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ON THE STRUCTURE OF MAXIMUM INDEPENDENT SETS IN BIPARTITE GRAPHS 

Vahagn Minasyan 

 

Abstract: In this paper it is shown that for bipartite graphs the structure of the family of maximum independent 
sets can be described constructively, in the following sense. For a bipartite graph there are some “basic” 
maximum independent sets, in terms of which any maximum independent set can be described, in the sense that 
there is one-to-one correspondence between a maximum independent set and an irreducible combination of 
these “basic” maximum independent sets. König’s theorem states that there is duality between the cardinalities of 
maximum matching and minimum vertex cover. Viewing the mentioned structure, in this paper it is shown that 
another duality holds, which is between the sets rather than their cardinalities. We believe that this duality is not 
just of theoretical interest, but it also can yield to a usable algorithm for finding a maximum matching of bipartite 
graph. In this paper we do not present such algorithm; instead we mention what approaches we plan to use in 
further works to obtain such algorithm. 

Keywords: bipartite graph, maximum independent set, distributive lattice, duality. 

ACM Classification Keywords:G.2.1 Discrete mathematics: Combinatorics 

 

Introduction 

Let  be a graph, where  is the set of vertices, and  is the set of edges. Two vertices  
are said to be adjacent with each other, if ; otherwise they said to be independent. A set of vertices is 
called an independent set, if any two vertices of it are independent. For instance,a set consisting of one vertex is 
an independent set. Amaximum independent set (MMIS) is one with the maximum cardinality among all 
independent sets (don’t be confused with the maximal independent set, which is an independent set, no proper 
superset of which is an independent set). The cardinality of MMIS-es of  is denoted by . A set of vertices in 

, such that each edge of  is adjacent with some vertex in that set, is called a vertex cover. For instance, the 
set of all vertices of  is a vertex cover. A minimum vertex cover is one with minimum cardinality among all vertex 
covers;that cardinality is denoted by . It is easy to see that each vertex cover is a complement of some 
independent set and vice-versa, so the complement of any MMIS is a minimum vertex cover and vice-versa. Thus 
we get . The concepts of independent set and vertex cover are related with the concept of 
matching, which is a set of edges, no distinct two of which share a common vertex. For instance, a set consisting 
of one edge is a matching. A maximum matching is one with maximum cardinality among all matchings; that 
cardinality is denoted by . Note, that for a given matching and a given vertex cover, each edge of the 
matching is “covered” by some vertex of the vertex cover, and different edges are covered with different 
vertices.This means that the cardinality of matching doesn’t exceed the cardinality of the vertex cover, so 
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. is called bipartite, if its vertices can be decomposed into two independent sets  and , such 
that  and . A bipartite graph is denoted as , where  and  are said to 
be its parts. König’s theorem [Harary, 1969] states, that for a bipartite graph it holds . For a general 
graph the problem of finding a MMIS is NP-hard [Karp, 1972], however for various specific classes of graphs, 
including bipartite graphs, there are polynomial-time algorithms [Harary, 1969].In some applications [Johnson, 
1988] it is needed to deal with all MMIS-es of the graph, so it is of both theoretical and practical interest to 
describe the family of all MMIS-es and to show how to construct not just any, but some particular MMIS. Usually 
this is done simply by generating all MMIS-es of the graph, and for some specific classes of graphs there are 
algorithms which generate all MMIS-es with polynomial-time delay between two successive outputs 
[Kashiwabara, 1992] (note, that in some cases the number of MMIS-es to be generated is potentially exponential, 
and there are various notions on what to consider a “polynomial-time” algorithm for problems of this kind 
[Johnson, 1988]). In this paper we describe the family of MMIS-es of a bipartite graph by describing its structure, 
rather than generating all MMIS-es. We show that MMIS-es of a bipartite graph form a distributive lattice with 
respect to simple set operations (see the preliminaries regarding lattice theory bellow in this section), and we 
show how to obtain that lattice. After it is done, various queries can be performed, and generating all MMIS-es is 
one of them. The classic solution of the problem of finding just one MMIS of a bipartite graph is by Ford-Fulkerson 
algorithm [Ford, Fulkerson, 1962], which provides a MMIS of bipartite graph , performing 

 operations in worst case, where . There is an optimization of this approach, called 

Hopcroft-Karp algorithm [Hopcroft, Karp, 1973], which provides a MMIS performing  operations in 

worst case. In this paper we also discuss the problem of providing an algorithm, which obtains a MMIS of bipartite 
graph while sequentially handling its vertices. Here we show that to do this, it is preferable to obtain the greatest 
(in the sense of the lattice of MMIS-es) MMIS, rather than just any MMIS.In some sense, the greatest MMIS 
corresponds to the intersection of all MMIS-es. In this paper we prove that a sort of duality holds between the 
intersection of all MMIS-es and the union of all maximum matchings. Besides this duality is of theoretical interest, 
we also believe, that it can yield to a usable algorithm which provides a MMIS of bipartite graph. In this paper we 
do not provide such algorithm; instead we mention what approaches we plan to use in order to obtain that result 
in further works. Next in this section we give some preliminaries regarding distributive lattices. 

There are two equivalent definitions for lattices [Birkhoff, 1948]. Let  be a carrier set. In terms of partially ordered 

setslattice is a pair , where  is such partial order on , that every two elements have infimum and 

supremum in . In terms of abstract algebra, lattice is a triple , where  and  are such binary operations 

on , that for all  it holds: 
 

 and , 

 and , 

 and , 

 and , 
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distributive lattice is one where the following property also holds: 
 

and . 

Operations  and  are called join and meet respectively. The equivalence of mentioned two definitions can be 
checked by showing that if a lattice is defined as a partially ordered set, than one can define join and meet 
operations on it as  and , and if lattice is defined as an abstract algebra, 
then one can define a partial order on it as  if and only if  (or ). For instance, the 
family of all subsets of a set is a lattice, where join and meet operations are respectively the union and 
intersection of subsets; as these operations are distributive with respect to each other, then the mentioned lattice 
is distributive as well. Actually, not only the family of all subsets, but any ring of subsets (i.e. a family of subsets, 
which is closed with respect to the union and intersection operations) is a distributive lattice. Birkhoff’s 
representation theorem [Birkhoff, 1948] states that the opposite claim is also true, i.e. each distributive lattice is 
isomorphic to some ring of subsets. Another example of a distributive lattice is the set of natural numbers with 
operations of taking the least common multiple and the greatest common divider as join and meet operations 
respectively. Note, that the corresponding partial order is the divisibility of the numbers, and as one divides any 
number, and any number divides zero, then they are the least and the greatest elements of the lattice 
respectively. It may not be the case for infinite lattices, but any finite lattice has the least and the greatest 
elements. For a lattice , an element  is called join-irreducible, if it is not the least element, and if for 
all ,  implies  or . It is known [Birkhoff, 1948], thateach element of a distributive 
lattice has only one irreducible representation as a join of join-irreducible elements of that distributive lattice. In 
this sense, a distributive lattice can be considered as given, if its join-irreducible elements are given. 

In the next section we show that MMIS-es of a bipartite graph form a distributive lattice with respect to simple set 
operations and show how to find the lowest and the join-irreducible elements of that lattice. In the next section we 
discuss the problem of obtaining a MMIS of bipartite graph while sequentially handling its vertices and show that 
a sort of duality holds between the intersection of all MMIS-es and the union of all maximum matchings. Finally 
we provide a short conclusion of this paper and mention the further works. 

The lattice of MMIS-es 

Let  be a bipartite graph. Here we will define join and meet operations on MMIS-es of  and will 
show that the family of all MMIS-es of  is a distributive lattice with respect to that operations. First we need 

some notations.We denote by  the family of all MMIS-es of . For a set of vertices  we denote 

and ; we will call these sets projections of  on  and  respecvely. Also for any set of 
edges  and set of vertices , we will denote by  the set of vertices of , where each vertex 
is adjacent with some vertex of  by an edge of . Now we claim that if  and are MMIS-es of , then 

implies  and vice-versa: 

 

 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

179 

Claim 1: for all  if and only if . 

 

Indeed, as  and  are MMIS-es, then  is the set of all vertices in , which are independent with , 
and  is the set of all vertices in , which are independent with , thus if , then only some 
vertices of  are also independent with , so we get . The opposite direction of the claim can 
be proved identically. We define a partial ordered set  as follows: 

 

 for all  we define  if . (1) 

 

 

 

 

 

So we have defined a partial order on MMIS-es according to their projections on ; from Claim 1 it follows, that 
we would get the dual partial order of one we got, if we define it according to the projections on . In this sense, 
the partial ordered set  is invariant with respect to the parts of , though we define it with respect to . 
Now let  and  be MMIS-es of . We define join and meet operations for  and  as follows: 

 

  (2) 

and 

 : (3) 

 

At Figure 1a the shaded part corresponds to  and at Figure 1b the shaded part corresponds to 
. We will show that  is a distributive lattice with respect to these operations. First we show, that: 

   

   

 

 

   

   

 

 

Figure 1a Figure 1b 
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Claim 2: is closed with respect to operations defined at (2) and (3); i.e.  and  are MMIS-es. 
 

Note, that  and  are independent sets, as any vertex in  is independent with any 
vertex in , so to prove this claim we need to show that . From (2) and (3) 
it follows, that and .  

Note, that for any two sets  and  we have . So we get 

Thus, we got . As  and  are 
independent sets, then we also have and , so we get 

, which proves the claim. Note that , so from (1) it follows, that 
 is the supremum of  and  in . Similarly it can be show that  is the infimum of 

 and in . Thus, we have shown that  is a lattice; now we will show, that: 

 
Claim 3: is distributive. 
 

Indeed, from Claim 2 it follows that that the family of projections of all MMIS-es on  is closed with respect to the 
union and intersection operations, and thus, as it is mentioned above, forms a distributive lattice with respect to 
them (the same holds for the projections on ). Now note that the bijection  is an isomorphism between 
that lattice and , so the last is also distributive. Also note, that the bijection  yields to the lattice 

, which is the dual of ; this is because at (1) we have defined the partial order on  with 

respect to . So we have proved that the family of all MMIS-es of a bipartite graph forms a distributive lattice with 
respect to join and meet operations defined by (2) and (3). As it is mentioned before, each distributive lattice is 
described by its least and join-irreducible elements. Next in this section we show how to find these elements for 

. 
 

Let  be a bipartite graph and  be the lattice of its MMIS-es. Let  be a MMIS of  and  
be a maximum matching of . As it is mentioned before, the complement of  is a minimum vertex cover; we will 
denote by . Also we will denote by  the set of vertices which are not adjacent with . We claim, that:  

 

Claim 4:  each edge of  is adjacent with exactly one vertex of , and each vertex of  is adjacent with some 
edge of  (see Figure2). 
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Figure 2 

 

Indeed, as  is a vertex cover, then any edge of  is adjacent with some vertex of , and as  is a matching, 
then different edges of  are adjacent with different vertices of . Note that  is a maximum matching, and  is 
a minimum vertex cover, so by König’s theorem we have . This means, that there are no vertices in , 
which are not adjacent with an edge of , and that there are no edges of  which are adjacent with two vertices 
of  (as otherwise there would be less edges in  then there are vertices in ). So the claim is proved.  

Note, that from this claim it follows, that for any MMIS  and for any maximum matching  it holds  (see 
Figure 2), where  is the set of vertices which are not adjacent with . Now let be a set of vertices of . If 
there are some MMIS-es containing , then from the definition of lattice  it follows, that there is the least 
among them. Next we will describe how to find it.  

 

From Claim 4 it follows, that: 

if there is a MMIS which contains , then it also contains ; we will denote it by . 

Indeed, if MMIS contains , then  and obviously  (see Figure 2). From the other hand, 
Claim 4 states, that each edge of  is adjacent with exactly one vertex of , so no edge of  connects a vertex 
of  with a vertex of ; this means, that if  then , which proves the claim (see Figure 2). 
From this claim it follows, that if there is a MMIS which contains , then it also contains  for any . 
We will denote , where  is the least integer, such that  (obviously 
such  exists). We claim, that: 

there exists a MMIS containing  if and only if for some maximum patching  it holds , and if it 
holds, then the least MMIS containing  is the following: . 

To be short, in the proof of this claim we will denote and . From the denotation of  
it follows, that there is no edge, which connects a vertex of  with a vertex of , and there is no edge of  
which connects a vertex of  with a vertex of . Note, that if , then all vertices in  are 
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adjacent with , and as there is no edge of  between  and , then . From König’s 
theorem it follows, that in this case  is a MMIS. Otherwise, if , then  is adjacent with 
some vertex of , and from Claim 4 it follows, that there is no MMIS containing . So we have proved this claim. 
Based on this claim it is easy to describe an algorithm, which provides the least MMIS of  containing the given 
set of vertices , if such MMIS exists. The algorithm takes as input the graph , a maximum matching of it 
and a set of vertices ; if  has a MMIS containing , then it provides the least of such MMIS-es, and 
otherwise it reports that no MMIS of  contains : 
 

Algorithm 1:  

A1 denote by  the given maximum matching of , 

denote by  the set of vertices which are note adjacent with , 

A2 set  and , 

A3 set , 

A4 if , then report, that  has no MMIS containing  and exit, 

A5 if  didn’t get greater, then provide as the least MMIS of  containing  and exit, 

A6 set , 
A7 go to step A3. 

 

Note that this algorithm performs  operations in the worst case. Also note that in order to find the least 
MMIS of , we can find a maximum matching  and call Algorithm 1 for set , where  is the set of vertices 
which are not adjacent with , as any MMIS of  contains . Obviously, this algorithm can be also used to find 
the greatest MMIS of . As it is mentioned in the proof of Claim 3, the projections of all MMIS-es on  are closed 
with respect to the union and intersection operations, thus they form a ring of subsets, and the bijection 

 is an isomorphism between that ring and . This means, that the join-irreducible elements of 
 are the isomorphic images of the join-irreducible elements of the ring of projections, so for any , the 

least MMIS containing  is join-irreducible in . Thus, by Algorithm 1 one can find all join-irreducible 
elements of . For two partially ordered set  and  denotes the partial ordered set all isotonic 
functions from  to , where for two isotonic functions  and  if for all  
[Birkhoff, 1948]. Birkhoff’s representation theorem states, that if  is a distributive lattice and  is the partially 

ordered set consisting of its join-irreducible elements, then , where  denotes the chain with length  and 

 denotes the dual of . From this theorem it follows, that each element of  has exactly one irreducible 
representation as join of join-irreducible elements of . In this sense, the family of all MMIS-es of  can be 
considered as obtained, if for all  the least MMIS containing , as well as the least MMIS of  are 
obtained. 

Duality between the intersection of all MMIS-es and union of all maximum matchings 

Let  be a bipartite graph. In the previous section we have shown, that the MMIS-es of  form a 
distributive lattice with respect to join and meet operations defined at (2) and (3). This lattice has the greatest and 
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the least elements, so in this sense there are the greatest and the least MMIS-es in ; we will denote them 
respectively by  and . We will also denote the union and the intersection of all MMIS-es respectively by 

and . Note, that from (2) and (3) it follows, that: 

 

 and . (4) 

 

We will say, that “a new vertex  is being added” to bipartite graph , bearing in mind that we 
obtain a “new” bipartite graph , which parts are  and , and which edges are the edges of  in 
addition with some “new” edges, which connect  with some vertices of . We claim, that: 

 
Claim 5: while “adding a new vertex”  to ,  increments if and only if  is independent with . 
Obviously, either or . Note, that if  is independent with , then 

 is the greatest MMIS of . Otherwise, i.e. if  is adjacent with some vertex of , then no 
MMIS of  is independent with , so . Thus the claim is proved. Next we will describe an 
algorithm, which obtains the greatest MMIS of  based on the greatest MMIS of . Note, that by so we will 
provide an algorithm, which sequentially handles vertices of a bipartite graph and provides a MMIS of it. As Claim 
7 states, if , then the greatest MMIS of  can be easily obtained. Otherwise, i.e. if 

, then we have, that  is a MMIS of , but it may not be the greatest one.If we obtain a maximum 
matching of , then by Algorithm 1, we can obtain the greatest MMIS of .  

 

We claim that: 

each vertex of  is not adjacent with some maximum matching of . 

 

Let  be a maximum matching of , and . If  is not adjacent with , then the claim is proved; 
otherwise, let  be a vertex, such that  (see Figure 3). As it is denoted at (4), 

 is the greatest MMIS of , so no MMIS of  contains . This means, that while calling 
Algorithm 1 for , it stops at step A3 by finding a vertex  and a path from  to , which has odd length, 
and even edges of which are edges of  (see Figure 3).  

 

Note that if we remove from  the edge  and the even edges of the path found by Algorithm 1, then add to 
 the odd edges of that path found by Algorithm 1, then we will get a maximum matching of , which is not 

adjacent with  (see Figure 3). Thus the claim is proved. Note, that if  (i.e. if  is adjacent with 
some vertices in ), then by König’s theorem we have , so in this case each “new” edge 
belongs to some maximum matching of .  
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Figure 3 

 

Now we will describe an algorithm, which provides the greatest MMIS of  based on the greatest MMIS of . 
The algorithm takes as input the graph , the greatest MMIS of it, a maximum matching of it and the “new” 
vertex; it provides a maximum matching and the greatest MMIS of the “new” graph : 

 

denote by  the given greatest MMIS of , 

denote by  the given maximum matching of , 

denote by  the given “new” vertex, 

denote by  the set of vertices which are note adjacent with , 

if  is independent with , then set , set  and go to step A8, 

if  is adjacent with some vertex , then set   and go to step A7, 

pick a vertex , which is adjacent with  and denote by  the vertex for which , 

call Algorithm 1 for , denote by  the path it finds to some vertex  and set , 

set , remove even edges of  from , add odd edges of  to  add  to , 

call Algorithm 1 for  and set  to the set it provides, 

provide  as the MMIS of  and  as a maximum matching of . 

 

As Algorithm 1 performs  operations in the worst case, then Algorithm 2 also performs  operations 
in the worst case. This means, that the algorithm which sequentially handles vertices of a bipartite graph and for 
each vertex calls Algorithm 2, performs  operations in the worst case, where . Next we 
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show that a sort of duality holds between the intersection of all MMIS-es and the union of all maximum matchings. 
We believe that this duality can yield to a more efficient algorithm which provides the greatest MMIS of  based 
on one of , then Algorithm 2 is. However in this paper we do not provide such algorithm;instead we mention 
what approaches we plan to use in order to obtain that result in further works. 

Let  be a bipartite graph,  be a MMIS of  and  be a maximum matching of . As it is 
mentioned before, the complement of  is a minimum vertex cover; we will denote by . Also we will denote by 

 the set of vertices which are adjacent with , and by  the set of vertices which are not adjacent with  (i.e.  
is the complement of ). As it is mentioned above, from Claim 5 it follows, that for each MMIS  and for each 
maximum matching  it holds  and  (see Figure 2). This means that: 

 

  and , (5) 

 

where the union and intersection operations are taken trough all MMIS-es and trough all maximum matchings. 
Next we will show that equality holds in (4). Note, that if  is a family of subsets, and if the complement of 
subset  is denoted by , then  is the complement of . Taking into account this and (5), on Figure 4 we 
schematically illustrate relations between sets , ,  and .  

 

 

Figure 4 

 

On Figure 4 the horizontal line corresponds to the set of vertices of graph , sets noted in the same column are 
the complements of each other, sets noted at the bottom row are listed in increasing order (i.e. the right one is a 
superset of one on the left) and sets noted at the top row are listed in decreasing order (i.e. the right one is a 
subset of one on the left). Note that from Claim 8 it follows that , so the following duality 
holds: 

 

 and . (6) 

 

(4) states that , where  is the greatest MMIS of , so in some sense the duality 
(6) describes the relation between the greatest MMIS and all maximum matchings of . Now let  be a “new” 
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bipartite graph obtained by adding a new vertex to , and  be the greatest MMIS-es of . Next we will 
discuss the problem of providing  based on . Analogically with the notations of , we will denote 
by  and  respectively the union and the intersection of all MMIS-es of  We will also denote by  a 
set of vertices of , which are not adjacent with some maximum matching of , and by  we will denote the 
union of all such sets. (6) states that . As it follows from Claim 7, if  is independent with , 
then , so next we will discuss the case when  is adjacent with some vertices . 
As it is mentioned before, in this case  is a MMIS of , so . We claim that: 
Claim 6: for  it holds  if and only if . 
Indeed, , and  belongs to some  if and only if there is a maximum matching in  which is not 
adjacent with . This holds if and only if there is a matching in  which is not adjacent with  and is adjacent with 
some vertex in . It is easy to see, that this proves the claim. From this claim it follows, that for a vertex 

 in order to find out whether  or not, we can check if  has a common vertex with  or 
not. Thus based on Claim 9 we can provide an algorithm which obtains the greatest MMIS of  based on the 
greatest MMIS of , however performing the mentioned check for all  cannot be performed efficiently, 
if we just roughly hold the family of subsets  and generate . We believe that the family of subsets  
has some properties based on which  can be obtained efficiently and the check whether  has a 
common vertex with  or not can be performed efficiently as well. In the next section we conclude this paper and 
mention about further works. 

Conclusion and further works 

In the second section of this paper we have shown that the family of MMIS-es of a bipartite graph forms a 
distributive lattice with respect to join and meet operations defined at (2) and (3). This result is not just of 
theoretical interest, as in applications where it is required to obtain all MMIS-es of a bipartite graph, the join-
irreducible elements of the mentioned lattice can be obtained using Algorithm 1 in  time, and the 
obtained structure describes the family of all MMIS-es in the sense of Birkhoff’s representation theorem. 
Algorithm 1 also can be used to obtain the greatest MMIS, as well as any MMIS containing the given set of 
vertices. In the third section of this paper we present Algorithm 2, which obtains the greatest MMIS of bipartite 
graph  based on the greatest MMIS of  in  time, where  is a bipartite graph obtained by “adding” a 
new vertex to bipartite graph . Next in that section we prove that duality (6) holds between the MMIS-es and 
maximum matchings of a bipartite graph. We believe that this duality is not just of theoretical interest, and it can 
yield to a usable algorithm which sequentially handles vertices of a bipartite graph and maintains the greatest 
MMIS of it. Claim 9 shows how the duality (6) can be used in order to obtain the greatest MMIS of  based on 
the greatest MMIS of , however in this paper we do not provide an efficient technique of implementing the 
results of that claim. We believe, that such technique can be obtained using some properties of the family of 
subsets , which is the family of sets of vertices which are not adjacent to some maximum matching. In further 
works we plan to obtain such technique. 
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