|y]|, in the second case y < x-e,De, ,so as well
lyll=llx-e, ®e, |, 6(y)=0(x-e,®e,) and |x-e,®e, |<|y]|, and in the third case
y=x-e,®e, . Thus there is always such vertex x' =x—e, ®e, that y < x' or y =x', where
iy=r, ori =r,and x' €A, under the conditions of the theorem. Repeating this process again at
k=x, -y, wefind such vertex X“ = X" —¢, @e;,  thaty<x“ory=x" and x“cA,Ly,).

Since A, (y,) is the standard arrangementinthe T,"(y,), then y € A, (y,) -

If y,>x,>1,thenagain y € A,(y,) , since otherwise (as in the case Il) we would get x < y , that would

contradict the condition y < x .

The proof is completed for the case a). Case b) can be proved in similar way.

ki
Consider a subset Ac T, , and its partitions: A= UA,( j). We replace each A,(j) by standard
J=—k;+1

arrangement in the T,"(j) of the same cardinality, and this transformation is called N,- normalization of the set

A inrespect to i - th direction. The resulting set we denote by N, (A).

Below we formulate one more property of the standard arrangement which is a generalization of Lemma 4 of [1]
and further will be used proving the optimality of the standard arrangement of n - dimensional torus.

Lemma 3. If the standard arrangement is the optimal subset in the (n—1) - dimensional torus and

Ac Tk”lkzu_kn is an arbitrary set, thenforany i, 1<i<n
| B(N;(A))|=| B(A)].

For a Boolean vector a=(a,a,,a,) the set

T 4 )={xeTg,  [(x)=a} wilbe called « - part of the torus 7,7, , .In general for an arbitrary
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subset Ac T, ., a(A)={xeAld(x)=a}. Itis clear that T/, , = U (T, ) and al «-

acE"

parts the torus are isomorphic. Notice also that « - parts of 7,7, ~are arranged according to order <.
For two vertices x = (x,,x,,---,x,) and y =(y,,y,,---,y,,) of (T, ), we define their sum as follows:

X+y:(X1 TYuXo t Yo X, +yn):(zl’22"“’zn)’
where x; +y, =z,(modk;),1<z, <k, for «;=1 and -k, +1<z, <0 for o, =0 , for any

i,1<i<n.

In the « - part of Tk’]’kzmkn we define sphere and envelope with the centre x € a(Tk’l’kz.,,kn ) and radius & in the

following way: S”(x,k)={y = x+ > (-1)** re, I ' r, <k} and 07 (x,k) = S”(x, k)\ S”(x, k1) ,
i1 i1

where r; are non-negative integers, forany i, 1<i<n.

For any subset of « - parts of Tk’.’kzmkn ,Ac O‘(Tk?kz--»kn ), the subset of interior vertices is defined as follows:

B,(A)={xeAlS](x1)c A}.

It is easy to check that the linear order < between the vertices in each « - part of T, _,  coincides with a

diagonal sequence defined in [6], and its each initial segment is again called a standard arrangement.

It is proven in [6] that if A is the standard arrangement in a(Tkazmkn ),and C OK(Tk'sz...k" )is an arbitrary set

of cardinality | A|, then| B, (A)|>|B,(C)].

Now we prove a statement, referring to the standard arrangements in « - parts, which is a generalization of
Lemma 3 in [1].

Lemma 4. If A E,Fand C are such standard arrangements in the « - part of Tk’:kz---k” , that
|AIZ|E|=|F|=|C]|, |A|+|C|=|E|+|F| and either A or C are a sphere in « - part, then
|B,(A)|+1B,(C)|=]|B,(E)|+|B,(F)I.

Since all ¢ - parts of the torus T, , are isomorphic, then without loss of generality we will consider only the

first & - part, thatis o = (1, 1,--+, 1) = 1 . Then the partitions of sets S (x,k) and O (x,k) by i-th direction

are:



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 172

k-1

So(x.k)=J S, (x+je,, k-,
j=0
k-1

O (x.k)=JO., (x+ je, k-J),
j=0

Where S,i(x+je, k—Jj)caT"(x;, +J)), O, (x+ je;, k—j)c a(T"(x; +J)) and
S,i(x+je,k—j)=0,,(x+je,k—j)=C for k—j<0.

It is easy to see that if A is the standard arrangement in « - part, then all A,(j),except maybe one, are

spheres in the (n —1) -dimensional « - part and

B.(A)=UB.(A ()

or (3)

B, (A)=JB.(A N\ o ks ks K, )}

when A, (j,) = a(T,"(J,)) and A,(j, +1) # a(T," (j, +1))-

Indeed, if x is the latest vertex of the set A and x € A,(j,), then any vertex y =(j,y,,¥5,--,¥,), such
that || y [I<[l x|l or |l y ll=Il x || and j > j, , precedes X, and when || y || >|| x || or || y [|=]| x || and

j<j,, none of the vertices y=(j,y, y;y,) precede the vertex x. Consequently,
SL(T+(j-De,llxll-n-j) , if 1<j<j
Se(L+(j=De,ll x[|-n—-j+1), if j <j<Kk
82,1(1+(j1_1)e1s”X”_n_j1)US’ if j:jp

where Sgog,l(l+(j1_1)e1,||xll_n_j1+1)

Al(j):

It follows that B, (A,(j))+e, < A (j+1) for any j,1<j <k, , except perhaps the one j, , for which

a

Ajy)= a(Tln(jo )) and A (j, +1) = a(Tln(jo +1)).

Now we prove the Lemma 4 .

The proof is by induction on n. For n =1 the proof is obvious. Suppose two standard arrangements are given

in - part: A= S(’;(T, k)UA"and C = S;’(T, r)UC', where . Consider the partition of these sets by the

first direction:
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k;
A=U = Us (T+(-e, k—-j+1))US" (T+(j, Ve, k—j, +1)U
Jj=1

K ~
UATU(C S (T+(-e, k-j+2)),

J=Jo+1
C= Ucm (Usl(1+</—1e r—j+1))US” (1T+(j, -e,r—j, +1)U

uc! U( Us (d+(j-e,r-j+2)),

J=ih+1
where Al cO" (T+(j,-1)e, k—j,+2), @ =#ClcO’ (T+(j,-1)e,,r—j,+2), and

S;”,(T+je],a) (1+( -l)e,,a+1)+e, fora= Zk

Two cases are possible;
Casel. k—j,>r—j ork—j,=r—j and|A |>|C||>0.

In this case, if we remove some number of vertices from the subset C, of the set C,(jj,) and add the same

number of new vertices to the set A, (j,) so that the newly formed subsets C/(j,) and A/(j,) also are

standard arrangements in «(T,"(j,)) and «(T,"(J,)),where at least one of them was a sphere, then by

property (4.4 ) and the induction supposition, the total number of interior vertices of the obtained sets
A'=(A\A (j,)UA(j,) and C' =(C\C,(j,))UC|(j,)

will not decrease.
In the next step, instead of subsets C,(j,), and A, (j,) we consider
o thesubsets C,(j, +1) and A/(j,), where on the first step the C|(j,) was a sphere, or
o thesubsets C/(j,) and A (j, —1),where on the first step the A/(j,) was a sphere, or
o thesubsets C,(j, +1)and A (j, —1) , where on the first step C,(j,) and A/(j,) were the
spheres,

and apply the above transfer of the vertices. This process continues until at least one of the sets A and C
becomes a sphere.

Casell. k—j, <r—j,ork—j,=r—j and|Al |<|C]]|.

In this case, first of all we remove from subset A of set A a certain number of vertices and add the same
number of new vertices to the set C, so that one of the sets A and C will be sphere, and at each step this
transfer takes place between some of the subsets A (j),j>j,, and C,(j), j < j,. Therefore, by the
induction assumption, the total number of internal vertices can only increase. Received after this transformation
sets A' and C' can only be of two kinds:
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ki ~
a)C' =S(1,r+1)=JSI (1+(j-1)e,r—j+l),

Jj=1

A'=SI(T,k)UA"= (US (j-De,k-j+1))U
U(Ss,(T+(j, - ey, k—j, +HUA? )U US (—De, k—j+2)),

K ~
b) A'=S)(1,k)=JS,(T+(j-1)e, k—j+1),

j=1

C'=8!(1,r)uc"= US (T+(j-De,r—j+1))U
U(S?, (T+(j, -1)e,, r—j, +1)UCZ U Us e, r—j+2)).
Jj=j3+1

In case a) it is clear that k—j, +1<r+1. Hence, if instead of sets A' and C' we take the set

US (j-De,k—j+1)) US (j-e, k—j+2)),

Jj=k-r+1

r—k+j,-1

U So(T+(-De,r—j+1)U(SI(T+(r—k+j,-e, k—j, +1)UC?)

U( US (j-1e,r—j+2)),

Jj=r—k+j,+1

where |C} |=| A | and C’(r—k+j,) is the standard arrangement in the «(T,"(r—k+j,)), it is
obvious that |A*|+|C*|=]|A"|+]|C"| : and by (3)
|B,(A*)|+]|B,(C*)|=|B,(A")]+]B,(C")].

So, if one of the sets A* and C* is sphere, then the lemma is proved; otherwise we come to the case |, since
r+l1>k—-j,+1.

In case b), since k—j,<r—j,j, <k ,j;<j,then r—k +1<k-k +1<r—j, +1. Hence, if

instead of sets A and C' take the sets

r—k+k,

= Usi@+Gi-er=j+U( USi(T+(i-De.r=j+2).

J=r—k+k +1
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k—r+j;-1

A = | S (T+(j-Ve, k—j+)U(SL(T+(k-r+j,-e,r-j,+)U
j=1

UAU( LSt (- k—j+2)).

J=k—r+j3+1

where |C] |=| Al | and A’(k—-r+j,) is the standard arrangement at the a(T,"(k —r + j,)), then
|A*|+]|C*|=|A"|+|C"|and, by(3),

|B,(A*)|+]B,(C*)|=]|B,(A")]+]|B,(C")].
So, if one of the sets A* and C* is sphere, then the lemma is proved; otherwise we come to the case |, since
k —k, <r— j, . The proof is completed.
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