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About: 

In this and the next issues, we publish a collection of papers from: 

– the Institute for Informatics and Automation Problems at the National 
Academy of Sciences of the Republic of Armenia 

– the Faculty of Informatics and Applied Mathematics of Yerevan State 
University of the Republic of Armenia  

Firstly, we will give short information about these outstanding institutions. 

 

INSTITUTE FOR INFORMATICS AND AUTOMATION PROBLEMS 

 

Institute for Informatics and Automation Problems (IIAP) is the leading ICT research and technology development 
center at the National Academy of Sciences of the Republic of Armenia. Since its establishment in 1957 IIAP is 
the only state supported structure for software, hardware and brainware technologies. IIAP has become the 
leading force in ambitious State programmes developing Information Society and Information Industry in Armenia. 
ICT - a proven driver for global economic activity and growth, and the convergence point of all multidisciplinary 
research and all State societal and economic initiatives, - requires IIAP involvement, by serving with mathematical 
models, electronic implementation, and ICT expertise.  
 

Historically IIAP is linked to the first computer designed and assembled in Armenia in 1960 at the famous Yerevan 
Scientific Research Institute for Mathematical Machines, whose research partner IIAP became.  
 

Scientific achievements include famous fundamental theoretical results and diverse applied ICT systems and 
services. First machine translation system for Armenian language was created in 1963-67, which made it possible 
today the development of computer support tools of Armenian language. The main characteristics of real 
numbers, functions, and plane curves were investigated within the framework of constructive and intuitive 
analysis, the estimation of the complexity of logical conclusions in classic and non-classic systems were 
established. The existence conditions of computable and noncomputable solutions of the general form of 
recursive equations were investigated. The solutions to discrete optimization problems of isoperimetry and 
tomography were found and applied in search engines and in pattern recognition. The inductive methods of 
algorithm synthesis and methods of knowledge representation for expert systems development were investigated. 
A symmetric cryptosystem SAFER++ was developed, and successfully participated in encryption competitions. In 
the area of automata theory, the recognisability and definability of languages related to homogeneouuse flow 
event structures were investigated. 
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Today the main fields of scientific and applied research include theory of algorithms; theory of automata and 
applications, mathematical logic; discrete mathematics and combinatorics; information theory and applied 
statistics; algebraic coding theory; artificial intelligence and management support systems; pattern recognition 
and image processing; distributed processing and data bases; scientific computations; design and testing; 
telecommunication and networking. 

IIAP has a history of successful international collaborative R&D projects and grants within the following 
frameworks: 

 

INTAS1

• No. 93-1702 “Efficient symbolic computing”. 

 

• No. 94-3094 “Information theory and combinatorics”. 
• No. 94-469 “Mathematical and statistical research in information theory and telecommunications.  
• No. 96-52 “Concurrent heuristics in data analysis and prediction”.  
• No. 00-397 “Data Mining Technologies And Image Processing: Theory And Applications”.  
• No.  00-626 “Data Mining Algorithm Incubator”.  
• No.  01-447 “Weak Arithmetics”. 
• No.  04-77-7173 “Data Flow Systems – algorithms and complexity”. 

 

ISTC2

• No.   A-823 “Creation of High-Performance Computation Cluster and Databases in Armenia”. 

 

• No.   A-1451 “Development of Scientific Computing Grid on the Base of Arm cluster for South 
Caucasus Region”. 

• No. A-1606 “Development of Armenian-Georgian Grid Infrastructure and Applications in the 
Fields of High Energy Physics, Astrophysics and Quantum Physics”. 

 

EU FP4 

• GEIXS “Geological Electronic Information exchange System”. 
• AMETMAS NOE “Specific research, technological development and demonstration programme in 

the field of cooperation with third countries and international organizations - Scientific and 
technological cooperation with the countries of Central and Eastern Europe”. 

                                                           

 
1The independent European science foundation INTAS in Brussels was founded in 1993 with the objective of promoting 
cooperation with scientists from the New Independent States of the Soviet Union in order to preserve the scientific potential 
of those countries. 
 
2ISTC (International Science and Technology Center) is an intergovernmental organization connecting scientists from countries of the 
Commonwealth of Independent States with their peers and research organizations in Canada, EU, Japan, Republic of Korea, Norway and the 
United States. 

http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_LANG=EN&PJ_RCN=3921346&pid=139&q=8BF672884505F8771EF16364CB5C5AAC&type=adv�
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EU FP5  

• SPARTA “Security Policy Adaptation Reinforced Through Agents”. 
• ADONIS “Application Development Outsourcing to the New Independent States”. 
• TRISTAN-EAST “TRaining of IST multipliers and Awareness Nurturing in the 3rd Countries of 

EAST and South East Europe (NIS)”. 

 

EU FP6  

• PORTA OPTICA “Distributed Optical Gateway to Eastern Europe”. 
• Idealist-extend “Extension of idealist34 project (the partner search and NCP support network for 

participants in the IST priority) in INCO Balkan and NIS countries”. 

 

EU FP7 

• SEE GRID SCI “South East European Grid eInfrastructure for regional eScience”. 
• HP SEE “High-Performance Computing Infrastructure for South East Europe’s Research 

Communities”. 
• BSI “Black Sea Interconnection”. 
• EGIInSPIRE “European Grid Initiative: Integrated Sustainable Pan-European Infrastructure for 

Researchers in Europe”. 
• IDEALIST “Your Worldwide ICT Support Network” 
• EXTEND “EXTENDing ICT research co-operation between the European Union, Eastern Europe 

and the Southern Caucasus”  
 

 

IIAP has broad professional contacts in Europe (France, Germany, Hungary, Finland, Bulgaria, Netherlands, 
United Kingdom, Czech Republic, Poland, etc.), but also Russia, Ukraine, Georgia, Belarus and USA. List of 
annual publications in refereed scientific journals - more than 100. Active leadership at the helm of IIAP, always is 
ready to grasp new collaborative R&D opportunities, understanding their importance both for IIAP and Armenia.  

IIAP designed and created the Academic Scientific Research Computer Network (ASNET-AM)1of Armenia and 
now is responsible for the developing and managing the infrastructure. IIAP is the leading institute for two State 
target programs funded by the Armenian Government - Creation of Armenian State Computing System and 
Deployment of National Grid Infrastructure. As a result the infrastructure2

 

 of the Armenian National Grid Initiative 
has been deployed.  

                                                           

 
1ASNET-AM unifies more than 50 academic, scientific, research, educational, cultural and other organizations located in the 
4 cities of Armenia. 
 

2 The Armenian Grid infrastructure consists of seven Grid sites (about 500 cores) located in the leading research (National 
Academy of Sciences of the Republic of Armenia, Yerevan Physics Institute) and educational (Yerevan State University, 
State Engineering University of Armenia) organizations of Armenia (in Yerevan and Ashtarak cities). 
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IIAP acts as the EC FP7 INCO and ICT National Contact Point for Armenia. 

 

There are many joint activities and structure inside Armenia that involve IIAP, such as  

• The United Multidisciplinary Laboratory of Information Biology of IIAP and the Institute of 
Molecular Biology (acting as Health NCP for Armenia),  

 

• Joint investigations with National Seismic Protection Service Agency, State Hydrometeorology and 
Monitoring Service of Armenia, Center for Ecological Noosphere Studies of NAS RA aiming at 
identifying new paradigms and algorithms, mathematical analysis and computer modelling of 
biological, geological and eco systems.  

• Similar initiatives link IIAP and its modeling and computation power to State Department of 
Emergency, Ministry of Economy with projects e-Gov, and Computer for All, Broadband Armenia 
and others. Other cooperation links address issues such as drug design and evaluation, cosmic 
rays and astronomy, banking and information security, border security, languages, cultural 
heritage and others. IIAP is moderator between high tech and state and social projects, and 
regional developments both in physical infrastructural and in electronic infrastructural levels. IIAP 
organizes Master’s degree courses of the IT department of the International-Scientific Center of 
NAS RA1

  
 and provides the postgraduate education in computer science field. 

                                                           

 

 
1 ISEC (International Scientific-Educational Center of the National Academy of Sciences of Republic of Armenia) was established in 1997 
on the basis of PhD studies operating at National Academy of Sciences of RA. Taking into consideration rich scientific potential of (most of 
the country’s scientific potential is concentrated in) ISEC expanded its activity starting education in master degree programs in 2004. 
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FACULTY OF INFORMATICS AND APPLIED MATHEMATICS 
OF YEREVAN STATE UNIVERSITY 

 

Yerevan State University was established in May, 1919 and was officially inaugurated on January 23, 1921. 
 

The Faculty of Informatics and Applied Mathematics (IAM) of the Yerevan State University is a leading 
educational and scientific centre preparing fundamental research scientists as well as highly-qualified 
programmers. 

The Faculty was founded in 1971 (initially called the Faculty of Applied Mathematics) on the base of the Chair of 
Computing Mathematics, which was established at the Faculty of Physics and Mathematics in 1957. A decisive 
role in Faculty's establishment, defining the roadmap of its scientific research and preparing human resources for 
the Faculty was played by such distinguished scientists as: A.A. Lyapunov, S.N. Mergelyan, Yu.I. Zhuravlev. S.N. 
Mergelyan was also the first Head of the Chair of Numerical Analysis - one of the three Chairs of the newly 
founded Faculty. 

At present the Faculty of IAM consists of three chairs: the Chair of Programming and Information Technologies, 
the Chair of Discrete Mathematics and Theoretical Computer Science and the Chair of Numerical Analysis and 
Mathematical Modelling. The Staff of the Faculty includes more than 10 Doctors of Sciences and around 50 of the 
employees are Candidates of Science. Many of them are well-known not only in Armenia but also abroad. The 
Faculty prepares Bachelors specialized in "Informatics and Applied Mathematics" (both, full - and part-time). All 
three Chairs of the Faculty provide courses for this purpose. The Faculty provides Master degree in four different 
programmes. Three of them are carried out by the Faculty Chairs and one is being realized in collaboration with 
SYNOPSYS company. The study plan for the students of the Faculty provides a fundamental mathematical 
training and a wide spectrum of courses, related to computers and programming; a significant part of study is a 
practical work realized on computers. 

Since its establishment the Faculty of IAM has been collaborating productively with the Yerevan Research 
Institute of Mathematical Machines and the Institute for Informatics and Automation Problems of NAS of Armenia 
(former Computing Centre of Academy of Sciences of Armenian SSR), being the main provider of highly-qualified 
specialists for these organizations. The Faculty has close scientific contacts with leading educational and 
scientific centres of Russia, such as M.V. Lomonosov Moscow State University, Dorodnicyn Computing Centre 
and Steklov Mathematical Institute of the Russian Academy of Sciences. Employees and post-graduate students 
of the Faculty defend their dissertations in Armenia and also in mentioned above centres in Russia. The Faculty 
has scientific contacts with the Trier University, Germany. 

Lots of the graduates are working in different countries in the fields, where computers are used, that is academic 
and research institutes, universities, state and government organizations, banks, companies with IT profile etc.  
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ASSOCIATION RULE MINING  
WITH N-DIMENSIONAL UNIT CUBE CHAIN SPLIT TECHNIQUE 

Levon Aslanyan, Robert Khachatryan 

 

Abstract: This paper considers the association rule mining problem and provides an alternative to APRIORI 
algorithm, for solving this problem by splitting up the n-dimensional unit cube vertices into the chains using the 
well know technique introduced by G. Hansel. We use the further development of this technique given by G. 
Tonyan, which adds computability on levels of chains and chain splits. A brief description of the software 
implementation of the introduced alternative approach is given. 

Keywords: association rule, data mining, unit cube. 

ACM Classification Keywords: 1.5. Pattern recognition, H.2.8 Database applications, Data mining. 

Introduction 

Association rule mining problem is one of the main objectives of "data mining" research discipline – /finding the 
knowledge and regularities in large amounts of experimental data sets/. Given a set },...,{ 1 nxxI = , consisting 

of n  various elements (items)  ix . Subsets of items (itemset) IX ⊆  are considered, and we say that it is given 

a k -itemset, when kX = . Let D  is a database of records (transactions) that are subsets of the elements (in 

this view records are lists of elements, but the same information can be given equivalently by the characteristic 0-
1 n -vector of itemset X  in I ). We assume that the records can be in repetition (considering a multiset), but 
they are provided with an additional field, which composes the key in the database. 

We say that a record DT ∈ is contributing to set of elements X , if TX ⊆ . Association rule is an "if-then" 

type rule YX ⇒ , the fulfillment of which is related with certain conditions. Let YX , be sets of elements where 

0=∩YX . The ratio of number of all records of D  contributing to X , and the number of records of D  - is 
called support of X  in D ,  

 

DTXDTXp /},{)(sup ⊆∈= . 

 

Next to this is the concept of support for a rule YX ⇒ : 

 

)(sup)(sup YXpYXp ∪=⇒ . 
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Another important property of rules is the confidence that is defined as:  

 

)(sup/)(sup)( XpYXpYXconf ∪=⇒ , 

 

which is the conditional probability that a record contains Y  when it is known that it contains X . 
Practical implementation of association rule mining problem is a subject of intense theoretical and algorithmic 
studies. It is well known that the problem splits naturally into two stages [AGRAW, 1996]. The first step is the 
construction of frequent fragments, those that occur in the database with frequencies above the predetermined 
value of support. The second stage is actually the phase of synthesizing the rules of given confidence, from the 
set of frequent subsets constructed during the first stage of algorithm. 

The most accepted algorithm for synthesis of association rules is APRIORI [AGRAW, 1996]. It builds the set of 
frequent subsets with a so-called building up method. APRIORI considers one-element subsets, and for them by 
one run on the database computes their frequencies. Next, it considers all two-element subsets, one-element 
subsets of which are frequent, and verifies their occurrence in the table. Thus the frequent subsets can be 
building up to the state when it is including subsets that are not frequent enough. Computational complexity is 
significant, it is especially important because algorithm must be used on very large data volumes.  

Are there any alternative approaches for building rules? There is a huge number of approaches, ideas and 
algorithm that address this issue. In this paper we propose one new approach, which connects the well-known 
results from the geometry of the n-dimensional unit cube to the problem of algorithmic generation of association 
rules with given threshold for rule  support and confidence.  

A brief characterization of this approach is as follows. n-dimensional unit cube nB  is a regular lattice consisting of 
n2  vertices that correspond to binary strings of length n, which are usually arranged in layers in the way that on 

the k-th layer there are all those vertices that have k units (1 values). Vertices that differ in one coordinate are 
called adjacent and are connected by an edge. Chain in nB  is a sequence of adjacent vertices. A chain is called 

growing if it contains at most one vertex in one layer.  

G. Hansel showed that nB  can be split into growing chains under certain conditions. Further, he considered the 

monotone Boolean functions and built an algorithm of optimal recognition of these functions using the constructed 
chains. Relationship of these constructions with the association rules are that frequent subsets with given 
parameters correspond to a set of zero value vertices of a monotone Boolean function.  

Direct use of this technique of Boolean function recognition is difficult because the constructing and storing the 
Hansel chains is a problem of algorithmic exponential complexity – in computation, and in memory used.  

G. Tonoyan was able to offer a computational approach to the work with chains. This is fundamentally and 
significantly simplifying the recognition algorithm although the reminding complexity is still very high. The idea is 
in selecting one particular chain split in the collection of Hansel splits. Then a number of functions are introduced 
that map chains and their elements to each other. In total, this provides the necessary information to recognize 
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monotone Boolean functions and eliminates the need in storing the complete structure of Hansel chains. This 
means sensitive economy of memory versus a small additional computation over tye chain split. 

The total aim of this paper is to introduce the necessary chain split and computation technique in terms of 
problems of search of association rules in large databases. Additionally, it is to take into account one more 
important feature of the problem for mining association rules. It is known that in data mining the number of 
considered elements, n, - is very large. It is also know that frequent subsets consist of relatively small number of 
elements. According to this an assumption occurs that there exists a value k such that all subsets above this 
power are not frequent. It turns out that the problem of search of frequent subsets is equivalent to decoding of a 
special class of monotone Boolean functions, which in turn requires an expansion of the results mentioned above 
for general Boolean functions, according to some restrictions of the set of functions considered. Extended results 
are introduced in terms of problem of frequent subsets synthesizing, thus providing the way of determining the set 
of all maximal (largest by inclusion) frequent subsets, without considering and constructing their sub-subsets. 
This avoids the part that particularly complicates the building up process. 

On geometry of the n-dimensional unit cube 

Variable with the only values 0 and 1 (false and true) is called a Boolean variable. n -dimensional Boolean 
function is а single-valued transformation of the set of all vectors composed by n  Boolean variables on to the 
Boolean set }1,0{=B . The domain where the Boolean function is given is known as the set of vertices of the n  

dimensional unite cube nB  that is n -th Cartesian degree of set B . nB  is the set of all binary vectors 

( )nααα ,...,~
1= , which are called vertices or points. Usually, nB  also includes a certain structure, a graph, in 

which vertices of nB  are placed in horizontal layers, a layer contains all the vertices with a given number of k 

ones, nk ≤≤1 , and the layers are arranged vertically, starting from the zero layer (at the bottom) to the layer 

with number n  . Layer k consists of k
nC  vertices. Two vertices α  and β  are called adjacent if they differ in 

exactly one coordinate. These neighboring vertices are connected by an edge in the graph structure of nB . 

Vertices of nB  are organized as follows: a point  ( )nααα ,...,~
1=  of nB  precedes the point ( )nδδδ ,...,~

1=  

of nB , if ii δα ≤ , ni ≤≤1 . The fact that a point α~  precedes the point δ~  is denoted by δα ~~ ≤ . If δα ~~ ≤  

and δα ~~ ≠  then we write δα ~~
 . Two different points α~  and δ~  are called comparable if one of the following 

conditions is true: δα ~~
  or δα ~~

 . 

It is evident, in general, that to uniquely identify a Boolean function it is necessary to know its values at all points 
of the n -dimensional unit cube. If the function belongs to some specific class that is narrower than the set of all 
Boolean functions, then for the unique determination of its values at all points of nB  is not necessary to know in 

advance the values of function at all points of nB , and sometimes it is enough to know the values on a subset of 

nB . For example, to uniquely identify a symmetric Boolean function of n  variables (these functions possess the 
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same value on each layer of nB ) it is enough to know its values on the set of points from nB  which is 

intersecting with all layers of nB . 

Boolean function ),...,,( 21 nxxxf is called monotone if from the fact that δα ~~
  it implies that 

),...,,( 21 nf ααα ),...,,( 21 nf δδδ≤ . The class of all monotone Boolean functions of n  variables is denoted 

by nΜ . Some geometric properties of monotone Boolean functions are evident. To each function there is a 

unique set 0f


 of incomparable vertices of nB , so that 0)~( =αf  iff α~  precedes one of these points. 

Geometrically the area is a union of sbcubes, composed by vetex 0~  and the vertices of 0f


. Another important 

property is that on growing chains of vertices the function values - 0’s and 1’s fill two different intervals at most.  

Two tasks of recognition about the monotone Boolean functions are rising in different applications. One is the 
recognition whether nxf Μ∈)~( , and the second is in deciphering of )~(xf  given that nxf Μ∈)~( . We 

address the second topic because of it’s identity to the problem of frequent itemset mining. 

Suppose that an arbitrary (unknown to us) function nxf Μ∈)~(  is given by an operator fA , which gives the 

value )~(αf  by the given input nB∈α~ . Given the operator fA  it is required to fully restore the set of values of 

the function )~(xf . After each call to the operator which resumes the value )~(αf  for the point 

( ) nn B∈αα ,...,1  other points of nB  become determined through the monotony property. It is clear that we 

should strive for optimality of these algorithms that is to minimize the steps of applying to fA .  

 Consider the set R of all algorithms that solve this problem. That is, for a monotone Boolean function 
),...,,( 21 nxxxf  an algorithm from R  exploiting the operator fA  restores the complete table of values of 

)~(xf . Obviously the work of algorithms consist of several stages. Algorithm selects a point nB∈α~  and with 

help of operator fA  computes the value ),...,,( 21 nf ααα (selection

α~
). The resulting value of the function at the 

point  is inserted into the table of computed values of the function. The table is extended by monotonity, which 
includes determination of all points that can’t have 0 or 1 values arbitrarily after knowing the value at α~  

(extension 1)~( =αf). For example if  then for all points δ~  that are higher that α~  (according to the order of 

vertices defined above) 1)~( =δf  and the table of values of f  is filled in accordingly. Next step is the rule that 

selects another input for operator fA  and the table of values of f  is filled again by monotonity. This process is 

repeated until the table of values is filled completely. 

 Obviously a pair <algorithm Rr∈  and monotone function ),...,,( 21 nxxxf > can be associated with a number 

),( frϕ  that is the number of calls to the operator fA  during recovery of table of values of function 

),...,,( 21 nxxxf   by the algorithm r .  
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 It is appropriate to evaluate the quality of the algorithms R  using function ),(min),( frfR
r
ϕϕ = . We have 

a condition, nMf ∈ . The complexity of recognition of class of n -dimensional monotone functions can be 

characterized by function ),(max),()( fRMRn
fn ϕϕϕ == , where the maximum is taken over all monotone 

functions.  

 Let us introduce some general terms on function deciphering [KOR,1965]. Suppose we are given a certain class 
N  of Boolean functions and a function f , belonging to this class. The set of points ),( NfG  from nB  is 

called resolving set ),( Nf for the pair , if from the fact that 

the function g  belongs to N, 

values of f  and g  are the same on the set ),( NfG  

it follows that gf = . 

To restore the table of values of a functions it is sufficient to determine the values of function on some of its 
resolving sets. Resolving set ),( NfG  is called a deadlock resolving set for ),( Nf , if no subset of it is 

resolving for the pair ),( Nf . 

Let us denote by )~(αH  the set of points δ~  satisfying the condition αδ ~~
 , and by )~(αL  - the set of points 

γ~  such that αγ ~~
 . 

The upper zero ),...,,( 21 nxxxf of monotone function  is the point α~  from nB  such that 0)~( =αf  and 

1)~( =δf  for all points )~(~ αδ H∈ . 

The lower one ),...,,( 21 nxxxf of a monotone function  is a point α~  such that 1)~( =αf  and 0)~( =γf  for 

any point )~(~ αγ L∈ . 

Let )( fZ  denotes the set of all upper zeros of a monotone function ),...,,( 21 nxxxf , and )( fO , - the set of 

all lower ones. Each monotone Boolean function has a unique deadlock resolving set that is included in its all 
resolving sets (mention that this is not the case for other classes, fir instance in class of simmetric Boolean 
functions that we mentioned above above). This deadlock resolving set for a monotone Boolean function is the 
set )()()( fOfZfG ∪= . 

V. Kororbkov has obtained the following result concerning the upper and lower grades of ( )nϕ . 

 

Korobkov’s Theorem 

)1()( ]2/[1]2/[]2/[
n

n
n

n
n

n
n bCnCC εϕ +≤≤+ +  where 

2/33 )116(
8
−

=b  аnd 0→nε  when ∞→n . 
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The proof of theorem uses the logic algebra function ),...,,( 21 nxxxh defined as:  










≤≤

≤≤+
=

∑

∑

=

=

]2/[0,0

1]2/[,1
),...,,(

1

1
21

nif

nnif
h n

i
i

n

i
i

n

α

α
ααα  

It’s obvious that in this case )(hG  has exactly 1]2/[]2/[ ++ n
n

n
n CC  points. 

 

Chain split in monotone recognition 

Let us give the definition of increasing chain and the property of relative supplement

nB

:  

1.  Increasing chain in the structure of , is a sequence kβββ ~,...,~,~
21  of elements of nB  such that 

1
~

+iβ  is obtained from iβ
~  with replacement of one zero in the set of coordinates to the one.  

2.  Suppose we are given three elements 321
~~~ ααα   forming an increasing  chain. Relative 

supplement of 2
~α  on the interval ]~,~[ 31 αα  is the fourth element β~ , which forms together with 321

~,~,~ ααα  a 

two-dimensional subcube (see Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

Hansel’s Lemma 

n  dimensional unit cube nB , endowed with the usual order relation can be covered with a set of ]2/[n
nC  disjoint 

increasing chains satisfying the following properties:  

2
~α  β~  

3
~α  

1
~α  
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– the number of chains of length 12 +− pn  is equal to 1−− p
n

p
n CC , where ]2/[0 np ≤≤ . Minimal 

element of each such chain is a point with p  units and pn −  zeros and the maximal with p  zeros 

and pn −  ones.  

– given three elements 321
~~~ ααα   that form an increasing subchain placed on some chain of length 

12 +− pn , then the relative supplement 2
~α  on the interval ]~,~[ 31 αα  belongs to a chain of length 

12 −− pn . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 

 

The proof of this fact is inductive by n . Figure 2 clarifies how the greatest element 2
~y  of chain 2L  is removed 

from the 2L  and is added to chain 1L ,  becoming its new greatest element. 

 

Theorem ([HANS, 1966]). Minimal number of operations )(nϕ of monotone Boolean function's recognition 

algorithm's is equal to: 

 

1]2/[]2/[)( ++= n
n

n
n CCnϕ . 

2L′  

1L′  
B0n-1 

B1n-1 

L2 

L1 

2
~y  
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Now we bring some more information about the chain computations for the restricted Boolean functions. Let nR  

denotes the set of all chains built by and satisfying the conditions 1 and 2 of Hansel's lemma. Consider an 
element of nR .The set of all length l  chains denote by nl][ .The optimal algorithm for recovering a monotone 

Boolean function is denoted by 0F . The description of 0F  is as follows. 

Operator fA  calculates the values of function nMf ∈  on the vertices of the shortest chains from  nRr∈ . 

These are the chains of length 1 or 2 depending on odd or even values of n . If  the values of function f  on all 

elements from set nl][ , nl ≤≤0  are known, then according to the monotonity of f , these values are 

distributed to the set nl ]2[ +  and according to Hansels's lemma  on each chain L  of length 2+l  the values 

of function f  remain unknown for not more than for two vertices. We call these vertices indefinite vertices of L , 

corresponding to function f . Operator fA  calculates the values of function at these special vertices. This 

process is applied recursively. 

Algorithm 0F  terminates its work, when the values of function f  are known at all vertices of the chain of length n

. 

Until now we considered the known means aiming to solve the problem of recovery of monotone Boolean 
functions nMf ∈  with values unknown at all points nB∈α~ . Consider a class of monotone Boolean functions 

of n  variables which is narrower than nM . Suppose that a value k  is given, ]2/[0 nk << , so that the 

values of function nMf ∈  for vertices of n -dimensional unit cube, which are above the k -th layer equal to 1, 

and the values are unknown on the reminder area only. Denote this class of function by k
nM . We consider аnd 

adopt the above described technologies in deciphering of this type of monotone Boolean functions.  

 

Theorem. The minimal number ),( knϕ  of operations of applying to the operator fA , in recovering the 

monotone Boolean function's, provided that at all points of n-dimensional cube that are placed higher than some 

k -th layer,  ]2/[0 nk <<  function equals 1 and on the other points it is unknown, is: 1)( −+= k
n

k
n CCnϕ . 

Proof. We will show first that 1)( −+≥ k
n

k
n CCnϕ  and after that we check 1)( −+≤ k

n
k
n CCnϕ . 

 

The lower bound will be taken considering some special monotone function: 
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We find that )(hG , i.e. the deadlock resolving set of function ),...,,( 21 nxxxh  contains exactly 1−+ k
n

k
n CC  

points as the set of upper zeros are the points of )1( −k –th layer of an k -dimensional cube and the set of all 

lower units will be the points of k -th layer. 

We get that 
1)( −+≥ k

n
k
n CCnϕ .  

Now we will prove the upper grade. 

It is known that at the points of the cube above the k -th layer function takes the value 1. Consider a chain 
starting at the k -th layer, we know the values of function at all points on these chains except the starting points, 
i.e. points located at the k -th layer. By makeing one request for each chain starting from the k -th layer, we will 
fully recover the function on these chains. Having the values of the function at all points of the chains that start at 
the k -th layer, we can use the property b) of Hansel's Lemma  and property of monotonity to determine the 
function’s values at the points of chains starting at the 1−k  layer. As a result it turns out that for the chains 
starting at the 1−k  layer the functions values remain unknown at no more than two points (see Figure 3). 

 

 

After performing this procedure for the remaining chains, we conclude that for the complete recognition of a 
function for the chains starting at the k -th layer is required to determine the function’s value only at one point, 
and that on other chains -  at maximum - on two points.  

Figure 3. 
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The formula view of the above description is: 

φ (n) ≤ (the number of chains starting at the k -th layer) +2*(number of other chains starting below the k -th 
layer).  

Let us substitute values using the formula for calculating the number of chains described in the Lemma. 

 

)...(2)( 001211
nnn

k
n

k
n

k
n

k
n CCCCCCCn +−++−+−≤ −−−ϕ . 

 

After making all reductions we receive: 

 

1)( −+≤ k
n

k
n CCnϕ . 

 

By combining both results we obtain: 

 

1
1

1

)(
)(
)( −

−

−

+=⇒




+≥
+≤ k

n
k
nk

n
k
n

k
n

k
n CCn

CCn
CCn

ϕ
ϕ
ϕ

. 

 

Chain computation 

Now we proceed to the collation and analysis of existing knowledge about the chain decomposition of nB  and 

calculations on chains. Major results here are obtained by G. Tonoyan. These results are connected with the 
problem of recovering any Boolean function, but they are more universal and applicable to solve other similar 
problems. Therefore, as a result of our analysis, we will figure out so-called tools i.e. independent procedures that 
perform particular local operations on the chains, and by the consistent application of which can be solved more 
global recognition type problems. Specific application will be synthesing of association rules based on the chain 
split algorithms. 

A vertex nB∈α~  is called l -upper zero of function nMf ∈ , if 0)~( =αf and for any vertex β~ , 

l

l

ni
n Li =∈

=


}2/{2

][~β  from fact that αβ ~~
  implies that 1)~( =βf . Here }{x denotes the fractional part of x , 

and }2/{2 n  is to denote the minimal light of chain in chain split, which equals 0 (an isolated point chain) for 

even n , and 1 for odd n . Remind that ni][  denotes the set of chains that have length i . 
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In a similar way a vertex nB∈α~  we call l -lower one of function nMf ∈  if 1)~( =αf and for any lL∈β~  

from the fact that αβ ~~
 implies that 0)~( =βf . 

We will introduce some definitions that similar but differ somewhat from those already applied. 

Let chain )~~...~( 121 ααα += lL  belongs to nR . We will say that the length of L is equal to l  and iα
~

 is 
the i -th vertex of chain L , for 11 +≤≤ li . 

Let L∈α~  and 1
~~0 +−≤≤ lk αα . Denote by )(

~
k−α  the vertex L∈γ~  such that k−= |||||||| αγ . 

Through )(
~

k+α  for L∈α~  is denoted the vertex L∈β~  for which k+= αβ ~~ , αα ~~0 1 −≤≤ k .  

We assume that nn B∈= ),...,,(~
21 αααα  satisfies property Θ  if in ),...,,( 21 nααα , for all ,1, nkk ≤≤  

the number of zero coordinates among the first k  coordinates are not less than the number of its unit 
coordinates. 

We assume hat nn B∈= ),...,,(~
21 αααα  satisfies property Θ′  if ),...,,( 21 nααα  satisfies property Θ , 

where 




=
=

=
0,1
1,0

i

i
i α

α
α . 

Vertex, which is obtained from ),...,,(~
21 nαααα =  by change of coordinates  

siii ααα ,...,,
21

 to 

siii ααα ,...,,
21

 respectively, is denoted as ),...,,(~
21 siiiα . 

Finally, a set of numbers ))~(),...,~(),~(()~( 21 αααα nKKKK =  will be associated with vertex 

nn B∈= ),...,,(~
21 αααα , where:  

 

 

 

 

 

 

 

L∈α~

Tool 1 ''VERTEX SECUENTIAL NUMBER ON THE CHAIN'' 

Vertex  of chain nRL∈  is the  )~(αnK -th vertex of the chain L . 
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At the computational level we are given a binary array of memory of length n  as input, and use a work numeric 
array of memory of length n , where numbers saved do not exceed the n . To fill the area by values )~(αiK  

simple comparison operations and ± are used and the number of this operations is linear by n . 

 

nn B∈= ),...,,(~
21 αααα

Tool 2 ''NEIGHBOUR VERTEX SECUENTIAL NUMBER ON THE CHAIN'' 

 

For a vertex   such that 0
0
=iα  (where ni ≤≤ 01 ) we have: 

1. ))(~( 0iKn α  is equal to )~(αnK  if and only if there exist a 1, ≥jj , such that 1)~(
0

=+ αjiK  and 

2. ))(~( 0iKn α  equals to 1)~( −αnK  or 2)~( −αnK in other cases.  
 

L

Tool 3 ''LENGTH OF CHAIN ADJASENT TO THE VERTEX NEIGHBOUR TO THE GIVEN ONE'' 
 

Vertices adjacent (neighbouring) to vertices of chain  with   length l  from set nR  belong to chains with lengths 

2−l , l ,  or 2+l  from the same set. 

r

Tool 4 ''CLIMBING UP'' 
 

If there exists a value , such that 1)~( =αrK  and 1)~( >αsK  for  nsr << , then 





=
<+

=+ nrfor
nrforr

φ
α

α
)1(~

~
)1(  

and )1(~~
)1( αα =+  if the r  mentioned  doesn't exist.  

 

Let ),...,,()~( 21 snnnH =α , where snnn ,...,, 21  are all the numbers that satisfy the property 

1)~()~(1 ==− αα
ii nn KK , ,...,1 21 snnnsi >>>≤≤  and let φα =)~(H  if such configuration doesn't 

exist. 

 

)(
~

k−α

Tool 5 ''CLIMBING DOWN'' 

 

Vertex  can be determined as follows: if φα =)~(H  then 



 ==

=− casesotherin
kandwhenn

k φ
ααα

α
11),...,,0(~ 12

)( , 
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and when ),...,,()~( 21 snnnH =α , then 







+==
≤

=−

casesotherin
skandwhenn

skwhenn

s

k

k

φ
ααα

αα
α 11),...,,1(~

),...,(~
~

11

1

)( . 

 

The set of k -th vertices of all chains with length l  from set nR  is denoted by ),,( klnR . 

 

,0)1,,( ≠+llnR

Tool 6 ''ALL LOWER VERTICES''  
 

If  then }.~2/)(~/}~{)1,,( Θ−=∈=+ propertysatisfiesandlnBllnR n ααα  

 

Tool 7 ''ALL UPPER VERTICES'' 

 

).1,,1(),...,/(}),...,,(~{)1,,( 121 ++∈∈== llkRBlnR nnn αααααα  

 

 

),...,,(~
21 nββββ =

Tool 8  ''THE CHAIN OF A RELATIVE SUPPLIMENT VERTEX'' 

 

Let  and ),...,,(~
21 nαααα =  are respectively first and k -th, 21 +≤< lk , vertices of 

chain L  of length 2+l  from set nR . 321
~~~ ααα   is a chain, L∈21

~,~ αα , α′~  is relational supplement of 

α~  regarding to 1
~α  and 2

~α , and ),...,,()~( 21 snnnH =β . 

Vertex α′~  is the 1−k -th vertex of l  length chain, first vertex of which is 

 





+=
≤

=
1),1(~

),(~
~

sk
sknk

β
βγ . 

Consider nn B∈= ),...,,(~
21 αααα  and some set nBA ⊂ . Introduce the following notations: 
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



=
====

= −

0,
01...)},(~),...,(~{ 1

n

knk orandnk
αφ

φααααα
α
 , 





=
====

= +

1,
10...)},(~),...,1(~{

1

11

αφ
φααααα

α
orandk kk , 

}~/{}~/{ AAandAA ∈=∈= αααα








. 

 

The set of all vertices adjacent to set A  is denoted as *)(A  (lower neighbours) and  *)(A  (higher neighbours). 

 

)1,,())1,,(( * +=+ llnRllnR


Tool 9 ''LOWER AND HIGHER ADJACENT VERTICES'' 

 

 and ).1,,())1,,(( * lnRlnR


=  

Association rule mining alternatives through the chain split technique 

 

At this point we are given a set of  tools that create and use chain split and computations in terms of recognizing 
of monotone Boolean functions nMf ∈  so that values are unknown at all points nB∈α~ . We also mentioned 

that specifically we will consider classes of monotone Boolean functions, narrower than the class nM   of all 

monotone Boolean functions. Suppose that the values of the function at the points of n -dimensional unit cube, 
which are above a certain k -th layer ( ]2/[0 nk << ) function takes the value 1, and at other points its value is 

unknown. We consider our dedicated tools to recognise this type of monotone Boolean functions. We will 
consider three different options for use of tools. 

 

1. We know that above the layer k  function f  takes constantly the value 1. Let us consider points of k -th 

layer. For each such point we will define the length of the chain on which it is situated. We also determine which 
element of chain it is – its position counting from the start. For this purposes we will use the procedure of 
calculating )~(αnK  for each point of k -th layer. According to Tool 1 vertex nRLL ∈∈ ,~α  is the )~(αnK -th 

vertex of chain L . Then we can determine the length of chain as follows. It is known that the point α~  has k  
ones and kn −  zeros, where nk ≤≤0  and it is known that α  is the i -th vertex of its chain. It is easy to 
calculate that the first (biggest, upper) vertex of the chain must contain )1( −+ ik  ones, and accordingly 

)1( −+− ikn  zeros. Taking into account the symmetry of chains relative to the middle layers, we can calculate 

that the last vertex of the chain consists of )1( −+− ikn  ones and )1( −+ ik zeros. Since the chain is 

obtained by changing one zero in the coordinates of the vertices to one at each crossing of a layer, the length of 
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chain will be equal to the difference between the number of ones in the first and last vertices of the chain, i.e. for 
the chain nRL∈  we find that its length is equal to )1(2 −+−= iknl . 

From all points of the k -th layer we mark those that are the last vertices of their chains. For these vertices the 

length of the chains that pass these vertices is knkkn 2−=−− . With the help of the operator fA  the 

values of function at these points are determined. Next, consider chains of length 2+l  and their lower parts that 
are below the layer k . According to the symmetry of chains we have that chain of length 2+l  end at )1( −k -

th layer. Let us consider all points of the (k-1)-th layer. Using Tool 6 we will construct the set )3,2,( ++ llnR  

that is the set of all last points of chains with length 2+l . =++ )3,2,( llnR  

}2/)2(~/~{ −−=∈ lnBn αα  and α~  satisfies the property }Θ . For each vertex )3,2,(~ ++∈ llnRα  

after applying )1(
~

+α   2+l  times we find the appropriate first vertex β~  of chain that contains α~  with and have 

length 2+l . We also find the 2+l -nd vertex of considered chain, i.e. the point δ~  that is preceds α~ . This 
point is situated at k -th layer and for its determination it is sufficient to apply )1(

~
+α  once. Now let us turn to 

Tool 8. Let us )~,...,~,~(~
21 nββββ =  and )~,...,~,~(~

21 nδδδδ =  are respectively the first and the k -th, 

21 +≤< lk , vertices of chain L  of length 2+l  that belongs to nR . 21
~~~ αδα   is a chain and 

,~,~
21 L∈αα  δ ′~  is the relative supplement of  δ~  in regard to 1

~α  and 2
~α , and ),...,()~( 1 snnH =β  is a 

vector as defined in Tool 5. In this conditions δ ′~  is )1( −k -th vertex of a chain with length l , the first vertex of 

which is 

 





+=
≤

=
1),1(~

),(~
~

sk
sknk

β
βγ

 

 

For each matched point β~ , that is the point that precedes α~ , we find the corresponding point γ~  as described 

above. From each γ~ according to the rule )(
~

k−α we define the point δ ′~ , which is a supplement to point δ~ . 

Point δ~  is the last vertex of a chain with length l  and is placed on the k -th layer. The value of function at this 
point has already been calculated by the operator fA . We extend this value by the property of monotonity to the 

points of chain with length 2+l . Remaining unknown points of chain with length 2+l  will be defined using the 

operator fA . 

At the general step, we consider a chain of length ml +  and find its first and last vertices, then is finding the 
corresponding first vertex of chain with length 2−+ ml , and its last point, which is supplement for the 
penultimate point of a chain with length ml + . At this stage the values of function at all points of the chain with 
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length 2−+ ml  are already known, and it remains only to extend these values to the chains with length ml +  

and using the operator fA  to compute the value of function on the remaining unknown points. 

 

2. As in the previous paragraph we will start the function recognition from the k -th layer. We define the points of 
k -th layer, which are the last points for chains of length l  and applying to fA  we calculate the values of the 

function at these points. We now turn to the chains of length 2+l , and build the set )3,2,( ++ llnR . 

According to Tool 7:  

 

)}.3,2,(),,...,,/(),...,,(~{)1,2,( 1121 ++∈∈==+ − llnRBlnR nnnn ααααααα  

 

By apply ))2((
~

+− lα  to each vertex )1,2,(~ +∈ lnRα  finding  )2( +l - nd vertex of chain with length )2( +l , 

which is the relational supplement for )1( +l -st vertex of chain with length l , the first vertex of which is obtained 

by the Tool 8.This method of finding the first vertex makes the task easier compared with the method described in 
paragraph 1, because of there, for determining the first vertex was necessary to pass step by step through the 
whole chain starting from the last vertex using )1(

~
+α . In general these methods are identical. 

 

3. Consider another way of recognition, which differs from the first two in the initial notation of the problem. 
Consider an n -dimensional unit cube nB , each vertex )21 ,...,,(~

nαααα =  of which is composed of ones and 

zeros, where 0  indicates that the iα -th element is involved in the transaction, and 1 - no. Value of the function 

on the vertex )21 ,...,,(~
nαααα =  is equal to 1 if the set is frequent and 0  otherwise. In these definitions the 

frequent sets move to the top of the cube, and the function to be recognized takes the following form:  on  points 
of nB  that are placed below a certain k -th layer, where nkn ≤<2/  function takes value 0 , and on the rest 

of cube its values are unknown. All other assumptions and definition of the problem remain unchanged. The 
recognition process starts from chains that begin at the k -th layer. All points of k -th layer are considered, and 
for these points corresponding values )~(αnK  are calculated. Those points are selected for which 1)~( =αnK , 

i.e. points, which are the first points for the chains starting at the k -th layer. Then the lengths of these chains are 

calculated and the value of function at these points are determined by applying to the operator fA . We assume 

the length of chains we consider is l . After that, we consider chains of length 2+l , i.e., starting at the )1( +k -

th layer. For this we consider all points of the 1+k - th layer and select those who have ( )αnK  = 1. The 

second points of chains with length 2+l  are found using operation )1(
~

−α . Relational supplements of these 

points are situated on chains of length l , and are the first points of these chains, and the function values of which 
we already know. Relative supplements are determined by Tool 8. We extend the function values by monotonity 
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to the points of chains with length 2+l . Values of the function at the points remaining unknown are calculated 

with the help of the operator fA . We continue the consideration of chains until no unknown points remain. 

 

Software Implementation 

For the practical implementation of the above-mentioned methods in systems of association rules mining, a 
software application was initiated. For this reason an open programming environment (open source) was 
identified, which is dedicated to the tasks of data analysis, known as “Orange Canvas”. This system includes 
algorithms of commonly used Data Mining techniques i.e. classification, clustering, decision trees, association 
rules searching, etc. As an algorithm for association rules mining it includes some modification of the Apriori 
algorithm.  

As noted above, we have proposed an alternative approach for solving the problem of association rules mining 
based on monotone Boolean functions, n-dimensional cube and its coverage with Hansel's chains. Without using 
the results achieved by Tonoyan it is mostly impossible to make effective program implementation of the 
proposed method, since for large n  operational resources of regular computers are not sufficient to store the 
current computational data. The reason for this is that for Hansel’s technique requires to build the cube 
completely, as well as to build its chain coverage and keeping it in memory. The application of Tonoyan’s Tools 
allows instead of permanent storage of a cube and its coverage, to calculate the required points of the cube i.e. 
the first and last vertices of the chains, adjacent vertices of a given point, relative supplement of a given point at a 
certain interval, etc.  

For complete data processing, sometimes it is not enough to apply the association rules technique. It was 
therefore decided not only to create a software implementation of the algorithm, but to introduce it into the 
existing Orange Canvas, where a number of data analysis approaches are implemented already. 
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APPROXIMATION GREEDY ALGORITHM FOR RECONSTRUCTING OF  
(0,1)-MATRICES WITH DIFFERENT ROWS 

Hasmik Sahakyan 

 

Abstract: Existence and reconstruction issues are considered for a class of (0,1)-matrices with different rows. 
Intending to define quantitative characteristics, maximization of which lead to matrices with different rows in case 
when the later exist, we consider the number of pairs of different rows.A greedy algorithm is introduced for this 
purpose and then its optimality is proven for local steps.  

Keywords: (0,1)-matrices, greedy algorithms 

ACM Classification Keywords: F.2.2 Nonnumerical Algorithms and Problems:Computations on discrete 
structures 

Introduction 

Matrices with (0,1) elements and prescribed row and column sums is a classical object which appears in many 
branches of applied mathematics. In combinatorics, such matrices used to encode hypergraphs with prescribed 
degrees of verticesand related structures, see, for example [LintWilson, 2001]. In statistics, (0,1) matrices with 
prescribed row and column sums are known as binary contingency tables, see [ChenDiaconisHolmesLiu, 2005]. 
In Discrete Tomography (0,1) matrices serve for representation of discrete sets. The projections of a matrix in the 
horizontal and vertical directions correspond to the row and column sums of the matrix. There is a known result of 
Ryser - a necessary and sufficient condition for a pair of vectors being the row and column sums of a (0,1)-matrix 
([Ryser, 1957]). (0,1) matrices with prescribed row and column sums and with special geometrical 
properties/constraints imposed, are addressed for example in [DurrChrobak, 1999], [BarcucciDel 
LungoNivatPinzani, 1996], [Woeginger, 2001]. 

We will consider another additional requirement on (0,1) matrices with given row and column sums - the 
requirement of non repetition of rows. Such a requirement on rows has its origin in terms of the n  dimensional 
unit cube. Vertices of the cube are presented as n -tuples of 0,1 values, and in this way a vertex subset has been 
presented as a (0,1)-matrix, where rows correspond to vertices. Row sums indicate the layers of the cube 
containing the corresponding vertices. Let ),,( mrrR 1=  and ),,( nssS 1=  denote the row and column sum 

vectors of a ),( 10 -matrix of size nm × . Then i -th column sum identifies the number of vertices in the vertex 

subset with 1 value in i -th position. Now existence of a ),( 10  matrix is equivalent to the existence of m  vertices 

situated in 1r -th, 2r -th, etc. mr -th layers such that 1s  vertices/tuplescontain 1 on the first position, 2s  

verticescontain 1 on the second position, etc. and ns  contain 1 on the n -th position. In other words is  and 

ism −  are the partition sizesof the vertex subset on i -th direction. In case when the placement of vertices is not 
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important and we are interested just in existence of a vertex subset with given partition sizes – we search out a 
subclass of matrices with column sums ),,( nssS 1= and with m  rows which are all different. 

Both cases (with or without ),,( mrrR 1= ) are known as algorithmically open problems. The current research 

is focused on the second one and considers issues of existence and construction of matrices in a constructive 
way. A greedy algorithm is proposed and then proven its optimality in local steps. Nevertheless there are 
examples of matrices showing non optimality of the algorithm globally. 

),( 10 matrices with different rows 

Consider a ),( 10 -matrix of size nm × . Let ),,( mrrR 1=  and ),,( nssS 1=  denote the row and column 

sum vectors of the matrix respectively, and let ),( SRU  be the class of all ),( 10 -matrices with row sum R and 

column sum S .A necessary and sufficient condition for the existence of a ),( 10  matrix of the class ),( SRU  was 

found by Ryser. Another result of Ryser is the definition of an interchange operation to be a transformation which 

replaces the 2x2 submatrix 







01
10

of a matrix into the 2x2 submatrix 







10
01

 or vice versa. Clearly an interchange 

(and hence any sequence of interchanges) does notchange the row and column sum vectors of a matrix, and 
therefore transforms a matrix in ),( SRU into another matrix in ),( SRU . Ryser proved that given 

),(, SRUBA ∈ there is a sequence of interchanges which transforms A into B . 

We are interested in a subclass of ),( SRU  where all the rows of matrices are different and in particular we will 

consider the class )(SU  of all ),( 10 -matrices with column sum ),,( nssS 1= and with m rows which are all 

different. 

Now we formulate two versions of the problem: decision (P1) and optimization (P2). 

 

(P1) Existence of a ),( 10 matrix with the given column sum and with different rows 

Remain that no polynomial algorithms are known for solving (P1)and it is known as an open problem. The 
combinatorial origin is the hypergraph degree sequence problem. 

First we define an interchange operation for the class )(SU . Let usdefine itin analogous to Ryser's way:the 

interchange operation replaces the 2x1 submatrix 







0
1

into the 2x1 submatrix 







1
0

 or vice versa. Clearly not 

every interchange operation is admissible: it keeps column sums but it may induce repeating rows and thus may 
transform a matrix in )(SU  into a matrix out of )(SU .We call this - simple interchange operation. However 

performing all interchanges within a pair of rows will keep a matrix within the class. But it is simply the 
interchange of rows. 
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Let ),,( nssS 1= , and )(SUA∈ . Applying row interchanges we can transform A  into another matrix of

)(SU  where 1s  ones form an interval in the first column and situated in 11 s,, rows. Then in the same way we 

can transform the obtained matrix into another one where 2s ones compose two intervals in the second column 

(say 12,s  and 22,s lengths, 22122 ,, sss += ) situated in 121 ,,, s  and 2211 1 ,,, sss ++  rows respectively, and so 

on. So in each column we will get alternating 1 and 0 intervals (possibly of 0 lengths) as illustrated in the figure 
below. Rows i  and j  taken from different intervals are differing; rows within the same interval coincide with each 

other.  

1

0

1
1s

1sm −

0
1
0

1 2 n
1
0
1
0
1
0
1



i


  is}
 

 

We will call this construction a matrix of partitioned form. Starting from some column (at least it is the n -th 
column) all columns consist of all one length intervals. Depending on partitioning of is  there can be obtained 

different matrices of partitioned form in the same class )(SU .   

Note: two different matrices of partitioned form of the same class )(SU can be transformed into each other 

applying a sequence of simple interchange operations. Concluding, - given )(, SUBA ∈  there is a sequence of 

interchanges which transforms A into B . 

So with the help of row interchanges each matrix in )(SU  is transformable into a partitioned form. Therefore if the 

class )(SU  is not empty then it contains at leastone matrix of this form. Then it is reasonable to find solution 

among the matrices of partitioned form. It can be realized constructing a matrix column by column and providing 

is  ones in i -th column. If in n -th column we get all one length intervals, then the matrix will not have coinciding 

rows. During the construction of each column the partitioning of intervals of the previous column can be arbitrary 
keeping only is as the sum of all 1 intervals. But it is reasonable to follow a goal which will lead to the required 

matrix – with different rows.Let us assume that the partitioning of intervals aims to maximize some quantitative 
characteristics, which leads to the matrices with different rows in case when the later exists. 

We will consider one of such characteristics - the number of pairs of different rows,– it was first considered in [S, 
1995].  

(P2)  ),( 10 matrices with maximum number of pairs of differing rows  
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Let )(Sℑ  define the class of ),( 10 -matrices of size nm × , having )1 nssS ,,( =  as its column sum vector. In 

this way )()( SSU ℑ⊆ . For a given )(SA ℑ∈  let )(AD denote the number of pairs of differing rows of A .  

Consider the following optimization problem: 

P2:Find )(SAopt ℑ∈  such that )(max)(
)(

ADAD
SAopt ℑ∈

= . 

Obviously 2
mC  is the lowest upper bound for )(AD  and it is achievable only for matrices of )(SU . Therefore if 

)(SU  is not empty, then a solution of optimization problem (P2)on )(Sℑ will serve also as a solution of 

existence problem(P1) for )(SU : )(SUAopt ∈ . 

Thus(P2) is not easier than (P1).  

We will introduce an approximation algorithm for solving P2. Further we will prove that the algorithm is optimal in 
local steps. 

Greedy approach for solving (P2) 

The greedy heuristic is the most used heuristics for optimization problems. The general approach is as follows: 
repeatedly execute a procedure which minimizes (maximizes) the increase of the objective function. In some 
cases such a strategy guarantees the optimal solution.  

Given )1 nssS ,,( = . The goal is to construct a matrix )(SAopt ℑ∈ such that )(max)(
)(

ADAD
SAopt ℑ∈

= . 

Now we describe an algorithm G  that constructs a matrix column by column: starting from the first one and 
adding a column in each step.The objective function is D: →ℑ∈ )(SA  number of pairs of differing rows; and 

the goal is a matrix with the greatest possible value of D.Let GA  denote the constructed by G matrix and let 

)( Gk AD∆  denote the increase of objective function during the k -th stepof G . 

Assume without loss of generality that nisms ii ,, 1=−≥ . 

Algorithm G  

Step1. Construction of the first column: it consists of 1s  ones placed in the first 1s  rows-positions followed by 

1sm −  zeros in others. Two intervals is the result: – the 1s -length interval of ones, and the ( 1sm − )-length 

interval of zeros. We denote these intervals by Gd 11, and Gd 21, . Hereafter the first sub-index will indicate the number 

of column and the second – the number of interval within the column. Intervals with odd numbers contain all ones, 
and intervals with even number contain all zeros. So construction of the first column is in unique way: 







=

=+

111

2111

sd

mdd
G

GG

,

,,
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At this point we get )(,, 112111 smsdd GG −⋅=⋅  pairs of differing (by the first position) rows andthus: 
GG

G ddAD 21111 ,,)( ⋅=∆ . 

 

Let we have constructed the first 1−k  columns. In general, )( 1−k -th column consists of 12 −k  intervals filled 

by ones and zeros accordingly. Since among thema presence of 0-length intervalsis possible and they can not be 
used anymore, let assume that ( 1−k )-th column consists of p  non-zero length intervals denoted by 

G
pk

G
k

G
k ddd ,,, ,,, 12111 −−−  . Recall that the rows coincide within the intervals and differ otherwise. If in some column 

j  we get all one length intervals, then at this moment non repetition of all rows, and hence the maximum number 

of pairs of different rows is already provided. Further constructionsare arbitrary. 

Step k. During this step each G
ikd ,1−  length interval will be partitioned into G

ikd 01 ,,−  and G
ikd 11 ,,− length intervals 

filled by zeros and ones respectively: G
ik

G
ik

G
ik ddd 11011 ,,,,,, −−− +=  such that 

∑
=

− −=
p

i
k

G
ik smd

1
01 ,, and∑

=
− =

p

i
k

G
ik sd

1
11 ,, . The increase of objective function during the k -th step is: 

∑
=

−− ⋅=∆
p

i

G
ik

G
ikGk ddAD

1
0111 ,,,,)( .  

We will realize partitions having a goal to minimize length differences of intervals.  

The idea is in following: if nksms kk ,, 1=−= , then in each step we would split every interval into 2 equal  

( 1± ) parts and fill by zeros and ones respectively which will lead to all one length intervalsin logarithmic number 
(minimum possible [Knuth, ]) steps.Furthermore,among all integer partitions of G

ikd ,1− : G
ik

G
ik

G
ik ddd 01111 ,,,,, −−− +=

,the largest product G
ik

G
ik dd 0111 ,,,, −− ⋅ is achieved when G

ik
G

ik dd 0111 ,,,, −− = .Thus following this strategy would bring to 

the goal, but in general at each step kwe have )( kk sms −−  extra ones. Trying to be closer to equal lengths of 

intervals we1) distribute the extra )( kk sms −− ones among intervals keeping a “homogeneous” distribution; 

and then 2) split the remaining intervals into 2 equal parts– puttingequal number of zeros and ones.  

Further we will show that this will satisfy the optimization criterion, - the maximum number of new ),( ji  pairs of 

different rows in each step. 

Now describe the process in detail. 

Let )( kkk smsr −−=  and assume that there are l  odd length intervals among the intervals of )( 1−k -th 

column. It is easy to check that kr  and l  have the same parity and hence lrk −  is even number.Construction of 

the k -th column is in 2 phases: distribution of kr  “extra” ones during the first, and distribution of remaining ones 

during the second phases. 
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Phase 1. 

a) lrk ≤  

Chose arbitrary kr  intervals among the l  odd intervals and put an 1 in each.  

b) lrk >  

All l  odd intervals get an 1. After this we put two by two ones in intervals starting from the intervals of even length 
then altering from odd to even, and continuing cyclically until all kr  ones have been exhausted. If during the 

process some short intervals have been filled, they do not participate any longer.It is worth to mention that after 
putting l ones on odd intervals, we get all even lengths, and lrk −  is even as well, so in this way the process of 

distribution is correct.After this phase there remain equal numbers of zeros and ones. 

 

Phase 2. 

a) lrk ≤  

Half of the remaining krl −  odd intervals get one 0, others – one 1, after that all intervals have been split into 

equal parts and receive equal number of zeros and ones. 

 b) lrk >  

all intervals have been split into equal parts and receive equal number of zeros and ones. 

Let ic  denote the difference between the distributedones and zeros on i  interval: 

piddc G
ik

G
iki ,,,,,,, 111

0111 =−= −− . Now we will estimate ic . 

The case of lrk ≤  is simple: 









−−
+=

intervals length odd     for
intervals length odd     for

intervals length even all    for

21
21

0

/)(,
/)(,

,

k

ki

rl
rlc

 

Suppose that in case of lrk > ,  t  complete cycles were performed during the two by two distributions of ones. 

Let  D  denote the maximum length of those intervals filled during this process. Thus all even intervals of )( D≥ -

lengths received at least D extra ones ( )( D< -lengths are filled). Concerning odd intervals - )( 1+≥ D -lengths 

received at least 1+D extra ones ( )( 1+< D -lengths are filled). Now let d  denote the amount of extra ones 

(above D ) received by each not filled interval. Remain that both D  and  d  are even numbers. Thus after t  
complete cycles, all even intervals of )( D> -lengths receive dD +  and all odd intervals of )( D> -

lengthsreceive 1++ dD extra ones. Remaining extra ones (denote this amount by 'r ) is not enough for a next 
complete cycle. Continue distribution starting from even intervals. Suppose their number is 1p .  
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Consider cases. 

(1) 120 pr << '
 

Choose 2/'r  intervals among 1p  and distribute 2 ones on each. 

(2) 12pr ='
 

All 1p  intervals get 2 ones. 

(3) 12pr >'
 

All 1p  intervals get 2 ones. Among odd intervals choose 22 1 /)( ' pr −  and distribute remaining 12pr −'  ones 

by two. 

 

Coming back to estimation of ic , the picture is as follows: 

1. 120 pr << '  





+++
++

=
interval length even   for2dD or 

intervals length odd    for
dD
dD

ci

,1

 
2. 12pr ='  





++
++

=
interval length even   for2dD
intervals length odd    for,1dD

ci

 
3. 12pr >'  





++
++++

=
interval length even   for2dD

intervals length odd  for3dD or  1dD
ci

 

 

Resuming: - 2≤− ||max
, jiji

cc  for all ji,  pairs of even )( D≥ -length and odd )( 1+≥ D -length intervals. 

Now the k -th step is completely described. 

Thus on k -th column the lengths are the following: 

pi
cd

d
cd

d i
G

ikG
ik

i
G

ikG
ik ,,,, ,

,,
,

,, 1
22

1

1

1

1 1
01

1
11 =

−
=

+
= −

−
−

− filled by 1 and 0 respectively. Each of the intervals 

may be of 0-length. 

Note. (1) and (3) cases may lead to not uniqueness of constructions. Choice of 2/'r  even intervals in (1) and 
22 1 /)( ' pr −  odd intervals in (3) will cause branching during the first phase.  



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

133 

The goal is to prove that all branches maximize the increase of objective function – pairs of differing rows – in 
each local step. 

Local Optimality 

Theorem 

(1) Each step of thealgorithm G is optimal: it provides the maximum increase of the objective function – pairs of 
differing rows; 

(2) All optimal constructions of each column are those according to G . 

Proof. 

(1) Let we have p  non zero intervals in )( 1−k -th column denoted by: pkkk ddd ,,, ,,, 12111 −−−  , nk ,,2= . 

Assume thatduring k -th step of G  the the i -th interval of ikd ,1−  length is partitioned into the G
ikd 01 ,,− , G

ikd 11 ,,−

length intervals filled by zeros and ones respectively; and let 11 ,,ikd − , 01 ,,ikd − bethe corresponding lengths of 

intervals obtainedas a result of the optimal partition provided by some algorithm during its k -th step, where

k

p

i
ik smd −=∑

=
−

1
01 ,,  and k

p

i
ik sd =∑

=
−

1
1 ,, . 

Thus ∑
=

−− ⋅=∆
p

i

G
ik

G
ikGk ddAD

1
0111 ,,,,)(  and ∑

=
−− ⋅=∆

p

i
ikikk ddAD

1
0111 ,,,,)(  are the corresponding increases of the 

objective function. We intend to prove that ≥∆ )( Gk AD )(ADk∆ . 

=∆−∆ )()( ADAD kGk ( ) ( )∑∑
=

−−
=

−− =⋅−⋅
p

i
ikik

p

i

G
ik

G
ik dddd

1
0111

1
0111 ,,,,,,,,  

( ) =⋅−








 −
⋅

+
∑∑
=

−−
=

−−
p

i
ikik

p

i

i
G

iki
G

ik dd
cdcd

1
0111

1

11

22 ,,,,
,, )()(

 

( ) =⋅⋅−−∑
=

−−−

p

i
ikiki

G
ik ddcd

1
0111

22
1 4

4
1

,,,,, )()(  

( )( )=⋅⋅−−+∑
=

−−−−

p

i
ikikiikik ddcdd

1
0111

22
0111 4

4
1

,,,,,,,, )( ( )( )∑
=

−− −−
p

i
iikik cdd

1

22
01114

1 )(,,,,  

We denote by iα  the length differences for i -th interval provided by algorithms G and A :

pidd G
ikiki ,,,,,,, 11111 =−= −−α . Obviously i

G
ikik dd α−=− −− 0101 ,,,, . Hence G

ikiik dd 1111 ,,,, −− += α and 
G

ikiik dd 0101 ,,,, −− +−= α , which implies: 

i
G

ik
G

ikiikik cdddd +=−+=− −−−− αα 22 01110111 )( ,,,,,,,, . 
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Notice that ∑
=

=
p

i
i

1
0α as∑ ∑

= =
−− ==

p

i

p

i
k

G
ikik sdd

1 1
1111 ,,,, . 

Thus 

=∆−∆ )()( ADAD kGk ( )( )∑
=

=−+
p

i
iii cc

1

222
4
1 )(α ( )∑

=

=⋅+
p

i
iiic

1

244
4
1 )(αα ( )∑

=

+
p

i
iii c

1

2)(αα  

and so  

=∆−∆ )()( ADAD kGk ( )∑
=

+
p

i
iiic

1

2)(αα  (1) 

Consider cases. 

1. 2
1

≤−
≤≤

||max
, jipji

cc . 

Let 0000
11

<<≥≥
+ ptt jjjj αααα ,,,,,  . For simplification of notations assume that the first are non 

negative: 

0000 11 <<≥≥ + ptt αααα ,,,,,  . ∑
=

=
p

i
i

1
0α implies∑ ∑

= +=

−=
t

i

p

ti
ii

1 1
αα . 

Thus 

=∆−∆ )()( ADAD kGk ∑∑∑
=+==

+⋅+⋅
p

i
i

p

ti
ii

t

i
ii cc

1

2

11
00

)(ααα , where itii cc
≤≤

=
10
min  and ipitj cc

≤≤+
=

10
max . 

We get =+⋅−⋅ ∑∑∑
===

p

i
i

t

i
ij

t

i
ii cc

1

2

11
00

)(ααα ≥+⋅− ∑∑
==

p

i
i

t

i
iji cc

1

2

1
00

)()( αα =+⋅− ∑∑
==

p

i
i

t

i
i

1

2

1
2 )(αα  

=+−− ∑∑∑
===

p

i
i

t

i
i

t

i
i

1

2

11
)(ααα ∑∑∑

=+==

++−
p

i
i

p

ti
i

t

i
i

1

2

11
)(ααα . 

This is non negative since pαα ,,1  are integers.The proof is completed for case 1. 

2. 2
1

≤−
≤≤

||max
, jipji

cc condition may be broken when filled intervals appeared during the complete cycles. 

Assume that G
ik

G
ik h

dd ,, ,, 11 1 −−   are lengths of the filled intervals. So G
iki

G
iki hh

dcdc ,, ,, 11 11 −− ==  takeplace.Thus

DdG
ik j
≤− ,1  for even G

ik j
d ,1−  and 11 +≤− DdG

ik j,  for odd G
ik j

d ,1− , hj ,1∈ . For remaining intervals: 

2
1

≤−
≠

||max
,, jiiiji

cc
h

 is true; and ,
jii cc ≥ for jii ≠ , hj ,1∈ . 

Assume that 0000 11 <<≥≥ + ptt αααα ,,,,,  . Notice that
hii αα ,,

1
 can not be positive numbers (

pidd G
ikiki ,,,,,,, 11111 =−= −−α ). 
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It follows from (1) that  

=∆−∆ )()( ADAD kGk ≥++⋅ ∑∑∑
=+==

≤≤

p

i
i

p

ti
ii

t

i
iiti

cc
1

2

111
)(min ααα  

+⋅++⋅ ∑∑∑
≠

+=≠
≤≤+

==
≤≤

p

iii
ti

ii
iii
pitj

h

j
j

t

i
iiti

h
h

ccc
,,,,

maxmin




1
1

11111
ααα =∑

=

p

i
i

1

2)(α      (let itii cc
≤≤

=
10
min  and i

iii
pitj cc
h,,

max
1

0 1
≠

≤≤+
= ) 

+∑
=

j

h

j
jc

1
α +⋅−⋅+⋅ ∑∑∑

=+==

h

j
jj

p

ti
ij

t

i
ii ccc

111
000

ααα =∑
=

p

i
i

1

2)(α  

( )+−⋅∑
=

h

j
jjj cc

1
0
)(α ∑∑

==

+⋅−
p

i
i

t

i
iji cc

1

2

1
00

)()( αα .   

Thus 

=∆−∆ )()( ADAD kGk ( )+−⋅∑
=

h

j
jii cc

jj
1

0
)(α ∑∑

==

+⋅−
p

i
i

t

i
iji cc

1

2

1
00

)()( αα  (2) 

0
1

2

1
00

≥+⋅− ∑∑
==

p

i
i

t

i
iji cc )()( αα since 2

00
≤− || ji cc and iα are integers.At the same time 

( ) 0
1

0
≥−⋅∑

=

h

j
jii cc

jj
)(α , since 0

1
≤

hii αα ,, and
01 jii ccc

h
≤,, . 

Therefore )()( ADAD kGk ∆≥∆ . 

Thus we have proven that (1) all branches of algorithm G  are optimal in local steps: they provide maximum 

number of differing rows. Now we prove the converse: (2) all optimal partitions of intervals in each local step 

appear as a result of algorithm G . 

(2) Suppose that G
pk

G
k dd ,, ,, 111 −−   are lengths of p intervals ofthe )( 1−k -th column of the matrix. Let assume 
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iα are integers and so 1≤iα for pi ,1∈ ;and 0=iα for 21 1 tti ,+∈ .Thus
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iα for 11 ti ,∈ ; 
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iα  for 

pti ,12 +∈  where equal numbers of positive and negativeones present. Without loss of generality we assume 

that no 0 iα  are there. Thus 11111 =− −−
G

ikik dd ,,,,  and hence 10101 −=− −−
G

ikik dd ,,,, for 11 ti ,∈ ; and
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11111 −=− −−
G

ikik dd ,,,,  and hence 10101 =− −−
G

ikik dd ,,,,  for pti ,, 11 2 +∈ . It follows that the G
ikd 11 ,,− -length interval 

can not be filled by ones when 11 ti ,∈ . Notice also that the lengths of the remaining 21 1 tti ,+∈ intervals are the 

same in both partitions. 

At the same time 

cdd G
ik

G
ik =− −− 0111 ,,,, for 11 ti ,∈  and 

20111 +=− −− cdd G
ik

G
ik ,,,, for pti ,12 +∈ . 

Since c  and 2+c  have the same parity it follows that all intervals in both groups come from either even or odd 

parts. Since as mentioned above G
ikd 11 ,,− -length intervals are not filled by ones when 11 ti ,∈ , then algorithm G  

had more than one choices, - so we had either (1)or (3)cases. Intervals that receive 2+c extra ones are those 
that during the last stage of phase 1, received 2 new ones. These 2 ones could be distributed among any other 
intervals which in our case received c extra ones.   

Now all we have to show that this choice made by G  coincides with the optimal. Indeed: 

211 01110111 +=+−+=− −−−− cdddd G
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iα are integers which imply that 1≤iα  for phi ,1+∈ ; and 0=iα  for 21 1 tti ,+∈ . Hence




=
0
1

iα for

11 thi ,+∈ , 


−

=
0
1

iα  for pti ,12 +∈ , and equal numbers of positive and negative ones present. 

The same reasoning as in the previous case will bring that the intervals are the result of a branch of G . 

The theorem is proved. 

 

However algorithm G does not provide the global optimum.  

Consider the following example: ),,(,, 1111813 === Snm . All possible realizations of G  leave two 

coinciding rows (see the matrix in left side in figure 1 below). However there exist a matrix in )(SU . In the matrix 

in side in figure 1, the fifth column does not correspond to any realization of G . 

 

=A  

 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 0 1 1 

1 1 1 1 0 1 1 1 

1 1 1 1 0 1 1 0 

1 1 1 0 1 1 1 1 

1 1 1 0 1 1 1 0 

1 1 0 1 1 1 1 1 

1 1 0 1 1 1 0 1 

1 0 1 1 1 1 1 1 

1 0 1 1 1 1 0 1 

0 1 1 1 1 1 1 1 

0 1 1 1 1 0 1 1 

=GA  

 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 

1 1 1 1 1 1 0 1 

1 1 1 1 1 0 1 1 

1 1 1 1 0 1 1 1 

1 1 1 0 1 1 1 1 

1 1 1 0 1 1 1 0 

1 1 0 1 1 1 1 1 

1 1 0 1 1 1 0 1 

1 0 1 1 1 1 1 1 

1 0 1 1 1 0 1 1 

0 1 1 1 1 1 1 1 

0 1 1 1 0 1 1 1 

 

Figure 1 

Further research concern the study of global properties of the given algorithm and evaluation of results, which is 
out of scope of the current paper.  
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IMPLEMENTATION OF DICTIONARY LOOKUP AUTOMATA  
FOR UNL ANALYSIS AND GENERATION 

Igor Zaslawskiy, Aram Avetisyan, Vardan Gevorgyan 

 

Abstract: In this paper we present some research results and propose solutions for natural language string 
lookup techniques. In particular a fast method is suggested for searching dictionary entries for possible matches 
of sentence words without using relational databases or full dictionary load into machine random access memory. 
Such approach is essential for minimizing the speed dependency from dictionary size and available machine 
resources as well as for the scalability of the analyzer software. The mentioned is based on an implementation of 
Aho-Corasick [Aho, Corasick, 1977] automata with a number of optimizations in the indexing and lookup 
algorithm. 

Keywords: UNL, natural language processing, dictionary lookup, indexing, search, XML, pattern matching 
machine, string matching algorithm, information search 

ACM Classification Keywords: F.2.2 Non-numerical Algorithms and Problems – Pattern matching, Sorting and 
searching, I.2.7 Natural Language Processing - Text analysis, Language parsing and understanding, I.7.2 
Document Preparation – Index generation, Markup languages, H.3.1 Content Analysis and Indexing – 
Dictionaries, Indexing Methods, H.3.3 Information Search and Retrieval - Retrieval models, Search process. 

 

Introduction 

UNL (Universal Networking Language) is a meta-language representing semantic information [Uchida, Zhu, 
2005]. Its main purpose is to store “the meaning” of natural language texts in a language independent format. 
Each sentence in UNL is a directed linked graph. Unlike natural languages, UNL expressions are less 
ambiguous. In the UNL semantic networks, nodes represent concepts, and arcs represent relations between 
concepts. These concepts are called “Universal words” (UWs). The UWs’ connections are called “relations”. They 
specify the role of each word in the sentence [Uchida, Zhu, 2005]. 

Many UNL centers and the UNDL Foundation itself have created a number of tools for working with UNL and 
Natural Language (NL) resources. In this paper we are highlighting some aspects of the development of tools for 
natural language text analysis and generation. The core tools of the project are the NL Analyzer and NL 
Generator developed by the UNDL Foundation [Uchida, Zhu, 2005]. 

The aim of the paper  

The NL analyzer uses several types of resources to build semantic UNL graphs of NL sentences: NL-UNL 
dictionary, transformation and disambiguation rule sets. These resources are being used for semi or fully 
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automatic transformation during the analysis process. Many tools were created for working with UNL-NL and NL-
UNL dictionaries, rules and UNL documents, however in the work process of mentioned tools some difficulties 
arise connected with the increase of the volumes of resources. As the amount of data is growing, the queries to 
relational databases require more time to return. In this paper we present a specific dictionary lookup tool which 
was built based on some search algorithms tuned to match specificity of UNL resources and to get better 
performance. 

Finite-state Machine Implementations  

Nowadays the finite-state machine implementation algorithms for string lookup are considered giving 
comparatively effective solutions for the better lookup performance. In particular machines based on algorithms 
like Boyer–Moore, Knuth–Morris–Pratt and Aho–Corasick are considered, they are widely used for string lookup 
purposes.  

One of the most efficient and known string lookup algorithms is the Knuth–Morris–Pratt string searching algorithm 
(KMP) [Knuth, Morris, Pratt, 1977]. This algorithm searches for occurrences of strings in text. The interesting 
point in this algorithm is that when a mismatch occurs, the word itself embodies information to determine where 
the next match can begin, thus bypassing re-examination of previously matched characters. 

Another efficient solution is the Aho–Corasick string matching algorithm invented by Alfred V. Aho and Margaret 
J. Corasick. It has been proved that the running time of the Aho-Corasick Algorithm (ACA), where m is the length 
of the text T, n is the total (cumulative) length of all patterns in P, and k is the total number of matches of P in T, 
is O(n + m + k). If we compare the work of ACA with the native exact matching algorithm then allowing that T is 
searched once for each of the z patterns in P and a single search can run in O(m) time, there are z iterations of T, 
and O(n) amount of work spent looking at the patterns. This results in a total running time of O(n + mz), which is 
significant amount of time compared to the linear search time of the ACA. Clearly, the ACA is more efficient than 
naive exact set matching algorithms [Spreen, Van Slyke, 2010].  

Similar to KMP algorithm Boyer-Moore(BM) string matching algorithm is widely used in string lookup purposes. 
The execution time of the BM algorithm, while still linear in the size of the string being searched, can have a 
significantly lower constant factor than many other search algorithms: it doesn't need to check every character of 
the string to be searched, but rather skips over some of them. Generally the algorithm gets faster as the key 
being searched for becomes longer. Its efficiency derives from the fact that with each unsuccessful attempt to find 
a match between the search string and the text it's searching, it uses the information gained from that attempt to 
rule out as many positions of the text as possible where the string cannot match. In 1991 it was proved that the 
BM time complexity O(m) can have in worst case 3m comparisons, while in best case only m/n comparisons 
[Boyer, Moore, 1977]. 

However it must be noted that both Boyer–Moore and Knuth–Morris–Pratt string search algorithms perform 
lookup in plain text strings, while Aho-Corasick algorithm is capable to search in text documents represented as 
lists of strings (which in our case can be the NL-UNL Dictionary). Thus the ACA implementation was chosen as a 
more suitable solution for NL-UNL Dictionary lookup. 
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Aho-Corasick Automaton 

Let  D = {y1, y2, … , yk} be a finite set of strings that we shall call words which will be the headwords of dictionary 
entries that will be included in the pattern matching machine. And let x be an arbitrary string that we shall call text 
string (natural language sentence). Our problem is to find all the substrings of text string which are words in D. 
Substrings may overlap or include each other. 

The pattern matching machine for D is a machine that takes as input the text string and returns all occurrences 
of text string substrings that are words in D. Thus, if we create a pattern matching machine for a dictionary and 
give to its input a natural language sentence, we shall receive all the dictionary entries that the NL Analyzer may 
need for the further UNL generation. [Aho, Corasick, 1977] 

NL-UNL Dictionary structure 

Like the conventional dictionaries, NL-UNL dictionaries have simple structure, e.g.  [HEADWORD]{UW ID} "UW" 
(ATTRIBUTES) <L,P,F>; (more simplified : [HEADWORD]<WORD DESCRIPTION >). [Uchida, Zhu, 
2005][UNDL, 2007] 

In NL Analysis the keywords for lookup can be any combinations of letters, digits and special characters, which 
means that the string matching machine must be constructed to provide maximum speed for searching any type 
of character combinations. For compilation we created a custom XML-like syntax, the example below illustrates 
the compiled dictionary syntax. 
<root> 

<_h_00000182> 
 <_e_00000164> 

<e>[he]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
   <_r_00000106> 

   <e>[her]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
   <_s_00000047> 
    <e>[hers]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
   </_s> 
  </_r> 
 </_e> 
</_h> 
<_s_00000082> 
 <_h_00000064> 
  <_e_00000046> 

<e>[she]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
  </_e> 

</_h> 
</_s> 
<_u_00000222> 
 <_s_00000204> 

<e>[us]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
  <_h_00000146> 
   <_e_00000128> 
    <_r_00000110> 
     <e>[usher]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
     <_s_00000049> 
      <e>[ushers]{UW ID} "UW" (ATTRIBUES) <L,P,F>;</e> 
     </_s> 
    </_r> 
   </_e> 

</_h> 
</_s> 

</_u> 
</root> 

Example 1. 
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Example 1 illustrates a finite state string matching machine compiled from a dictionary containing entries: 

 

[he] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[her] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[hers] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[she] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[us] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[usher] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

[ushers] {UW ID} "UW" (ATTRIBUTES) <L,P,F>; 

 

There are several reasons why we use “XML-like” syntax instead of valid XML. The first reason is that a valid 
XML document cannot contain special characters or digits as node elements (e.g. < ’ > or < 1 > are invalid). The 
second reason is that in a valid XML document the opening and closing tag contents should be identical, while in 
our document each opening tag contains an eight digit number describing the count of characters inside the tag; 
this number enhances the keyword lookup speed by allowing the program to identify the position of the closing 
tag. It is unreasonable to keep that number in closing tag, because it makes the document larger. 

 

ACA Construction 

The first step of ACA implementation is the creation of the Data Object Model (DOM); that is a tree containing all 
the dictionary entries in a structure described below (Fig1). The second step is the exporting of DOM into a “XML-
like” text form file (Example 1). 

DOM constructing algorithm (DOMCA) iterates through the dictionary entries fed in a text file or database. All 
entries are being inserted into the same DOM by the DOMCA. During the process DOMCA receives a new entry 
and separates the headword from the whole entry string, splits the headword into characters and starting from the 
root element of the current DOM inserts the characters into the tree. If the character of headword has not been 
inserted into that level of the tree in previous steps, a new node object representing that character is being 
inserted into that level. After that the pointer shifts to the next character of the headword and repeats same steps 
considering as a start level element the previous character node that was inserted. If the node already exists, 
nothing is being inserted, the program only shifts the pointer to the next character of the headword and repeats 
the same steps considering as a start level element the previous character node that was found inserted in 
previous level. The program repeats these steps recursively until the pointer reaches the end of the headword 
and after that inserts a new node containing information about the whole entry string. As a result, the final output 
will be a single DOM tree with characters as intermediate nodes and dictionary entries as final nodes (Fig1). 
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Fig1 

. 

Exporting DOM into a Text Document 

 After the pattern matching machine has been created and presented as a DOM, we need to export it into a text 
document for storing and further usage. We use a function that receives a DOM node element to its input and 
returns its content as a string including the string values of sub-nodes which in their turn are presented as text 
string by calling the same function recursively until there are no sub-level nodes left. The final string is an XML-
like document (Example 1) that represents the DOM (Fig1) in a final text form, which will be later used in keyword 
lookup process. 

 

Dictionary Lookup Using the ACA 

String lookup algorithm is applied to a text string T and a dictionary DOM which is constructed as a directed graph 
described above. 
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Let T be a word T = σ1, σ2, …, σL . We define a goto function giving for every state k and every letter σ a new 
state g(k, σ) obtained by applying the letter σ (graph edge) in the directed graph DOM to the state k (graph node). 
For example in Fig. 1, the edges labeled from 0 to 11 indicate that g(0, u) = 11, g(0, s) = 8 and so on. Whenever 
there is no edge σ for the node k in the graph the goto function g(k, σ)  reports fail result. 

In our Machine we also define an output function returning the dictionary entries that match the word generated 
by the current state (may be empty). 

At the beginning the string lookup algorithm considers the words g(…g(g(0, σ1), σ2)…,σk) such that k ≤ L while 
the symbol fail does not arise during the process. Every time when the function output(sk) ≠ empty we add its 
returned entry to the output list of entries. If the failure symbol fail has appeared during the word lookup process 
g(…g(g(0, σ1), σ2)…,σL) the lookup process for the word T = σ1, σ2, …, σL  stops and starts again considering as 
the lookup word T = σ2, …, σL  , and so on. The list of all output entries obtained during these iterations will be the 
final output of the String Lookup Algorithm. 

Initially, the current state of the machine is the start state 0 and the first symbol of the keyword string is the 
current input symbol. The machine then processes the keyword string by making one operating cycle on each 
symbol of the keyword string. [Aho, Corasick, 1977] 

 

Development of Dictionary Lookup Program Using ACA 

The text file of the created pattern matching machine may be very large depending on dictionary size, thus, 
instead of loading the whole document into the machine’s memory, the program reads the document bytes one 
by one. 

Let us assume that we have a keyword w and need to find all the dictionary entries with headwords that match as 
a whole word or as substring to the w.  

The lookup program receives the keyword w and splits it into character array K = { k1, k2, … , kn }. On each 
iteration of i = {1, 2, … , n} loop the program searches for an opening tag “<_ki>” or “<e>” (“<e>” tag indicates a 
dictionary entry or entry set and is different from “<_e>” tag) . When an opening tag “<e>” is found the program 
calls the output(“k1k2…ki-1”) function to print the content of the “<e>…</e>”  tag which is a match for the keyword 
substring “k1k2…ki-1”, and continues search, if a tag “<_ki>” is found, meaning that the i-th character of the 
keyword has matched, the next character of the keyword becomes the current character (i = i+1) and the 
operations repeat (e.g. for the keyword “ushers”, if the “<e>” was found in tag representing the second symbol of 
the keyword, output(“us”) function will be called and the found entries in <e> tag will be printed as the matches 
for a sub-keyword “us”). If no tag “<_ki>” is found on the i-th step, the iteration stops and returns the printed 
values.  

After each circle while |w| > 1, we remove the first character of k keyword and run lookup program with the new 
keyword w’ = “k2k3…kn” again.  
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For example if the base keyword is “ushers”, the keywords that will be sent to the lookup program input are {w = 
“ushers”, w’ = “shers”, w’’ = “hers”, w’’’ = “ers”, w’’’’ = “rs”, w’’’’’ = “s”}. See Table 1 for the returned results after 
each call of lookup program.  

 

Keyword Matches 

“ushers” “us”, “usher”, “ushers” 

“shers” “she” 

“hers” “he”, “her”, “hers” 

“ers” - 

“rs” - 

“s” - 

Table 1. 

 

Lookup Time Optimization 

Several enhancements were done in order to minimize the time required for lookup. 

1. It was decided to create a mapping file that will contain the byte addresses of the first 6 characters of all 
headwords of dictionary entries used in pattern matching machine creation. Thus for a keyword K = { k1, 
k2, … ..., kn } (n>6), the program can find the byte indexes for sub-keywords {“k1” , “k1k2” , “k1k2k3” , 
“k1k2k3 k4” , “k1k2k3k4k5” , “k1k2k3k4 k5 k6”} from the mapping file and retrieve all dictionary entries that may 
be allocated in those byte addresses of the dictionary file. After that the program starts the dictionary 
lookup starting from the “k1k2k3k4k5k6” index position with a keyword “k7k8…kn”. If n ≤ 6, no lookup will be 
called at all, this significantly minimizes the time required for process. The limit of 6 characters was 
chosen for mapping as the most optimal number in mapping file size and lookup time relation. By 
increasing the length of mapped keyword strings  more time is required for loading the mapping file, less 
time for lookup and vice versa.  

Graph 1 illustrates the efficiency of lookup algorithm in required time in milliseconds (T) and mapping 
characters limit (N) relation. This graph is based on the average of test results held on a PC with dual 
core CPU of 2.0 GHz frequency and 2 GB of RAM. 10 sentences in English of average 180-200 
characters each were chosen as keyword strings for testing with English-UNL dictionaries containing 
100'000 to 400'000 entries. According to the graph, mapping character limit of 6 is the optimal number 
producing the best speed results. 

2. When exporting the dictionary string matching machine into a text file, all character nodes are being 
ordered alphabetically. During the lookup process, when a character tag is found but does not match the 
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current keyword character, the program is supposed to find the next opening tag in that level. But 
considering the fact that the tags are stored in alphabetical order, the program compares the byte codes 
of the current keyword character and the found tag character, if the tag character code is less than the 
keyword character code, we can be sure that there will be no further character tags in that level of tree 
that will match the current character of keyword, thus the failure function is being called, avoiding the 
further lookup actions that will not return any match. Also to ensure that the program will not miss any 
entry tag by performing this action, the entry tags are being placed before all character tags of each level 
of the tree. 

 

 

Graph 1. 

 

Results and Conclusion 

As it was mentioned before there are other alternative ways of dictionary lookup to the string matching machines 
and those methods were also tested and compared to the implemented ACA results. One of the most robust 
search engines nowadays is the Apache Lucene: an open source project created in Java and currently being 
released under the Apache Software License. Currently, Lucene is considered of the leading tools for search and 
is being used as a basis in many powerful search engines. It uses similar search indexing and lookup 
approaches, thus was chosen for our comparison. Table 2 illustrates the lookup results gained by using MySQL 
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database, Apache Lucine and our ACA implementation. Below are listed 5 randomly selected sentences that 
were used in comparison results (Table 2). These results were later confirmed by a bigger test corpus. 

   1. “The flexibility and opportunities that UNL gives are enormous, so we decided to create a project that will be 
a pioneering effort to invest on this technology into real world applications.” 

   2. “The flexibility and opportunities that UNL gives are enormous.” 

   3. “The flexibility and opportunities.” 

   4. “Cyanogenmod is free of charge, but let's face it - it takes time and effort from Cyanogen to make it happen, 
time he could be using to work a salaried position, but instead is working on getting you the ROM you love, and 
doing it without asking anything in return.” 

   5. “Depending on the current state of your handset, there are basically three different ways to upgrade to the 
latest CyanogenMod version.” 

 

Sentence 
No. 

Matched 
entries 

ACA 
 lookup time 

Lucine lookup 
time 

MySQL lookup 
time 

1 111 355 ms 1093 ms 2512 ms 

2 55 154 ms 152 ms 215 ms 

3 36 42 ms 50 ms 162 ms 

4 120 131 ms 789 ms 7300 ms 

5 86 90 ms 149 ms 2048 ms 

 

Table 2. 

 

Thus, we can say that the implemented search engine performance is robust and resolves the performance 
issues on standard desktop machines. 
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COMPARISON OF PROOF SIZES IN FREGE 
SYSTEMS AND SUBSTITUTION FREGE SYSTEMS 

Anahit Chubaryan, Hakob Nalbandyan 

 

Abstract: It is known that the minimal number of the steps in a proof of a tautology in a Frege system can be 
exponentially larger than in a substitution Frege system, but it is an open problem whether Frege systems can 
polynomially simulate substitution Frege systems by sizes. Many people conjecture that the answer is no. We 
prove that the answer is yes. As a bridge between substitution Frege systems and Frege systems we consider 
the Frege systems, augmented with restricted substitution (single renaming) rule. We prove that Frege systems 
with single renaming rule polynomially simulate by size Frege systems with substitution rule without any 
restrictions, and Frege systems without substitution rule polynomially simulate Frege systems with single 
renaming rule both by steps and by size. 

Keywords: Frege system, proof complexity, depth-restricted substitution rule, k-bounded substitution rule, 
polynomial simulation, exponential speed-up. 

ACM Classification Keywords: F.4.1 Mathematical Logic and Formal Languages, Mathematical Logic, Proof 
theory 

 

1. Introduction 

It is well known that the investigations of the propositional proof complexity are very important due to their relation 
to the main problem of the complexity theory: P ≟ NP. 

One of the most fundamental problems of the proof complexity theory is to find an efficient proof system for 
propositional calculus. There is a wide spread understanding that polynomial time computability is the correct 
mathematical model of feasible computation. According to the opinion, a truly “effective” system must have a 
polynomial size, p(n) proof for every tautology of size n. In [Cook, Reckhow, 1979] Cook and Reckhow named 
such a system, a super system. They showed that if there exists a super system, then NP = coNP. 

It is well known that many systems are not super. This question about Frege system, the most natural calculi for 
propositional logic, is still open. It is interesting how efficient can be Frege systems augmented with new, not 
sound rules, in particular, Frege systems with different modifications of substitution rules. 

In the field of proof complexity the relation of Frege systems (ℱ-systems) to Frege systems with substitution (Sℱ-
systems) has been discussed in [Cejtin, Chubaryan, 1975], [Krajicek, 1989], [Buss, 1995]. It has been proved that 
there exist tautologies which have n line substitution Frege proofs, but which require Frege proofs of 2cn lines for 
some constant c. It has also been proved, that substitution Frege proofs of these tautologies can be transformed 
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into Frege proofs only with quadratic increase of size [Buss, 1995], [Chubaryan, 2000]. It is an open problem 
whether Frege systems can polynomially simulate substitution Frege systems [Buss, 1995]. 

In [Chubaryan, 2000] a special construction of substitution Frege proofs is described. By their transformation into 
Frege proofs the maximum (exponential) increase in the number of lines is obtained, although increase in size is 
at most polynomial (it seems, the latter size increase is maximal). The paper [Chubaryan, 2000] reveals also 
some important properties of substitution Frege proofs, which can be simulated by Frege systems. 

In [Chubaryan et al. 2008], [Chubaryan, Nalbandyan, 2009] the substitution rules with two different restrictions are 
introduced: 

a) if for any constant k ≥ 1 we allow substitution instead of occurrences of no more than k different 
variables at a time (k – bounded substitution) 

b) if for any constant  d ≥ 0 we allow substitution of formulas, depth of which is no more than d (d – depth 
restricted substitution). 

For every type restriction in [Chubaryan et al. 2008] and [Chubaryan, Nalbandyan, 2009] it is proved that: 

1) the minimal numbers of steps (the minimal sizes) of the proofs of tautology in any two restricted 
substitution Frege systems are polynomially related 

2) the minimal sizes of the proofs of tautology in without restrictions substitution Frege system and in 
restricted substitution Frege system are also polynomially related 

3) the minimal number of steps of a tautology in restricted substitution Frege system can be exponentially 
larger than in the system with substitution rule without restrictions. 

Here it is proved that: 

4) the minimal number of steps of a tautology in Frege system without substitution rule can be 
exponentially larger than in Frege system with restricted substitution rule 

The question about the increase of sizes by transformation in the case 4) was also open. 

Here we consider the substitution rule with double restriction: 1 – bounded (single) and 0 – depth (renaming).  

We prove that Frege systems with such double restricted substitution rule and Frege systems without substitution 
rule are polynomially equivalent both by steps and by size. 

2. Preliminary 

We shall use generally accepted concepts of Frege system and Frege system with substitution. 

A Frege system ℱ uses a denumerable set of propositional variables, a finite, complete set of propositional 

connectives; ℱ has a finite set of inference rules defined by a figure of the form    (the rules of inference 

with zero hypotheses are the axioms schemes); ℱ must be sound and complete, i.e. for each rule of inference 

  every truth-value assignment, satisfying A1, A2, ..., Am, also satisfies B, and ℱ must prove every 

tautology. 
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A substitution Frege system Sℱ consists of a Frege system ℱ augmanted with the substitution rule with 

inferences of the form  for any substitution σ = , s ≥ 1, consisting of a mapping from 

propositional variables to propositional formulas, and  denotes the result of applying  the substitution to 
formula A, which replaces each variable in A with its image under σ. This definition of substitution rule allows to 
use the simultaneous substitution of multiple formulas for multiple variables of A without any restrictions. The 
substitution rule is not sound. 

If the depths of formulas  (1 ≤ j ≤ s) are restricted by some fixed d (d ≥ 0), then we have d-restricted 

substitution rule and we denote the corresponding system by Sdℱ. 0-restricted substitution rule is named 
renaming rule. 

If for any constant k ≥ 1 we allow substitution instead of occurrences of no more than k different variables at a 
time, then we have k – bounded substitution rule. The k – bounded substitution Frege system Skℱ consists of a 
Frege system augmented with the k – bounded substitution rule. 

We use also the well-known notions of proof, proof complexities and  p – simulation given in [1]. The proof in any 
system Φ (Φ-proof) is a finite sequence of such formulas, each being an axiom of Φ, or is inferred from earlier 
formulas by one of the rules of Φ. 

The total number of symbols, appearing in a formula φ, we call size of φ and denote by | φ |. 

We define – complexity to be the size of a proof (= the total number of symbols) and t – complexity to be its 

length (= the total number of lines). 

The minimal – complexity (t – complexity) of a formula φ in a proof system Φ we denote by ( ). 

Let Φ1 and Φ2 be two different proof systems. 

Definition 1. The system Φ2 p--simulates Φ1 (Φ1 


Φ2), if there exists a polynomial p( ) such that for each 

formula φ, provable both in Φ1 and Φ2, we have  ≤ p( ). 

Definition 2. The system Φ1 is p--equivalent to system Φ2 (Φ1 ~


 Φ2), if Φ1 and Φ2 p--simulate each other. 

Similarly p-t-simulation and p-t-equivalence are defined for t – complexity. 

Definition 3. The system Φ2 has exponential -speed-up (t-speed-up) over the system Φ1, if there exists a 

sequence of such formulas φn, provable both in Φ1 and Φ2, that    >   . 

In this paper we compare under the p-t-simulation relation S0ℱ and ℱ, S1ℱ and ℱ, and under p-t (p-)-simulation 

 ℱ and ℱ. 

For proving the main results we use also the notion of essential subformulas, introduced in [Chubaryan et al. 
2008], and the notion of τ – set of subformulas, introduced in [Cejtin, Chubaryan, 1975]. 
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Let F be some formula and Sf(F) is the set of all non-elementary subformulas of formula F. 

For every formula F, for every φ ∈ Sf(F) and for every variable p   denotes the result of the replacement of 

the subformulas φ everywhere in F with the variable p. If φ ∉ Sf(F), then  is F. 

We denote by Var(F) the set of variables in F. 

Definition 4. Let p be some variable that p ∉ Var(F) and φ ∈ Sf(F) for some tautology F. We say that φ is an 
essential subformula in F iff  is non-tautology. 

We denote by Essf(F) the set of essential subformulas in F. 

If F is minimal tautology, i.e. F is not a substitution of a shorter tautology, then Essf(F) = Sf(F). 

The formula φ is called determinative for the ℱ-rule    (m ≥ 1) if φ is essential subformula in formula   

A1 & (A2 & … & (Am-1 & Am) …) ⊃ B. By the Dsf(A1, …, Am, B) the set of all determinative formulas for rule 

 is denoted. 

We say that the formula φ is important for some ℱ-proof (Sℱ -proof) if φ is essential in some axiom of this proof 
or φ is determinative for some ℱ-rule. 

In [Chubaryan et al. 2008] the following statement is proved. 

 

Proposition 1. Let F be a minimal tautology and φ ∈ Essf(F), then in every Sℱ-proof of F, in which the employed 
substitution rules are  

; ; … ;  

either φ must be important for this proof or it must be the result of the successive employment of the substitutions  

, , … ,  for 1 ≤ , , … ,  ≤  in any important formula. 

τ – set of subformulas for some formula F with the logical connectives &, ∨, ⊃ and ¬ is defined as follows: 

τ(F) = {F} ∪ τ1(F), where 

τ1(F) = Ø, if F is propositional variable 

τ1(F1 & F2) = τ(F1) ∪ τ(F2), if F = F1 & F2 

τ1(F1 ∨ F2) = τ(F1) ∩ τ(F2), if F = F1 ∨ F2 

τ1(F1 ⊃ F2) = τ(F2) \ τ(F1), if F = F1 ⊃ F2 

τ1(¬F1) = , if F = ¬F1 

In [Nalbandyan, 2010] the following 3 auxiliary statements are proved. 

1. For every minimal tautology F τ(F) ⊆ Essf(F). 
2. For every formula F if subformula φ ∈ τ(F), then every occurrence of φ in F is positive. 
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The notions of positive (negative) occurrence of some subformula in the formula are well known (see, for example 
[Buss, 1995]), as well as 0-1 numeration of subformulas in formula. 

3. If formula F has only the connectives ⊃ and ¬, then the number of every subformula from the set τ(F) is 
in the form ( ) for the corresponding n. 

The main results, connected with comparison of different substitution rule modifications, are the followings. 

 

Theorem 1.  

1. given arbitrary k1 ≥ 1 and k2 ≥ 1    ℱ ~


 ℱ    ℱ ~t  ℱ 

2. given arbitrary k ≥ 1  Skℱ ~


 Sℱ 

3. given arbitrary k ≥ 1 Sℱ has exponential t -speed-up over the system Skℱ   
4. given arbitrary k ≥ 1 Skℱ has exponential t -speed-up over the system ℱ. 

 

Theorem 2.  

1. given arbitrary d1 ≥ 1 and d2 ≥ 1    ℱ ~


 ℱ    ℱ ~t  ℱ 

2. given arbitrary d ≥ 0 Sdℱ ~


 Sℱ 

3. given arbitrary d ≥ 0 Sℱ has exponential t -speed-up over the system Sdℱ 
4. given arbitrary d ≥ 0 Sdℱ has exponential t -speed-up over the system ℱ. 

The proofs of the points 1., 2., 3. for both theorems are given in [Chubaryan et al. 2008] and [Chubaryan, 
Nalbandyan, 2009], [Chubaryan et al. 2009] accordingly. Note that the proofs of the points 1. and 2. are based on 

the result of Buss [Buss, 1995], who proved that renaming Frege systems p--simulate Frege systems with 

substitution without any restrictions. 

The proof of point 4. for k = 1 from Theorem 1., using the formulas 

 φn =  ⊃ (  ⊃ p1) … ), is given in [Cejtin, Chubaryan, 1975], where only single 
substitution rule is considered, therefore the proof for every k ≥ 1 follows from point 1. 

To prove the statement of point 4. from Theorem 2. we show that for the formulas  

Ψn  = (p1 ⊃ p1) & (p2 ⊃ p2) & (p3 ⊃ p3) & … & (pn ⊃ pn) 

are true the following results 

 = O( ) and  = Ω(n). 

Really, the formula Ψn can be derived in S0ℱ as follows: 

1. p1 ⊃ p1 
2. p2 ⊃ p2   (renaming ) 
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3.  (p1 ⊃ p1) & (p2 ⊃ p2)   (   rule) 

4. (p3 ⊃ p3) & (p4 ⊃ p4)   (renaming ) 

5. ((p1 ⊃ p1) & (p2 ⊃ p2)) & ((p3 ⊃ p3) & (p4 ⊃ p4))   (   rule)   
 

2k + 1.    (p1 ⊃ p1) & …………… & (  ⊃ )   (   rule) 

2k + 2.    (  ⊃ ) & …………… & (  ⊃ )   (renaming ) 

2(k+1) + 1.   (p1 ⊃ p1) & …………… & (  ⊃ )   (   rule) 

On the other hand τ – set of  has 2k+1 formulas, and therefore from above auxiliary statements 1. and 2., 
follows that the number of steps in ℱ - proof of  must be no less than c ∙ 2 k for some c, depending only from 
choice of system ℱ.   

Note that if we compare the sizes of ℱ - proof and S1ℱ - proof for φn and the sizes of ℱ - proof and S0ℱ - proof 
for Ψn, then we obtain only polynomial increase. 

 

3. Main result 

Here we will consider the Frege system augmented with double restrictions substitution rule(single renaming). 
According to above notations, such system must be denoted by ℱ. 

In [Cook, Reckhow, 1979] it is proved that every two Frege systems are polynomially equivalent both by size and 
by length, therefore without loss of generality we assume that ℱ is a Frege system, whose language contains 
only the connectives ⊃ and ¬. 

The axiom-schemas are: 

1. A ⊃ (B ⊃ A) 
2. (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)) 
3. (¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A)  

and inference rule is Modus ponens. 

The main result of the paper is the following statement. 

Main Theorem.  

Sℱ ~


 ℱ 

First we will prove that ℱ ~


 ℱ and obtain the statement of the Main Theorem as a corollary. 

Let us recall some notions in addition. 
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Note that every Φ-proof has an associated graph with nodes, labeled by formulas, and edges from A to B if 
formula B is the result of applying of some inference rule to A (perhaps with another formulas). A proof is said to 
be tree-like if the associated graph is tree. It is obvious, that any derivation can be made tree-like by merely 
repeating parts of the derivation if need be. It is also obvious that by such natural transformation we have tree-like 
proof, the steps of which can be much more than the steps in original proof-sequence, nevertheless in [Krajicek, 
1994] a transformation of proof-sequence into tree-like proof is suggested such that the following statement is 
hold: 

 for every Frege system there exists a polynomial p() such that for every tautology φ if n is the steps of its proof in 
the sequence form, then steps of its tree-like proof is no more than p(n). 

Without making some important corrections in the proof of this statement, we prove 

 

Lemma 1. There exists a polynomial p() such that for every tautology φ if n is the number of steps of its ℱ-
proof in the sequence form, then the number of steps of its tree-like ℱ-proof is no more than p(n). 

In [Cejtin, Chubaryan, 1995] a natural method of transformation of a given Sℱ-proof into ℱ-proof is described. 
This method is following: let some formula ψ of Sℱ-proof be inferred from φ by substitution rule, i.e. there is a 
substitution σ such that ψ = φσ. To prove the formula ψ in ℱ we have to repeat the proof of φ, applying the 
substitution σ to all formulas of this proof. 

As the sequence of successive substitution is closed under composition, then described transformation method 
must be applied in the case when both formulas φ and φσ are used for the inference of some next formulas in the 
given Sℱ-proof, and therefore, as it is pointed in introduction, the number of steps of ℱ-proof can be much more 
than the number of steps of Sℱ-proof, but if Sℱ-proof is in tree-like form, then the number of formulas in 
corresponding ℱ-proof is no more than in Sℱ-proof, so we obtain the following statements. 

 

Lemma 2.  ℱ ~t ℱ 

Now we must compare the size of the proofs for arbitrary formula in ℱ and in ℱ. 

Let us recall the notion of right-chopping proof, introduced in [Nurijanyan, 1981]. For Intuitionistic and Minimal 
(Johansson’s) Logic there is proved the following statements: 

If the axiom F1 ⊃ (F2 ⊃ ( … ⊃ (Fm ⊃ G) … ) and the formulas F1, F2, … , Fm are used from the minimal (by steps) 
derivation of formula G by the successive applying of the rule modus ponens, then m ≤ 2, i.e. the length of 
branch, going to right and upwards from every node of the corresponding graph, is no more than 2. Such graph 
and hence the corresponding proof are called right-chopping. 

The analogous statement for classical Hilbert style systems is not valid, but using 1) the method of Nurijanyan, 2) 
proved in [Cejtin, Chubaryan, 1975] fact that every formula from τ – set of arbitrary derivable formula must be an 
element from τ – set at least of one axiom from this derivation, and 3) that the τ – sets of our axioms are the 
following: 
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1. τ(A ⊃ (B ⊃ A)) = {A ⊃ (B ⊃ A), B ⊃ A } 
2. τ((A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C))) = {(A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)),  

(A ⊃ (B ⊃ C)) ⊃ (A ⊃ C), A ⊃ C} 
3. τ((¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A)) = {(¬A ⊃ B) ⊃ ((¬A ⊃ ¬B) ⊃ A), (¬A ⊃ ¬B) ⊃ A)}, 

we obtain the following statements. 

Lemma 3. Every ℱ-proof of a formula φ can be transformed into right-chopping proof of φ, the t-complexity of 
which is no more than t-complexity of original proof. 

Note that the depth of occurrence of each formula from τ – set of any above axioms is no more than 2. 

In [Buss, 1995] it is showed that a Frege proof for a formula can be transformed into new one, where the symbol-
size is related to line-size and the depth of the original proof. Recall that the depth of the proof is the maximum 
and/or depth of a formula ψ, occurring in the proof. 

More precise result is the following: 

a depth d Frege proof with m lines can be transformed into a depth d Frege proof with O(md) symbols. 

Using 1) the main idea of the proof of this result, 2) above remark about depth of formulas from τ – set of axioms, 
3) the possibility of evaluating of the sizes for interpolants and two contrary formulas, deduced from counter- 
factural hypothesis in right-chopping proof, we obtain the following statement. 

 

Lemma 4. If t is the number of steps in right-chopping ℱ-proof of tautology φ, then the size of this proof is no 
more than t3∙|φ|. 

 

Now we can proof the following 

 

Main Lemma.  ℱ ~


 ℱ 

Really, let we have some ℱ proof of arbitrary tautology φ with the size L. It is obvious that |φ| < L and               
t-complexity of this proof also is < L. At first we transform this proof into tree-like proof, then into ℱ-proof, and 
finally into right-chopping ℱ-proof. 

Using the statements of above Lemmas, we can state that there is a polynomial p(), depending only on the choice 
of Frege system such that  = O(p(L)). 

So ℱ p--simulates ℱ. The reverse p--simulation is obvious. 

Now the proof of Main Theorem follows from the results of Theorem 1, Theorem 2 and Main Lemma. 
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SOME PROPERTIES IN MULTIDIMENSIONAL 
MULTIVALUED DISCRETE TORUS 

Vilik Karakhanyan 

 

Abstract: Current research concerns the following issues: n-dimensional discrete torus generated by cycles of 
even length is considered; the concept of standard arrangement in the torus is defined and some basic   
properties of this arrangement are investigated. The issues considered are similar to discrete isoperimetry 
constructions, being related to concept of neighbourhood in terms of linear arrangements of vertices. Considered 
are the basic properties of solving the discrete isoperimetry problem on torus.  

Keywords: discrete torus, standard arrangement. 

ACM Classification Keywords:  G.2.1 Discrete mathematics: Combinatorics 

Introduction 

Isoperimetric problems appeared in the variational calculus of Euler and Lagrange as a classic mathematical 
issue. The similar considerations in discrete spaces are completely different in research technologies which can 
be easily seen by early works on isoperimetry [1-6]. The difference and the problem novelty appear on the 
boundary of the subset considered to be isoperimetric. First results were delivered in terms of linearization of 
domain elements. After this studies appeared example problems that exempt this property. And appeared one 
more model, - with cylindrical coordinates like the torus [5-6]. In which extend the rules of [1, 3] are extendable to 
this domain? This is the main topic of study of current investigation. 

Basic Definitions 

For any integers  ∞<≤≤≤≤ nkkk 211  the multivalued n-dimensional torus n
kkk n

T
21

 has been defined 

as the set of vertices: },,/),,,{( niZxkxkxxxT iiiin
n

kkk n
≤≤∈≤≤+−= 112121





, where 

two vertices ),,,( nxxxx 21=  and ),,,( nyyyy 21=  of n
kkk n

T
21

 are considered neighbours, if they differ 

by exactly one coordinate for which either 1=− || ii yx ; or the values equal 1+− ik  and  ik  respectively. The 

sum and difference of these vectors has been defined in the following way: 
,),,,(),,,( nnn zzzyxyxyxyxz  212211 =±±±=±=  where iii kzk ≤≤+− 1   and 

))(mod( iiii kyxz 2±≡ .  

 



International Journal “Information Theories and Applications”, Vol. 17, Number 2, 2010 

 

161 

We will consider discrete isoperimetric problem for the torus. First let us define the concept of interior and 
boundary vertices for subsets of n

kkk n
T

21
.   

Definition 1 n
kkk n

TA
21

⊆  For a given subset  we say that a vertex Ax ∈  is an interior A point of , if all its 

neighbouring vertices belong to .A  Otherwise Ax ∈  is called  a  boundary .A vertex of  We denote by )(AB  

and ,)(AΓ  respectively, the subset of all interior and boundary points of .A  

 

||, n
kkk n

Taa
21

0 ≤≤

Discrete isoperimetric problem 

Given an integer . Determine a subset  ,n
kkk n

TA
21

⊆ ,|| aA = that have the largest 

number of  interior points among all subsets of size a : 

                                  .|)(|max|)(| '

|| '

'
ABAB

aA
TA

nkkk
=

⊆
=

21
 

Sets, being the solution of the discrete isoperimetric problem, we call optimal.  

In case when 121 ==== nkkk  , n
kkk n

T
21

 becomes n-dimensional unit cube nE ; the solution of the 

discrete isoperimetric problem in nE is given in [1-4]. In case of ∞==== nkkk 21 , the solution is given in 

[5]. Notice that in [4,5] the subset of boundary vertices of n
kkk n

TA
21

⊆  is defined as the set of vertices from 

,\ AT n
kkk n21

that have at least one neighbouring vertex from .A  

We denote by |||| x  the norm of a vertex ),,,( nxxxx 21=  where ∑
=

=
n

i
ixx

1
|||||| , and denote by ),( yxρ  

the distance between the vertices ),,,( nxxxx 21=  and ),,,( nyyyy 21=  where .||||),( yxyx −=ρ  

Now we define the concepts of sphere and envelope with a given centre and radius. 

Definition 2 }),(/{),( kyxTykxS n
kkk

n
n

≤∈= ρ
21

 The set   is called a sphere n
kkk n

Tx
21

∈ with the centre 

and radius k , and the set }),(/{),( kyxTykxO n
kkk

n
n

=∈= ρ
21

 is the envelope x with centre  and radius 

.k  

Let ),,,( nie ααα 21=  denote the unit vector of i-th direction, where 1=iα  and 0=jα  for ij ≠  , and let 

1~ and 0~  be the vectors with all 1 and all 0 coordinates respectively: 1~ = ),,,( 111   and 0~ = .),,,( 000   

For any subset n
kkk n

TA
21

⊆  and any nii ≤≤1, and ii kjkj ≤≤+− 1,  we make the following designation: 

.}/{ AxjexjeA ii ∈+=+  

We will consider partition of n
kkk n

T
21

 (respectively partition of n
kkk n

TA
21

⊆ )  on i-th direction, ni ≤≤1  and j -

th value, ii kjk ≤≤+− 1  and will denote by )( jT n
i  (respectively by )( jAi ): 
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 ,}/),,,({)( jxTxxxxjT i
n

kkkn
n

i n
=∈==





2121  

)(}/),,,({)( jTAjxAxxxxjA n
iini  ==∈== 21 .  

 

Notice that the intersections of the sphere ),( kxS n  and the envelope ),( kxOn  with the (n-1)-dimensional 

torus )( jxT i
n

i + , are respectively the sphere and envelope with the centre ijex + and radius || jk−  in 

)( jxT i
n

i + . We make the following designations: 

          ;)(),(}/),({|)|,( jxTkxSjxykxSyjkjexS i
n

i
n

ii
n

i
n
i +=+=∈=−+   

,)(),(}/),({|)|,( jxTkxOjxykxOyjkjexO i
n

i
n

ii
n

i
n
i +=+=∈=−+   

where in case of 0<− || jk  these sets are empty: =−+=−+ |)|,(|)|,( jkjexOjkjexS i
n
ii

n
i ∅.  

It is clear that  




i

i

n

k

kj

n
i

n
kkk jTT

1
21

+−=

= )(  , ,)(


i

i

k

kj
i jAA

1+−=

=  ,|)|,(),(


i

i

k

kj
i

n
i

n jkjexSkxS
1+−=

−+=

,|)|,(),(


i

i

k

kj
i

n
i

n jkjexOkxO
1+−=

−+=   

for each ., nii ≤≤1   

For each )( jAi  in the partition of 


i

i

k

kj
i jAA

1+−=

= )(  we denote by ))(( jAB i  and ))(( jAiΓ , respectively, the 

subsets of its interior and boundary vertices in )( 1−n  -dimensional torus .)( jT n
i  

For any vertex ),,,( nxxxx 21=  of n
kkk n

T
21

, we denote by || x  and )(xδ  the vectors 

|)|,|,||,(||| nxxxx 21=  and ),,,()( nx αααδ 21= , where 1=iα  for  01 >+−inx  and 0=iα  for 

.01 ≤+−inx  

In general, for n -dimensional vectors ),,,( nxxxx 21=  and ),,,( nyyyy 21=  with nonnegative integer 

coordinates, we say that the vector x  lexicographically precedes y  (written by yx  ), if there is a number 

,1, nrr ≤≤  such that ii yx =  for ri <≤1  and .rr yx <  

Now we order the vertices of the torus n
kkk n

T
21

 as follows:  

vertex x  precedes vertex  y  written by yx ⇐ ), if and only if  

1. ,|||||||| yx <  or  

2. |||||||| yx = and )(yδ  lexicographically precedes )(xδ  , or  

3. ,|||||||| yx = )()( yx δδ =  and || y  lexicographically  precedes .|| x  
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It is easy to check that this ordering between the vertices of the torus n
kkk n

T
21

 is a linear order.  

The first a  vertices of the torus n
kkk n

T
21

by the above determined liner order we call standard arrangement

.||, n
kkk n

Taa
21

0 ≤≤

 of 

cardinality  

Basic properties of the standard arrangement 

In this section we investigate the basic properties of the standard arrangement. 

 

Theorem 1. A  If a set  is the standard arrangement in n
kkk n

T
21

, then its interior vertices precede the boundary 

vertices.  
 

Proof. Prove that if )(),,,( ABxxxx n ∈=21  and xy ⇐  , then )(),,,( AByyyy n ∈=21 . It suffices to 

show that Aey i ∈±  for nii ≤≤1, . Clearly, Aey i ∈+  for 0<iy  or ii ky =  and Aey j ∈−  for 

0>jy , such that |||||||| yey i <+  and |||||||| yey j <− , i.e. yey i ⇐+  and yey j ⇐− . On the 

other hand, it is clear that ii eyey −⇐+ , if 0=iy . Consequently, to complete the proof, it suffices to show 

that Aey i ∈⊕ , for ii ky ≠  , where 




≤−
>+

=⊕
0
0

ii

ii
i yifey

yifey
ey

,
,, . Starting from the definition of the linear 

ordering  ⇐ , consider the following three cases:  

I. .|||||||| xy <  

If ∑
=

=
n

i
ikx

1
|||| , then n

kkk n
TABA

21
== )( , and then the vertex y is also interior. And if ∑

=

≠
n

i
ikx

1
|||| , then 

there exists  0i , that 
00 ii kx ≠ . Then |||||||||||| ii eyxex ⊕≥>⊕

0
  for each nii ≤≤1, , that is 

0ii exey ⊕⇐⊕ . Hence Aey i ∈⊕ , for ni ≤≤1 . 

 

II. |||||||| xy =  and ).()( yx δδ   

Let ),,,,,()(  021 rnx −= αααδ  and ),,,,,()(  121 rny −= αααδ . If there is a number 0i  that  

• 0
0
>ix  and 

00 ii kx ≠ , or  

•  0
0
≤ix  and ri <0 ,or  

•  10
000
+−≠≤ iii kxx ,  and ri ≥0 , then  

for every ii ky ≠ , the vertex iey ⊕  precedes the vertex 
0i

ex ⊕ , as ||||||||
00 ii eyex ⊕=⊕  and 

)()(
00 ii eyex ⊕⊕ δδ  . Hence Aey i ∈⊕ , when ii ky ≠ .  
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Otherwise, if  ii kx =  for ri <≤1 , 1+−= rr kx  and ii kx =  or  1+−= ii kx  for  nir ≤<  then from  the 

condition |||||||| yx =  we find: 

01
1

1

1
=−+−−+− ∑∑

+=

−

=

n

ri
iirr

r

i
ii yxykyk |)||(|)(|)|(  (1) 

 

Since  0≥− || ii yk  for ri <≤1 ,  11 −≥−− rr yk  and  0≥− |||| ii yx , for  nir ≤<  (according to 

condition )()( yx δδ   ), then it follows from (1) that the following cases take place:  

a) ii ky =  for ri <≤1 , 1−= rr ky  and ii yx =  for ;nir ≤<  then it is clear, that for ri >  vertex  

iey ⊕ precedes vertex iex ⊕ , and  rr exey −=+ , therefore Aey i ∈⊕  for any ;ii ky ≠   

b) ii ky =   for ri ≤≤1 , and there is a unique number ri >0  such,  that 1
00

+= |||| ii yx  and 

ii yx = , for 0iinir ≠≤< , ,  then the vertex iey ⊕  is preceded by the vertex iex ⊕ , for 

0iiri ≠> , , and ,ri exey −=⊕
0

so again Aey i ∈⊕ , for any  ;ii ky ≠   

c) there is a unique number  ri <1  such that iiii kyky =−= ,|| 1
11

 for ,, 1iinir ≠≤≤ and ii yx =  

for .nir ≤<  In this case ,ri exey −=⊕
1

and vertex  iey ⊕  is preceded by the vertex iex ⊕  

for .nir ≤<  Hence Aey i ∈⊕ , when  ii ky ≠ . 

 

III. )()(,|||||||| xyxy δδ ==  and |||| yx  . 

Suppose that ii yx =  for ,nri ≤<≤1  and  .|||| rr yx <  

In this case if ,1+−= ii ky then Aey i ∈− , since .ri exey ⊕⇐−  When ii ky ≠  and 1+−≠ ii ky  , 

if  
•  ,ri ≤≤1 or  

• ri > and  ,|||| 1>− rr xy or  

•  1=−> ||||, rr xyri and there is a number ri >0 ,  that is 

,
0000

1 iiii kxorkx ≠+−≠  

then Aey i ∈⊕ , since in the first case, the vertex iey ⊕  precedes the vertex iex ⊕ , in the second case – 

precedes the vertex rex ⊕ , and the third – precedes the vertex .
0i

ex ⊕  

Otherwise, if ,|||| 1=− rr xy iiii kxorkx =+−= 1   for ,ri > then from the condition  

|||||||| yx =  we find  

∑
+=

=−
n

ri
ii yx

1
1 .|)||(|  (2) 
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Since )()( yx δδ =  then 0≥− |||| ii yx , for any ri > . Then ( 2 ) implies that there exists a unique number 

ri >0 , such that 1
00

+= |||| ii yx , and for 0iiri ≠> , , iii kyx ==  or .1+−== iii kyx It is  clear that  

.ri exey ⊕=⊕
0

  

Thus, we proved that the vertex  iey ±  belongs to ,A for any  ,, nii ≤≤1  i.e. vertex y  is an interior vertex 

of the set  .A  The theorem is proved. 

 

Corollary 1. If A  and C  are standard arrangements in the n
kkk n

T
21

 and |||| CA ≥ , then )()( CBAB ⊇  

and )()( jCjA ii ⊇  for any i and j, ni ≤≤1  , .ii kjk ≤≤+− 1  

For a subset A  of  n
kkk n

T
21

 , we denote by }),(/{)( AysomeforyxTxAO n
kkk n

∈≤∈= 1
21

ρ


. 

Then the following statement takes place: 

 

Lemma 1.  If A  is a standard arrangement, then )(AO  is a standard arrangement too.  

 

Proof. Let A  is the standard arrangement. Suppose that )(AOx ∈  and xy ⇐ . All we have to show is that 

y  belongs to )(AO . In case when Ax∈  , the proof is obvious. Now assume that Ax∉ . Then there exists a 

vertex Ax ∈1  and a direction 0i , that
0

1
iexx += , where 

00

10 ii kx <≤ , or 
0

1
iexx −=  where 01

0
≤ix . It 

is clear, that in both cases, )()( xx δδ =1  or )()( xx δδ 

1  and ||)||,~()( 10 xSAO n⊇ . Next we will find 

such a vertex that belongs to A  and is located at distance one from the vertex y .  

Since xy ⇐   then, according to the definition of ordering ⇐ , the following three cases are possible: 

Case I. ||;|||||| xy <  

Case II. |||||||| xy =  and )()( yx δδ  , where ),,,,,()(  021 rnx −= αααδ ,  

),,,,,()(  121 rny −= αααδ ;  

Case III. |||||||| xy = , )()( xy δδ =  and |||| yx  , where ii yx =  for nri ≤<≤1  and |||| rr yx < . 

In the first case, it is obvious that ||)||,~( 10 xSy n∈ ,  therefore y   belongs )(AO  too.  

In case II, if there is a number 1i   that 0
1
≠iy , for  ri <1 , or 0

1
≠iy  and 1

1
≠iy , when ri ≥1 , then  vertex 

1i
ey −  precedes 1x   in case of 0

1
>iy , and in case when 0

1
<iy , vertex

1i
ey +  precedes 1x  since  

• |||||||| 1
1

xey i =−  and )()(
1

1
ieyx −δδ   when 0

1
>iy ;  

• |||||||| 1
1

xey i =+  and )()(
1

1
ieyx +δδ   when 0

1
<iy .  
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Thus, in case of 0
1
>iy , the vertex Aey i ∈−

1
 and in case of 0

1
<iy  the vertex 

1i
ey +  belongs to A , 

hence )(AOy ∈ . Otherwise, if 0=iy , ,ri <≤1  1=ry  and 0=iy  or 1=iy  for ,nir ≤< then the  

conditions |||||||| xy =  and )()( yx δδ   imply the existence of a unique number 2i  such that the following 

conditions hold: 

a) iiri yxandxxri ==−=≠ 01
22 ,,   for any rii ,2≠ , or 

b) iii yxandxri =−== 1
22 ,   for any 2ii ≠ , or  

c) iiri yxandxxri ===< 01
22 ,,    for any rii ,2≠ , or  

d)  iiri yxandxxri ===> 02
22 ,,   for any rii ,2≠ .  

 

These conditions in their turn imply that if 20 ii ≠ , then 1
0

xey i ⇐− ,  and  if ,20 ii =  then 1xey r =−  . So 

the vertex 
0i

ey −  or the vertex rey −  belongs to A , hence, )(AOy ∈ .  

In case III, if 1>− |||| rr xy , or 1=− |||| rr xy and there is such number ri >3  that 10
3

,≠iy , then vertex 
1x  is preceded by 

4i
ey −  in case of 0

4
>iy , or is preceded by 

4i
ey +  in case of 0

1
<iy , (where ri =4  

for  1>− |||| rr xy  and 34 ii =   for 1=− |||| rr xy ), as 

||,|||||| 1
4

xey i =−  )()( 1
4

xey i δδ =−  and ||||
4

1
ieyx − , for ,0

4
>iy  

||,|||||| 1
4

xey i =+ )()( 1
4

xey i δδ =+  and ||||
4

1
ieyx + , for .0

4
<iy  

Thus, either vertex 
4i

ey −  or vertex 
4i

ey +  belongs to A , and hence )(AOy ∈ .  

Now consider the cases when 1=− |||| rr xy and 0=iy  or 1=iy , for any niri ≤<, .  

In both cases it follows from the conditions |||||||| xy = and )()( yx δδ = , that there is a unique number 

ri >5  such, that  

• 01
55
=−= ii yx ,  and ii yx = , for rii ,5≠  , or  

• 12
55
== ii yx ,  and ii yx = , for rii ,5≠ . 

Now if 05 ii ≠ , then either vertex 
0i

ey −  (for 0
0
>iy ) or vertex 

0i
ey +  (for 0

0
<iy ) precede the vertex 1x .  

If 05 ii = , then vertex rey −  coincides with 1x  when 0>ry , or vertex rey +  coincides with 1x  for 0<ry . 

Therefore, again we get a vertex belonging to A  and located at distance one from the vertex y . Hence 

)(AOy ∈ . Lemma is proved. 

 

Now let us derive some properties of the standard arrangement in the torus. 
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Let A  be a standard arrangement. Consider its partitions by i -th direction, ni ≤≤1 :  


i

i

k

kj
i jAA

1+−=

= )( .  

Further in this section we will prove the following properties:  

10. each subset )( jAi  is a standard arrangement  of ;)( jT n
i  

20. for any ));(()(,, 11 +−⊆+−<≤ jABejAkjj nnnn  

30. for any ));(()(,, 11 −⊆−≤< jABejAkjj nnnn  

40. for any ))(()()()(,, jABejjAjAkjj nnnnn −⊇+−+⊇−<≤ 1210  

or )()( jTjA n
nn −=− and  )};,,,,{(\)()( 111 121 ++=+ − jkkkjTjA n

n
nn   

50. for any ))(()()(,, jABjejAjAkjj nnnnn ⊇+−⊇<< 20  or )()( jTjA n
nn =  and 

)}.,,,,{(\)()( jkkkjTjA n
n

nn −−=− −121   

 

10 . This property is obvious.  

 

20. Let, )(),,,( , jAjxxxx nn −∈−= −121  , where nkj <≤1  . Then obviously  

• ||,|||||| xex n <+  

• ||,|||||| nin exeex +<++  when 0<ix  or ii kx = , 

• ||,|||||| nin exeex +<−+  when 0>ix ,  

• |||||||| xeex in =−+  and )()( in eexx −+δδ   when 1+−= ii kx ,  

• )()(||,|||||| inin eexxxeex ⊕+=⊕+ δδ   and |||| in eexx ⊕+ ,  when 

iii kkx ,1+−≠ , 

• |||||||| xeex in =++ and  )()( in eexx ++δδ   when .0=ix  

From these conditions follows that xex n ⇐+  and xeex in ⇐±+ , for any 11 −≤≤ nii, . As A   is 

standard arrangement, then Aex n ∈+  and Aeex in ∈±+  for any 11 −≤≤ nii, , i.e, nex +  is the 

interior vertex of the subset ).( 1+− jAn  

 30.  Can be proved in similar way. 

 40. Let, )(),,,( , 11121 +∈+= − jAjxxxx nn , where nkj <≤0 . Then  xejx n ⇐+− )( 12 , as 

.||||||)(|| xejx n <+− 12  Therefore, the vertex nejx )( 12 +−   belongs )( jAn − , i.e.,

.)()()( nnn ejjAjA 121 +−+⊇−  On the other hand, if ))((),,,( , jABjyyyy nn −∈−= −121   and 

)()( jTjA n
nn −≠− , then there exist such number ,, 11 00 −≤≤ nii  that 

00 ii ky ≠  and  .Aey i ∈⊕
0

Then 
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vertex  nejy )( 12 ++  precedes the vertex ,
0i

ey ⊕  since  ||||||)(||
0

12 in eyejy ⊕=++  and 

.))(()( ni ejyey 12
0

++⊕ δδ  Therefore, the vertex nejy )( 12 ++  belongs A , that is, 

))(()()( jABejjA nnn −⊇+−+ 121 ,  when  .)()( jTjA n
nn −≠−  And if )()( jTjA n

nn −=− , then all the 

vertices ),,,( , 1121 += − jyyyy n  with norm less than or equal to ∑
−

=

+
1

1

n

i
i jk  precede the vertex 

),,,( , jkkky n −= −121  , and only the vertex ),,,( , 1121 += − jkkky n  from )( 1+jT n
n  might not  belong to 

.)( 1+jAn   

 50. The proof is similar. 

 

As a corollary from the above properties we get the following lemma. 

Lemma 2.  If A  is standard arrangement and 1
21

−< |||| n
kkk n

TA


 then 

.|))((||))((||)(||)(||||)(| nnnnnn kABkABAAAAB ++−+−−= 110  

In general, a set n
kkk n

TA
21

⊆  possessing the above properties 10 – 50 of standard arrangement, might be 

itself non standard arrangement. However, we have  

Theorem 2.  Let the partition of some set n
kkk n

TA
21

⊆ satisfies the following conditions: 

))(()( nnn ejAOjA +=+1 , when 0<j  , and ))(()( nnn ejAOjA −+= 1 , for 1≥j , then if there is a 

number ,, 10 11 −≤≤ nkjj  that either  

a) ,),)(()(,),()( 11111 111 SrejSjArejSjA n
n
nnn

n
nn +=++−=−  

),)(( 1111 ++⊆ rejOS n
n
n  and )( 11 +jAn  is standard arrangement in )( 11 +jT n

n , and 

0=r , when 11 −< nkj , or  

b) ,),)(()(,),()( rejSjASrejSjA n
n
nnn

n
nn 11 11011 +=+−=−  ),( 110 +−⊆ rejOS n

n
n  

and )( 1jAn −  is standard arrangement in )( 1jT n
n − , and 0=r ,  when 11 −< nkj , 

then A  is standard arrangement in n
kkk n

T
21

.  

Proof.  

Consider case a). According to the conditions of the theorem and by Lemma 1, we have:  

1. for any  ,, nn kjkj ≤≤+− 1 )( jAn  is  standard arrangement  of )( jT n
n , and ==− )()( jAjA nn ∅,  for 

;11 11 −<+> nkjifjj  

2. "),~( AjrSA n ∪++= 10 1 , where "A  is a set of vertices ),,,( nzzzz 21= , for which 

21 ++= jrz ||||  and 0>nz  (note that for  ="A ∅  theorem is obvious, therefore further will assume that  

≠"A ∅); 
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3. for any 0≤j  the latest vertex of the subset )( jAn  precedes the latest vertex of the subsets )( 1−jAn  in 

;n
kkk n

T
21

 

4. for any 1≥j  the latest vertex of the subset )( jAn  precedes the latest vertex of the subset   )( 1+jAn  in 

.n
kkk n

T
21

 

 

Let ),,( , nxxxx 21=  is the latest vertex of the set A  (clearly, that "Ax ∈ ,  i.e. 0>nx  ), and 
n

kkkn n
Tyyyy





2121 ∈= ),,,(  is an arbitrary preceding x  vertex in the n
kkk n

T
21

. We must show, that  .Ay ∈  

First we notice that if nn xy = , then the vertex y  precedes x  in )( n
n

n xT  too. Then also, y  belongs to 

)( nn xA , so as )( nn xAx ∈  and )( nn xA  is standard arrangement in )( n
n

n xT . Therefore, further, we 

assume, that .nn xy ≠ Since the vertex y  precedes vertex x , then the following three cases are possible:  

 

Case I. ||;|||||| xy <  

In this case 11 ++≤ jry |||| , i.e. ,),~( 10 1 ++∈ jrSy n it means that .Ay ∈  

 

Case II. |||||||| xy =  and )()( yx δδ  . 

Let  ),,,,,()(  0
021 inx −= αααδ and .),,,,,()(  1

021 iny −= αααδ It is clear,  that 0>ny , as .0>nx  

If nn xy <≤1 , then from the condition |||||||| xy =   there exists such 1i  that 0
11
<− |||| ii yx , and if 

01 ii ≠ , then |||||||| yeex in =⊕−
1

 and )()( yeex in δδ 

1
⊕− , and  if 01 ii =   is a unique number for 

which 0
11
<− |||| ii yx , then or 1

11
−<− |||| ii yx  (that means that 1

11
+−≠ ii kx   so again 

|||||||| yeex in =⊕−
1

 and )()( yeex in δδ 

1
⊕− ), or 1

11
−=− |||| ii yx  and then .yeex in =⊕−

1
 

Thus we can always find a vertex 
1

1
in eexx ⊕−= , that either, 1xy ⇐  or 1xy =  and Ax ∈1  , as, 

according to the conditions of the theorem, .))(( 1−∈− nnn xABex  Repeating this process again at 

nn yxk −= , we find a vertex 
kin

kk eexx ⊕−= −1  such that kxy ⇐  or kxy = , and .)( nn
k yAx ∈   

Since )( nn yA  is standard arrangement, then .)( nn yAy ∈  

If 1≥> nn xy  and if we assume that )( nn yAy ∉ , then yzx ⇐⇐  ( according to property 4 ), where z  is 

the latest vertex of the set )( nn yA ,  which contradicts the supposition .xy ⇐ Therefore .)( nn yAy ∈  
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Case III. |||||||| xy = , )()( xy δδ =  and |||| yx  ;  

Suppose that ii yx =  for nri ≤<≤ 01 , and .||||
00 rr yx <  

If nn xy <≤1 , then the condition |||||||| xy =  and )()( xy δδ =  imply  

• ,|||| 2
00
≥− rr xy or  

• 1
00

=− |||| rr xy and there exists such number 011 rrr >, and nr ≠1 ,  that 

,|||| 0
11

>− rr xy or  

• ,|||| 1
00

=− rr xy 1=− nn yx and ii yx = , if ., nri 0≠  

Then it is clear that in the first case  ,
0rn eexy ⊕−⇐ as ||,||||||

0rn eexy ⊕−=  

)()(
0rn eexy ⊕−= δδ , ,|||| yeex rn 

0
⊕−  in the second case ,

1rn eexy ⊕−⇐ so as well 

||,||||||
1rn eexy ⊕−= )()(

1rn eexy ⊕−= δδ and ,|||| yeex rn 

1
⊕−  and  in the third case 

.
0rn eexy ⊕−=  Thus there is always such vertex 

1

1
in eexx ⊕−=  that 1xy ⇐  or 1xy =  , where 

01 ri =   or ,11 ri =  and Ax ∈1 , under the conditions of the theorem. Repeating this process again at 

nn yxk −= , we find such vertex 
kin

kk eexx ⊕−= −1  , that kxy ⇐  or kxy = , and .)( nn
k yAx ∈  

Since )( nn yA  is the standard arrangement in the ,)( n
n

n yT  then .)( nn yAy ∈  

If 1≥> nn xy , then again )( nn yAy ∈ , since otherwise (as in the case II) we would get ,yx ⇐ that would 

contradict  the condition .xy ⇐   

The proof is completed for the case a). Case b) can be proved in similar way. 

Consider a subset n
kkk n

TA
21

⊆  and its partitions: .)(


i

i

k

kj
i jAA

1+−=

=  We replace each )( jAi  by standard 

arrangement in the )( jT n
i  of the same cardinality, and this transformation is called iN - normalization of the set 

A  in respect to i - th direction. The resulting set we denote by .)(ANi  

Below we formulate one more property of the standard arrangement which is a generalization of Lemma 4 of [1] 
and further will be used proving the optimality of the standard arrangement of n - dimensional torus. 

 

Lemma 3. )( 1−n  If the standard arrangement is the optimal subset in the - dimensional torus and 
n

kkk n
TA

21
⊆ is an arbitrary set, then for any nii ≤≤1,  

|)(||))((| ABANB i ≥ . 

For a Boolean vector ),,,( nαααα 21=  the set 

})(/{)( αδα =∈= xTxT n
kkk

n
kkk nn  2121

 will be called α - part of the torus .n
kkk n

T
21

In general for an arbitrary 
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subset n
kkk n

TA
21

⊆ , .})(/{)( αδα =∈= xAxA  It is clear that )( n
kkk

E

n
kkk n

n
n

TT


 2121
α

α∈

=  and all  α -

parts the torus are isomorphic. Notice also that α - parts of n
kkk n

T
21

 are arranged according to order .⇐  

For two vertices ),,,( nxxxx 21=  and ),,,( nyyyy 21=  of ,)( n
kkk n

T
21

α   we define their sum as follows: 

,),,,(),,,( nnn zzzyxyxyxyx  212211 =+++=+  

where iiiiii kzkzyx ≤≤≡+ 1,)(mod  for 1=iα  and 01 ≤≤+− ii zk  for 0=iα  , for any 

.1, nii ≤≤  

In the α - part of n
kkk n

T
21

 we define sphere and envelope with the centre )(
21

n
kkk n

Tx


α∈ and radius k  in the 

following way: }/)({),( krerxykxS
n

i

n

i
iii

n i ≤−+== ∑ ∑
= =

+

1 1

11 α
α  and ),(\),(),( 1−= kxSkxSkxO nnn

ααα  , 

where ir  are non-negative integers, for any ., nii ≤≤1  

For any subset of α - parts of n
kkk n

T
21

, )( n
kkk n

TA
21

α⊆ , the subset of interior vertices is defined as follows:  

.}),(/{)( AxSAxAB n ⊆∈= 1αα  

It is easy to check that the linear order ⇐  between the vertices in each α - part of n
kkk n

T
21

 coincides with a 

diagonal sequence defined in [6], and its each initial segment is again called a standard arrangement.  

It is proven in [6] that if A  is the standard arrangement in )( n
kkk n

T
21

α , and )( n
kkk n

TC
21

α⊆ is an arbitrary set 

of cardinality ,|| A then .|)(||)(| CBAB αα ≥  

 

Now we prove a statement, referring to the standard arrangements  in α - parts,  which is a generalization of 
Lemma 3 in [1].  

 

Lemma 4.  If CandFEA ,,  are such standard arrangements in the α - part of n
kkk n

T
21

, that 

||||||||,|||||||| FECACFEA +=+≥≥≥   and either A  or C   are a sphere in α - part, then 

                                .|)(||)(||)(||)(| FBEBCBAB αααα +≥+  

 

Since all α - parts of the torus n
kkk n

T
21

 are isomorphic, then without loss of generality we will consider only the 

first α  - part,  that is .~),,,( 1111 == α Then the partitions of sets ),( kxS n
α  and ),( kxOn

α  by i -th direction 

are:  
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,),(),( , jkjexSkxS i
n

i

k

j

n
i

−+=
−

=
αα 

1

0

 

 ,),(),( , jkjexOkxO i
n

i

k

j

n
i

−+=
−

=
αα 

1

0

 

where ,))((),(, jxTjkjexS i
n

ii
n

i +⊆−+ αα ))((),(, jxTjkjexO i
n

ii
n

i +⊆−+ αα  and 

=−+=−+ ),(),( ,, jkjexOjkjexS i
n

ii
n

i αα ∅  for .0<− jk  

It is easy to see that if A  is  the standard arrangement in α  - part, then all ,)( jA1 except maybe one, are 

spheres in the )( 1−n -dimensional α - part and  

 



1

1
1

k

j

jABAB
=

= ))(()( αα   

or (3) 

)},,,,{(\))(()( n

k

j

kkkjjABAB 

 320
1

1

1

=

= αα   

when ))(()( 0101 jTjA nα=  and .))(()( 11 0101 +≠+ jTjA nα  

Indeed, if x  is the latest vertex of the set A  and ,)( 11 jAx∈  then any vertex ),,,,( nyyyjy 32= ,  such 

that |||||||| xy <  or |||||||| xy =  and ,1jj >  precedes ,x  and when |||||||| xy >  or |||||||| xy =  and 

,1jj <  none of the vertices ),,,,( nyyyjy 32=  precede the vertex .x Consequently, 













+−−−+⊆
=−−−+

≤<+−−−+
<≤−−−+

=

)||||,)(~(
,,)||||,)(~(

),||||,)(~(
,)||||,)(~(

)(

,

,

,

,

111
11

111
111

1111

11111

1111

111

1

jnxejOSwhere
jjifSjnxejS

kjjifjnxejS
jjifjnxejS

jA

n

n

n

n

α

α

α

α



 

  

It follows that  )())(( 1111 +⊆+ jAejABα  for any ,, 11 kjj <≤  except perhaps the one ,0j for which 

))(()( 0101 jTjA nα=  and .))(()( 11 0101 +≠+ jTjA nα  

 

Now we prove the Lemma 4 .  

The proof is by induction on .n  For 1=n  the proof is obvious. Suppose two standard arrangements are given 

in α - part: '),~( AkSA n
1α=  and ,'),~( CrSC n

1α=  where . Consider the partition of these sets by the 

first direction: 
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,)),)(~((

),)(~()),)(~(()(

,

,,









1

0

01

1
11

1
1

01011

1

11
1

211

111111

k

jj

n

n
i

n
j

j

k

j

jkejSA

jkejSjkejSjAA

+=

−

==

+−−+

+−−++−−+==

α

αα

 

,)),)(~((

),)(~()),)(~(()(

,

,,









1

1

11

1
11

1
1

11111

1

11
1

211

111111

k

jj

n

n
i

n
j

j

k

j

jrejSC

jrejSjrejSjCC

+=

−

==

+−−+

+−−++−−+==

α

αα

 

where ,),)(~(, 211 001
1
1 +−−+⊂ jkejOA i

n
α ∅ ,),)(~(, 211 111

1
1 +−−+⊆≠ jrejOC i

n
α  and  

1111 1111 eaejSajeS nn
i ++−+=+ ),)(~(),~( ,, αα  for .∑

=

=
n

i
ika

2
 

Two cases are possible: 

Case I. 10 jrjk −>−  or 10 jrjk −=−  and .|||| 01
1

1
1 >≥ CA  

In this case, if we remove some number of vertices from the subset 1
1C  of the set )( 11 jC  and add the same 

number of new vertices to the set )( 01 jA  so that the newly formed subsets )( 1
1
1 jC  and )( 0

1
1 jA  also are 

standard arrangements  in ))(( 11 jT nα  and ,))(( 01 jT nα where at least one of them was a sphere, then by 

property (4.4 ) and the induction supposition, the total number of interior vertices of the obtained sets  
                )())(\( 0

1
101

1 jAjAAA =   and )())(\( 1
1
111

1 jCjCCC =  

will not decrease. 

In the next step, instead of subsets )( 11 jC , and )( 01 jA  we consider  

• the subsets )( 111 +jC  and  )( 0
1
1 jA , where on the first step the )( 1

1
1 jC  was a sphere, or  

• the subsets  )( 1
1
1 jC  and  )( 101 −jA , where on the first step the  )( 0

1
1 jA  was a sphere, or  

• the subsets  )( 111 +jC and )( 101 −jA  , where on the first step )( 1
1
1 jC  and  )( 0

1
1 jA  were the 

spheres, 

and apply the above transfer of the vertices. This process continues until at least one of the sets A  and C  
becomes a sphere.  

Case II. 10 jrjk −<−  or 10 jrjk −=−  and .|||| 1
1

1
1 CA <  

In this case, first of all we remove from subset 'A of set A  a certain number of vertices and add the same 
number of new vertices to the set C , so that one of the sets A  and C  will be sphere, and at each step this 
transfer takes place between some of the subsets 01 jjjA ≥,)( , and 11 jjjC ≤,)( . Therefore, by the 

induction assumption, the total number of internal vertices can only increase. Received after this transformation 
sets 1A  and 1C  can only be of two kinds:     
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     a) ,),)(~(),~( , 11111 11
1

1
1

+−−+=+=
=

jrejSrSC n
k

j

n
αα 

 

        
,)),)(~(()),)(~((

)),)(~((''),~(

,,

,









1

2

2

1
11

2
12121

11

1

1

1

211111

1111

k

jj

nn

n
j

j

n

jkejSAjkejS

jkejSAkSA

+=

−

=

+−−++−−+

+−−+==

αα

αα

 

    

     b) ,),)(~(),~( , 1111 11
1

1
1

+−−+==
=

jkejSkSA n
k

j

n
αα 

 

.)),)(~(()),)(~((

)),)(~((''),~(

,,

,









1

3

3

1
11

2
13131

11

1

1

1

211111

1111

k

jj

nn

n
j

j

n

jrejSCjrejS

jrejSCrSC

+=

−

=

+−−++−−+

+−−+==

αα

αα

 

In case a) it is clear that .112 +<+− rjk Hence, if instead of sets 1A  and 1C  we take the set  

 

       ,)),)(~(()),)(~(( ,, 



1

1
1111

1

2 211111
k

rkj

nn
rk

j

jkejSjkejSA
+−=

−

=

+−−++−−+= αα        

     
,)),)(~((

)),)(~((),)(~(

,

,,









1

2

2

1
11

2
1212111

1

1

2

211

111111

k

jkrj

n

nn
jkr

j

jrejS

CjkejkrSjrejSC

++−=

−+−

=

+−−+

+−−+−++−−+=

α

αα

  

 where |||| 2
1

2
1 AC =  and )( 2

2
1 jkrC +−  is  the standard arrangement in the ,))(( 21 jkrT n +−α it is 

obvious that |||||||| 1122 CACA +=+ , and by (3)  

                  .|)(||)(||)(||)(| 1122 CBABCBAB αααα +=+  

So, if one of the sets 2A  and 2C  is sphere, then the lemma is proved; otherwise we come to the case I, since 
.11 2 +−>+ jkr  

In case b), since ,,, 131010 jjkjjrjk ≤≤−<−  then .111 311
+−≤+−≤+− jrkkkr  Hence, if 

instead of sets 1A  and 1C   take the sets  

  ,)),)(~(()),)(~(( ,, 



1

1

1

1
1111

1

2 211111
k

kkrj

nn
kkr

j

jrejSjrejSC
++−=

+−

=

+−−++−−+= αα  
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,)),)(~(()

),)(~((),)(~(

,

,,









1

3

3

1
11

2
1

313111

1

1

2

211

111111

k

jrkj

n

nn
jrk

j

jkejSA

jrejrkSjkejSA

++−=

−+−

=

+−−+

+−−+−++−−+=

α

αα

                     

        
where |||| 2

1
2
1 AC =  and )( 3

2
1 jrkA +−  is the standard arrangement at the ,))(( 31 jrkT n +−α then 

|||||||| 1122 CACA +=+  and, by (3) ,  

        .|)(||)(||)(||)(| 1122 CBABCBAB αααα +=+  

So, if one of the sets 2A  and 2C  is sphere, then the lemma is proved; otherwise we come to the case I, since 
.31 jrkk −<−  The proof is completed. 
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ON THE STRUCTURE OF MAXIMUM INDEPENDENT SETS IN BIPARTITE GRAPHS 

Vahagn Minasyan 

 

Abstract: In this paper it is shown that for bipartite graphs the structure of the family of maximum independent 
sets can be described constructively, in the following sense. For a bipartite graph there are some “basic” 
maximum independent sets, in terms of which any maximum independent set can be described, in the sense that 
there is one-to-one correspondence between a maximum independent set and an irreducible combination of 
these “basic” maximum independent sets. König’s theorem states that there is duality between the cardinalities of 
maximum matching and minimum vertex cover. Viewing the mentioned structure, in this paper it is shown that 
another duality holds, which is between the sets rather than their cardinalities. We believe that this duality is not 
just of theoretical interest, but it also can yield to a usable algorithm for finding a maximum matching of bipartite 
graph. In this paper we do not present such algorithm; instead we mention what approaches we plan to use in 
further works to obtain such algorithm. 

Keywords: bipartite graph, maximum independent set, distributive lattice, duality. 

ACM Classification Keywords:G.2.1 Discrete mathematics: Combinatorics 

 

Introduction 

Let  be a graph, where  is the set of vertices, and  is the set of edges. Two vertices  
are said to be adjacent with each other, if ; otherwise they said to be independent. A set of vertices is 
called an independent set, if any two vertices of it are independent. For instance,a set consisting of one vertex is 
an independent set. Amaximum independent set (MMIS) is one with the maximum cardinality among all 
independent sets (don’t be confused with the maximal independent set, which is an independent set, no proper 
superset of which is an independent set). The cardinality of MMIS-es of  is denoted by . A set of vertices in 

, such that each edge of  is adjacent with some vertex in that set, is called a vertex cover. For instance, the 
set of all vertices of  is a vertex cover. A minimum vertex cover is one with minimum cardinality among all vertex 
covers;that cardinality is denoted by . It is easy to see that each vertex cover is a complement of some 
independent set and vice-versa, so the complement of any MMIS is a minimum vertex cover and vice-versa. Thus 
we get . The concepts of independent set and vertex cover are related with the concept of 
matching, which is a set of edges, no distinct two of which share a common vertex. For instance, a set consisting 
of one edge is a matching. A maximum matching is one with maximum cardinality among all matchings; that 
cardinality is denoted by . Note, that for a given matching and a given vertex cover, each edge of the 
matching is “covered” by some vertex of the vertex cover, and different edges are covered with different 
vertices.This means that the cardinality of matching doesn’t exceed the cardinality of the vertex cover, so 
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. is called bipartite, if its vertices can be decomposed into two independent sets  and , such 
that  and . A bipartite graph is denoted as , where  and  are said to 
be its parts. König’s theorem [Harary, 1969] states, that for a bipartite graph it holds . For a general 
graph the problem of finding a MMIS is NP-hard [Karp, 1972], however for various specific classes of graphs, 
including bipartite graphs, there are polynomial-time algorithms [Harary, 1969].In some applications [Johnson, 
1988] it is needed to deal with all MMIS-es of the graph, so it is of both theoretical and practical interest to 
describe the family of all MMIS-es and to show how to construct not just any, but some particular MMIS. Usually 
this is done simply by generating all MMIS-es of the graph, and for some specific classes of graphs there are 
algorithms which generate all MMIS-es with polynomial-time delay between two successive outputs 
[Kashiwabara, 1992] (note, that in some cases the number of MMIS-es to be generated is potentially exponential, 
and there are various notions on what to consider a “polynomial-time” algorithm for problems of this kind 
[Johnson, 1988]). In this paper we describe the family of MMIS-es of a bipartite graph by describing its structure, 
rather than generating all MMIS-es. We show that MMIS-es of a bipartite graph form a distributive lattice with 
respect to simple set operations (see the preliminaries regarding lattice theory bellow in this section), and we 
show how to obtain that lattice. After it is done, various queries can be performed, and generating all MMIS-es is 
one of them. The classic solution of the problem of finding just one MMIS of a bipartite graph is by Ford-Fulkerson 
algorithm [Ford, Fulkerson, 1962], which provides a MMIS of bipartite graph , performing 

 operations in worst case, where . There is an optimization of this approach, called 

Hopcroft-Karp algorithm [Hopcroft, Karp, 1973], which provides a MMIS performing  operations in 

worst case. In this paper we also discuss the problem of providing an algorithm, which obtains a MMIS of bipartite 
graph while sequentially handling its vertices. Here we show that to do this, it is preferable to obtain the greatest 
(in the sense of the lattice of MMIS-es) MMIS, rather than just any MMIS.In some sense, the greatest MMIS 
corresponds to the intersection of all MMIS-es. In this paper we prove that a sort of duality holds between the 
intersection of all MMIS-es and the union of all maximum matchings. Besides this duality is of theoretical interest, 
we also believe, that it can yield to a usable algorithm which provides a MMIS of bipartite graph. In this paper we 
do not provide such algorithm; instead we mention what approaches we plan to use in order to obtain that result 
in further works. Next in this section we give some preliminaries regarding distributive lattices. 

There are two equivalent definitions for lattices [Birkhoff, 1948]. Let  be a carrier set. In terms of partially ordered 

setslattice is a pair , where  is such partial order on , that every two elements have infimum and 

supremum in . In terms of abstract algebra, lattice is a triple , where  and  are such binary operations 

on , that for all  it holds: 
 

 and , 

 and , 

 and , 

 and , 
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distributive lattice is one where the following property also holds: 
 

and . 

Operations  and  are called join and meet respectively. The equivalence of mentioned two definitions can be 
checked by showing that if a lattice is defined as a partially ordered set, than one can define join and meet 
operations on it as  and , and if lattice is defined as an abstract algebra, 
then one can define a partial order on it as  if and only if  (or ). For instance, the 
family of all subsets of a set is a lattice, where join and meet operations are respectively the union and 
intersection of subsets; as these operations are distributive with respect to each other, then the mentioned lattice 
is distributive as well. Actually, not only the family of all subsets, but any ring of subsets (i.e. a family of subsets, 
which is closed with respect to the union and intersection operations) is a distributive lattice. Birkhoff’s 
representation theorem [Birkhoff, 1948] states that the opposite claim is also true, i.e. each distributive lattice is 
isomorphic to some ring of subsets. Another example of a distributive lattice is the set of natural numbers with 
operations of taking the least common multiple and the greatest common divider as join and meet operations 
respectively. Note, that the corresponding partial order is the divisibility of the numbers, and as one divides any 
number, and any number divides zero, then they are the least and the greatest elements of the lattice 
respectively. It may not be the case for infinite lattices, but any finite lattice has the least and the greatest 
elements. For a lattice , an element  is called join-irreducible, if it is not the least element, and if for 
all ,  implies  or . It is known [Birkhoff, 1948], thateach element of a distributive 
lattice has only one irreducible representation as a join of join-irreducible elements of that distributive lattice. In 
this sense, a distributive lattice can be considered as given, if its join-irreducible elements are given. 

In the next section we show that MMIS-es of a bipartite graph form a distributive lattice with respect to simple set 
operations and show how to find the lowest and the join-irreducible elements of that lattice. In the next section we 
discuss the problem of obtaining a MMIS of bipartite graph while sequentially handling its vertices and show that 
a sort of duality holds between the intersection of all MMIS-es and the union of all maximum matchings. Finally 
we provide a short conclusion of this paper and mention the further works. 

The lattice of MMIS-es 

Let  be a bipartite graph. Here we will define join and meet operations on MMIS-es of  and will 
show that the family of all MMIS-es of  is a distributive lattice with respect to that operations. First we need 

some notations.We denote by  the family of all MMIS-es of . For a set of vertices  we denote 

and ; we will call these sets projections of  on  and  respecvely. Also for any set of 
edges  and set of vertices , we will denote by  the set of vertices of , where each vertex 
is adjacent with some vertex of  by an edge of . Now we claim that if  and are MMIS-es of , then 

implies  and vice-versa: 
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Claim 1: for all  if and only if . 

 

Indeed, as  and  are MMIS-es, then  is the set of all vertices in , which are independent with , 
and  is the set of all vertices in , which are independent with , thus if , then only some 
vertices of  are also independent with , so we get . The opposite direction of the claim can 
be proved identically. We define a partial ordered set  as follows: 

 

 for all  we define  if . (1) 

 

 

 

 

 

So we have defined a partial order on MMIS-es according to their projections on ; from Claim 1 it follows, that 
we would get the dual partial order of one we got, if we define it according to the projections on . In this sense, 
the partial ordered set  is invariant with respect to the parts of , though we define it with respect to . 
Now let  and  be MMIS-es of . We define join and meet operations for  and  as follows: 

 

  (2) 

and 

 : (3) 

 

At Figure 1a the shaded part corresponds to  and at Figure 1b the shaded part corresponds to 
. We will show that  is a distributive lattice with respect to these operations. First we show, that: 

   

   

 

 

   

   

 

 

Figure 1a Figure 1b 
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Claim 2: is closed with respect to operations defined at (2) and (3); i.e.  and  are MMIS-es. 
 

Note, that  and  are independent sets, as any vertex in  is independent with any 
vertex in , so to prove this claim we need to show that . From (2) and (3) 
it follows, that and .  

Note, that for any two sets  and  we have . So we get 

Thus, we got . As  and  are 
independent sets, then we also have and , so we get 

, which proves the claim. Note that , so from (1) it follows, that 
 is the supremum of  and  in . Similarly it can be show that  is the infimum of 

 and in . Thus, we have shown that  is a lattice; now we will show, that: 

 
Claim 3: is distributive. 
 

Indeed, from Claim 2 it follows that that the family of projections of all MMIS-es on  is closed with respect to the 
union and intersection operations, and thus, as it is mentioned above, forms a distributive lattice with respect to 
them (the same holds for the projections on ). Now note that the bijection  is an isomorphism between 
that lattice and , so the last is also distributive. Also note, that the bijection  yields to the lattice 

, which is the dual of ; this is because at (1) we have defined the partial order on  with 

respect to . So we have proved that the family of all MMIS-es of a bipartite graph forms a distributive lattice with 
respect to join and meet operations defined by (2) and (3). As it is mentioned before, each distributive lattice is 
described by its least and join-irreducible elements. Next in this section we show how to find these elements for 

. 
 

Let  be a bipartite graph and  be the lattice of its MMIS-es. Let  be a MMIS of  and  
be a maximum matching of . As it is mentioned before, the complement of  is a minimum vertex cover; we will 
denote by . Also we will denote by  the set of vertices which are not adjacent with . We claim, that:  

 

Claim 4:  each edge of  is adjacent with exactly one vertex of , and each vertex of  is adjacent with some 
edge of  (see Figure2). 
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Figure 2 

 

Indeed, as  is a vertex cover, then any edge of  is adjacent with some vertex of , and as  is a matching, 
then different edges of  are adjacent with different vertices of . Note that  is a maximum matching, and  is 
a minimum vertex cover, so by König’s theorem we have . This means, that there are no vertices in , 
which are not adjacent with an edge of , and that there are no edges of  which are adjacent with two vertices 
of  (as otherwise there would be less edges in  then there are vertices in ). So the claim is proved.  

Note, that from this claim it follows, that for any MMIS  and for any maximum matching  it holds  (see 
Figure 2), where  is the set of vertices which are not adjacent with . Now let be a set of vertices of . If 
there are some MMIS-es containing , then from the definition of lattice  it follows, that there is the least 
among them. Next we will describe how to find it.  

 

From Claim 4 it follows, that: 

if there is a MMIS which contains , then it also contains ; we will denote it by . 

Indeed, if MMIS contains , then  and obviously  (see Figure 2). From the other hand, 
Claim 4 states, that each edge of  is adjacent with exactly one vertex of , so no edge of  connects a vertex 
of  with a vertex of ; this means, that if  then , which proves the claim (see Figure 2). 
From this claim it follows, that if there is a MMIS which contains , then it also contains  for any . 
We will denote , where  is the least integer, such that  (obviously 
such  exists). We claim, that: 

there exists a MMIS containing  if and only if for some maximum patching  it holds , and if it 
holds, then the least MMIS containing  is the following: . 

To be short, in the proof of this claim we will denote and . From the denotation of  
it follows, that there is no edge, which connects a vertex of  with a vertex of , and there is no edge of  
which connects a vertex of  with a vertex of . Note, that if , then all vertices in  are 
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adjacent with , and as there is no edge of  between  and , then . From König’s 
theorem it follows, that in this case  is a MMIS. Otherwise, if , then  is adjacent with 
some vertex of , and from Claim 4 it follows, that there is no MMIS containing . So we have proved this claim. 
Based on this claim it is easy to describe an algorithm, which provides the least MMIS of  containing the given 
set of vertices , if such MMIS exists. The algorithm takes as input the graph , a maximum matching of it 
and a set of vertices ; if  has a MMIS containing , then it provides the least of such MMIS-es, and 
otherwise it reports that no MMIS of  contains : 
 

Algorithm 1:  

A1 denote by  the given maximum matching of , 

denote by  the set of vertices which are note adjacent with , 

A2 set  and , 

A3 set , 

A4 if , then report, that  has no MMIS containing  and exit, 

A5 if  didn’t get greater, then provide as the least MMIS of  containing  and exit, 

A6 set , 
A7 go to step A3. 

 

Note that this algorithm performs  operations in the worst case. Also note that in order to find the least 
MMIS of , we can find a maximum matching  and call Algorithm 1 for set , where  is the set of vertices 
which are not adjacent with , as any MMIS of  contains . Obviously, this algorithm can be also used to find 
the greatest MMIS of . As it is mentioned in the proof of Claim 3, the projections of all MMIS-es on  are closed 
with respect to the union and intersection operations, thus they form a ring of subsets, and the bijection 

 is an isomorphism between that ring and . This means, that the join-irreducible elements of 
 are the isomorphic images of the join-irreducible elements of the ring of projections, so for any , the 

least MMIS containing  is join-irreducible in . Thus, by Algorithm 1 one can find all join-irreducible 
elements of . For two partially ordered set  and  denotes the partial ordered set all isotonic 
functions from  to , where for two isotonic functions  and  if for all  
[Birkhoff, 1948]. Birkhoff’s representation theorem states, that if  is a distributive lattice and  is the partially 

ordered set consisting of its join-irreducible elements, then , where  denotes the chain with length  and 

 denotes the dual of . From this theorem it follows, that each element of  has exactly one irreducible 
representation as join of join-irreducible elements of . In this sense, the family of all MMIS-es of  can be 
considered as obtained, if for all  the least MMIS containing , as well as the least MMIS of  are 
obtained. 

Duality between the intersection of all MMIS-es and union of all maximum matchings 

Let  be a bipartite graph. In the previous section we have shown, that the MMIS-es of  form a 
distributive lattice with respect to join and meet operations defined at (2) and (3). This lattice has the greatest and 
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the least elements, so in this sense there are the greatest and the least MMIS-es in ; we will denote them 
respectively by  and . We will also denote the union and the intersection of all MMIS-es respectively by 

and . Note, that from (2) and (3) it follows, that: 

 

 and . (4) 

 

We will say, that “a new vertex  is being added” to bipartite graph , bearing in mind that we 
obtain a “new” bipartite graph , which parts are  and , and which edges are the edges of  in 
addition with some “new” edges, which connect  with some vertices of . We claim, that: 

 
Claim 5: while “adding a new vertex”  to ,  increments if and only if  is independent with . 
Obviously, either or . Note, that if  is independent with , then 

 is the greatest MMIS of . Otherwise, i.e. if  is adjacent with some vertex of , then no 
MMIS of  is independent with , so . Thus the claim is proved. Next we will describe an 
algorithm, which obtains the greatest MMIS of  based on the greatest MMIS of . Note, that by so we will 
provide an algorithm, which sequentially handles vertices of a bipartite graph and provides a MMIS of it. As Claim 
7 states, if , then the greatest MMIS of  can be easily obtained. Otherwise, i.e. if 

, then we have, that  is a MMIS of , but it may not be the greatest one.If we obtain a maximum 
matching of , then by Algorithm 1, we can obtain the greatest MMIS of .  

 

We claim that: 

each vertex of  is not adjacent with some maximum matching of . 

 

Let  be a maximum matching of , and . If  is not adjacent with , then the claim is proved; 
otherwise, let  be a vertex, such that  (see Figure 3). As it is denoted at (4), 

 is the greatest MMIS of , so no MMIS of  contains . This means, that while calling 
Algorithm 1 for , it stops at step A3 by finding a vertex  and a path from  to , which has odd length, 
and even edges of which are edges of  (see Figure 3).  

 

Note that if we remove from  the edge  and the even edges of the path found by Algorithm 1, then add to 
 the odd edges of that path found by Algorithm 1, then we will get a maximum matching of , which is not 

adjacent with  (see Figure 3). Thus the claim is proved. Note, that if  (i.e. if  is adjacent with 
some vertices in ), then by König’s theorem we have , so in this case each “new” edge 
belongs to some maximum matching of .  
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Figure 3 

 

Now we will describe an algorithm, which provides the greatest MMIS of  based on the greatest MMIS of . 
The algorithm takes as input the graph , the greatest MMIS of it, a maximum matching of it and the “new” 
vertex; it provides a maximum matching and the greatest MMIS of the “new” graph : 

 

denote by  the given greatest MMIS of , 

denote by  the given maximum matching of , 

denote by  the given “new” vertex, 

denote by  the set of vertices which are note adjacent with , 

if  is independent with , then set , set  and go to step A8, 

if  is adjacent with some vertex , then set   and go to step A7, 

pick a vertex , which is adjacent with  and denote by  the vertex for which , 

call Algorithm 1 for , denote by  the path it finds to some vertex  and set , 

set , remove even edges of  from , add odd edges of  to  add  to , 

call Algorithm 1 for  and set  to the set it provides, 

provide  as the MMIS of  and  as a maximum matching of . 

 

As Algorithm 1 performs  operations in the worst case, then Algorithm 2 also performs  operations 
in the worst case. This means, that the algorithm which sequentially handles vertices of a bipartite graph and for 
each vertex calls Algorithm 2, performs  operations in the worst case, where . Next we 
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show that a sort of duality holds between the intersection of all MMIS-es and the union of all maximum matchings. 
We believe that this duality can yield to a more efficient algorithm which provides the greatest MMIS of  based 
on one of , then Algorithm 2 is. However in this paper we do not provide such algorithm;instead we mention 
what approaches we plan to use in order to obtain that result in further works. 

Let  be a bipartite graph,  be a MMIS of  and  be a maximum matching of . As it is 
mentioned before, the complement of  is a minimum vertex cover; we will denote by . Also we will denote by 

 the set of vertices which are adjacent with , and by  the set of vertices which are not adjacent with  (i.e.  
is the complement of ). As it is mentioned above, from Claim 5 it follows, that for each MMIS  and for each 
maximum matching  it holds  and  (see Figure 2). This means that: 

 

  and , (5) 

 

where the union and intersection operations are taken trough all MMIS-es and trough all maximum matchings. 
Next we will show that equality holds in (4). Note, that if  is a family of subsets, and if the complement of 
subset  is denoted by , then  is the complement of . Taking into account this and (5), on Figure 4 we 
schematically illustrate relations between sets , ,  and .  

 

 

Figure 4 

 

On Figure 4 the horizontal line corresponds to the set of vertices of graph , sets noted in the same column are 
the complements of each other, sets noted at the bottom row are listed in increasing order (i.e. the right one is a 
superset of one on the left) and sets noted at the top row are listed in decreasing order (i.e. the right one is a 
subset of one on the left). Note that from Claim 8 it follows that , so the following duality 
holds: 

 

 and . (6) 

 

(4) states that , where  is the greatest MMIS of , so in some sense the duality 
(6) describes the relation between the greatest MMIS and all maximum matchings of . Now let  be a “new” 
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bipartite graph obtained by adding a new vertex to , and  be the greatest MMIS-es of . Next we will 
discuss the problem of providing  based on . Analogically with the notations of , we will denote 
by  and  respectively the union and the intersection of all MMIS-es of  We will also denote by  a 
set of vertices of , which are not adjacent with some maximum matching of , and by  we will denote the 
union of all such sets. (6) states that . As it follows from Claim 7, if  is independent with , 
then , so next we will discuss the case when  is adjacent with some vertices . 
As it is mentioned before, in this case  is a MMIS of , so . We claim that: 
Claim 6: for  it holds  if and only if . 
Indeed, , and  belongs to some  if and only if there is a maximum matching in  which is not 
adjacent with . This holds if and only if there is a matching in  which is not adjacent with  and is adjacent with 
some vertex in . It is easy to see, that this proves the claim. From this claim it follows, that for a vertex 

 in order to find out whether  or not, we can check if  has a common vertex with  or 
not. Thus based on Claim 9 we can provide an algorithm which obtains the greatest MMIS of  based on the 
greatest MMIS of , however performing the mentioned check for all  cannot be performed efficiently, 
if we just roughly hold the family of subsets  and generate . We believe that the family of subsets  
has some properties based on which  can be obtained efficiently and the check whether  has a 
common vertex with  or not can be performed efficiently as well. In the next section we conclude this paper and 
mention about further works. 

Conclusion and further works 

In the second section of this paper we have shown that the family of MMIS-es of a bipartite graph forms a 
distributive lattice with respect to join and meet operations defined at (2) and (3). This result is not just of 
theoretical interest, as in applications where it is required to obtain all MMIS-es of a bipartite graph, the join-
irreducible elements of the mentioned lattice can be obtained using Algorithm 1 in  time, and the 
obtained structure describes the family of all MMIS-es in the sense of Birkhoff’s representation theorem. 
Algorithm 1 also can be used to obtain the greatest MMIS, as well as any MMIS containing the given set of 
vertices. In the third section of this paper we present Algorithm 2, which obtains the greatest MMIS of bipartite 
graph  based on the greatest MMIS of  in  time, where  is a bipartite graph obtained by “adding” a 
new vertex to bipartite graph . Next in that section we prove that duality (6) holds between the MMIS-es and 
maximum matchings of a bipartite graph. We believe that this duality is not just of theoretical interest, and it can 
yield to a usable algorithm which sequentially handles vertices of a bipartite graph and maintains the greatest 
MMIS of it. Claim 9 shows how the duality (6) can be used in order to obtain the greatest MMIS of  based on 
the greatest MMIS of , however in this paper we do not provide an efficient technique of implementing the 
results of that claim. We believe, that such technique can be obtained using some properties of the family of 
subsets , which is the family of sets of vertices which are not adjacent to some maximum matching. In further 
works we plan to obtain such technique. 
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INTELLIGENT AGENTS AND PROTOCOLS 

Levon H. Aslanyan, David A. Karapetyan 

 

Abstract: We study interaction protocols of software agents in an Intelligent Agent Server system, which employs 
software agents in regard to different applied problems. Models of agent interaction protocols are proposed. The 
protocols are evaluated for utility, implementation and applicability. The logical level of system is designed and 
implemented algorithmically. The test application is the intrusion detection problem. 

Keywords: saftware agent, secure communication, inteligence. 

ACM Classification Keywords: D.2.11 Software Architectures. 

Introduction 

The main goal of the research project NetInt (Networked Intelligence) is the design of a distributed application 
software system to operate in computing networks. The use of  software mobile and intelligent agents enables the 
system to solve a variety of applied problems, such as network management and maintenance, network dynamic 
optimization and security control. Agents’ communication and interaction become a major technical issue of such 
systems. Agents, which behave autonomously, change their locations. New agents are appearing and others may 
stop their functioning. Proper communication in this case requires a complete algorithmic model. Similar to this is 
the known PKI system for security. NetInt is a complex mobile environment which is under the control of a set of 
servers, where the security reasons are analysed and implemented by means of practical cryptography. The 
communication system provides functionality, related to data bases (sniffing, log files) and data mining type of 
analysis and decision support. Typical applications considered are the network management issues and intrusion 
detection into the systems[1]. 

NetInt is an extension of SPARTA (Security Policy Adaptation Reinforced Through Agents) system designed 
within the 5th Framework Programme (FP5) of European Community Framework Programme for Research, 
Technological Development and Demonstration, 2000-2001. 

System Architecture 

Tհe system is basically organized as follows: NetInt agent platforms, or more simple Agent servers, are installed 
on a number of computers binded together to organize a network. The computers on which the servers are 
installed are called nodes. Agent servers produce agents  as well as permit and manage agents’ access to 
system resources and their utilization. Mobile agents travel from one host to another and perform the thread of 
executions. They may assemble and swap information, analyze it and later interchange the analysis results. In 
this way they try to synchronize the system parameters, reveal pathologies in the system and try to eliminate 
them. 
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NetInt agent environment is a dialogue system, implemented in Java programming language, which supports 
transferability of software code across any Java Virtual Machine containing operating system. 

 

Fig. 1 outlines NetInt agent-based system implemented in OMG MASIF standard[2]. 

 

 

 

Fig. 1 An outline of functionality of NetInt agent-based system 

 

NetInt  agent system involves 3 subsytems: 
a. AgentServer (AS), - the server is basically intended to provide tools to create, run, receive and 
transfer agents. 
 
b. RegistryServer (RS) - registration subsystem, where several service delivering subsystems and their 
components are registered. This subsystem also provides information on necessary agents and agent 
subsystems. It incorporates internal Certificate Authorities (CA) center as well. 

 

c. CodeBaseServer (CBS) - this server is mainly designed to provide agent software codes. Whenever there is a 
need to run an agent, the system seeks the agent software code on the local computer. In case the code is not 
found, the system requires the code from CodeBaseServer[3]. 
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A number of different communicators may exist, that support different transfer technologies (e.g. plain socket 
connections, RMI or Email). Each Home and Agent Server has at least one communicator present, which the 
agent can use for jumping. The agent itself does not necessarily know about the mode of transport and most of 
the time will not be informed. When an agent state has been successfully transferred, the agent’s code is loaded 
from the agent’s code base. The code base itself consists of all locally available classes and references to 
available Code Base Servers. When code for an agent is locally available, it is taken from there, otherwise loaded 
from a CBS. Sending an agent over the network has a number of security implications, which are touched in the 
following. 

To combat threats appearing during the transferring stage, the architecture uses two main mechanisms, namely 
encryption and code signing. Before the agent’s state is sent over the network by the communicator, the system 
encrypts it. The agent server only accepts digitally signed class files to prevent malicious code from being 
inserted into the agent system. This prevents the agent platform from running modified code as long as the digital 
signature is not compromised.  

 

Fig. 2 below gives UML scheme of basic classes that are used in NetInt agent-based system.  

 

 

 

 

Fig. 2 UML scheme of basic classes used in NetInt agent-based system 
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Sub-environments in the systems interact via Java RMI communication facility. The latter allows a more effective 
usage of object-oriented programming (OOP) resources. 

 

Software agents, in accordance with the base concept, should posses the following characteristics to ensure the 
proper functioning of the whole system: 

 
o Autonomicy – agen't ability to act by autonomous, i.e. without meddling of other person or 

program;  
o Mobility –  agent's ability to travel within the network to search information necessary for task 

execution; 
o Interoperability – equal possibilities to interoperate between various software agents; 
o Liability – the ability of an agent to perform the thread of execution for which the agent is liable 

for;   
o Flexibility – agent’s ability to act in response to the changes of  execution environment 

 
Agent interaction is the major feature that we address when we describe an agent community. Interaction means 
establishment a form of two-way dynamic communications between two or more agents, trying to reach a 
mutually acceptable agreement. The term interaction protocol is used in reference to sets of rules that guide 
interactions. In a simple interaction protocol the agents elaborate, accept, or reject proposals.  

 

Agent interaction and coordination in a multi-agent system are based on procedure of exchanging packets among 
agents.  Fig. 3 depicts a pattern of data exchange among agens in an agent-based system: 

 

 

 

Fig.3 Data exchange diagram in an agent-based system 
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Data package transferring emerges in situations, when an agent tries to communicate to another agent or to the 
system. Communication is to be differentiated into the internal (in a local computer and in one Agent Server), 
local (in a LAN), and global (in a TCP/IP area). In the process of these connections sender determines the 
address of the counterpart whom it chooses to send a message: it establishes a session with the intended one 
and sends it a generated packet. In other cases communication needs to apply to the Registry Server. 

In the following we address the technical aspects of problems dealing with establishing communications and data 
exchange between two participants. They can be categorized into that type of problems, which are concerned 
with achieving secure communications in a medium which is untrustworthy and subject to tampering by potential 
intruders. These interactions and the consequent need for security, regarding a range of security features and 
levels, vary widely from application to application. Such issues will be the focus of this study in a context of 
communication security, which in turn is an issue related to agent community protection. 

 

Within the context of agent-to agent (global) communication, we suppose to obey the general security 
requirements, including: 

 
• Confidentiality – Ensuring that no communication between two parties is revealed to the third party, 

i.e. that no one can read the message except the intended receiver. 
• Authentication – The process of proving one's identity. The recipient of a message should be able to 

securely authenticate its origin; moreover the third party (the intruder) won’t be able to act with another 
name. 

• Integrity – Assuring the receiver that the received message has not been altered in any way from the 
original. during transmission, i.e. the intruder would not be  able to trap or fake the message. 

• Nonrepudiation – The sender of message should be unable to deny having sent the message, i.e.  
the sender should be able to prove that the message is precisely the one issued by it. 

Further  we shall consider generic public-key encryption algorithms. They basically employ a pair of keys for each 
participant: one of the keys is designated the public key and may be advertised as widely as the owner wants. 
The other key is designated the private (secret) key and is never revealed to another party. It is used to decrypt 
messages. Suppose participant A wants to send a message to B. Denote A’s public key by )(Apk   and secret 
key by )(Ask .  A message M  is encrypted first, by encryption algorithm E  that uses the message M  and the 
public key )(Apk . The encrypted message (cipher text) CMME ApkApk == )()( }{}{  is decrypted with the 
algorithm D  using the appropriate secret key MCCD AskAsk == )()( }{}{ . 

There are several problems in the use of cryptographic systems, such as the problem of key distribution and 
secure transfer of keys via public net, establishment of intact communication sessions, etc. The crucial role in 
performing these actions is assigned to keys, however still not a little part has precise organization and 
application of communication protocols. A communication /cryptographic/ protocol is a system of carefully defined 
actions designed so that it provides interactions between two or more communicating parties according to one or 
another set of functional /encryption/ requirements. If we refer to cryptographic algorithms as algebraic and logical 
units that require appropriate theoretical background for proving their security, then cryptographic protocols 
present to be systems that are subjected to logical analysis to prove their security against malicious actions of the 
third party. To do these things, we need to make use of appropriate formalisms, such as model checking and 
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analysis. It is easier to detect possible attacks a priori knowing their scenario and having the protocol secureity 
proof against the attacks. Security provision of a Protocol requires checking for occurence of all events, which is a 
time and resource consuming procedure. CSP (communicating sequential processes) and FDR (failures-
divergence refinemen) prove to be fine tools to implement such analysis, where the first is an appropriate tool to 
create formalism, and the second to perform global analysis.  CSP is used below in analysis of synthesised 
protocols, and some known results by FDR are taken into account. 

 

An Outline of Crypto Protocols 

We shall now schematically explore several cryptographic protocols:   

 
1. Simpe communication protocol: 

 
Suppose A knows the public key )(Bpk  of B and wants to communicate a message M to B: 
A -> B : {M}pk(B)   (-> means sending (address : message)) 

({M}pk(B) means M  encrypted by the key )(Bpk ) 

a. A  encryptes message M as CM Bpk =)(}{  and sends it to B . 

b. B decryptes the encryted text C  using his private key )(Bsk . 

 

2. Public-key distribution protocol: 

 
A -> CA : B 
CA -> A : {pk(B)}sk(CA) 

 

A  is willing to obtain B 's public key from Certificate Authorities (CA) center. 
a. A  sends B 's name to  CA ’s database, which implies that A needs to get B 's public key. 
b. CA  encryptes )(Bpk  by its secret key )(CAsk , i.e. signs it and sends  to A . 
c. A  decryptes the message from CA   using  CA’s  key )(CApk . 
 
Several options are available here. B  can send A  its public key on his own initiative, i.e. B  can send 
the key signed or encrypted, if it knows A 's public key. 
For generality  we shall also present key pair distribution protocol performed at session set-up. Since at 
this stage the channel is completely unsecure and the only known fact is CA center’s public key, then 
distribution of the key pair could be performed as follows:   
 
Suppose A  needs to receive an encryption key pair from CA. 
A -> CA : A 
CA -> A : {{pk(A), sk(A)}L}sk(CA) 
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a. A  requests the key pair from CA .  
b. CA  generates the public and secret key pair )(Apk )(Ask , encrypts it with any key L  of length  
n  and sends it to A  signed with his secret key )(CAsk . 
c. A  is assumed to know the key L , and recovers its key pair from the encrypted message upon its 
receipt. 
 

3. Session set-up protocol: 

 

A -> B: {k}pk(B) 

 

Suppose again that A  has learnt (in a way) B 's public key )(Bpk : 

a. To initate a session A  generates a key k  at random to be used with a symmetric cryptographic 
algorithm. Then A  encrypts k  with )(Bpk  and sends it to B . 
b. B  recovers its session key from the encrypted message.  
c. Both parties encrypt messages during the session using their symmetric encryption key which is 
already known to each of them. 
 

Interaction Protocols in Multi-agent Systems 

The above-mentioned cryptographic protocols (there are a greatly many such protocols) are exploited in agent-
based systems to acheive secure data exchange between agents. They guide and manage every interaction 
between agents. We propose interaction protocols that provide secure communications between agents, agent 
servers in a multi-agent system, based on the cryptographic protocols mentioned above. A commentary on each 
protocol follows: 

 

1. After loading, AS agent server addresses to registry server RS for registration and to receive its public and 
secret key pair.  The protocol proceeds as follows. 

Suppose that the public key pk(CA) of  CA and its general properties are known and accessible to agent 
community. 

 
AS -> CA : AS 
CA -> AS : {{pk(AS),sk(AS)}L}pk(CA) 

 

a. AS  asks CA  for the key pair.  
b. CA  generates the public and secret key pair )(ASpk )(ASsk , encrypts it with the key L  of length 
n  and sends it to AS  signed with his secret key )(CAsk . 
c. AS  recovers its key pair  by decrypting the received message with the keys L and )(ACpk . 
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2. Associating or binding an encryption key pair to agent A by AgentServer (AS) at agent creation stage. 

 
AS -> CA : A 
CA -> AS : {pk(A), sk(A)}pk(AS) 
AS -> A : {pk(A), sk(A)} 

 
a. AS asks CA for receiving  A’s key pair. 
b. CA generates key pair pk(A), sk(A) and encrypes it by using  AS’s  public key, and sends it encrypted  
back to AS. 
c. AS recovers the key pair from the encrypted message and passes it to agent A. 
 
 

3. Session set-up protocol between agents A and B  
Suppose A is a registered agent in AS agent server and is willing to establish session with agent B, having no 
knowledge of its public key and location. 

 
A -> AS : LOC(B) 
AS have B (case of internal communication of agents) 

AS -> A : {LOC(B)} 
A -> B : {k} 
B -> A : {k} 
SESSION 
 

 Else (global communication) 
AS -> CA : LOC(B) (at this stage LOC(B) is just a text string as we see it) 

  CA -> AS :{LOC(B), pk(B)}sk(CA) 
  AS -> A : {LOC(B), pk(B)} 
  A -> B : {k}pk(B) 

SESSION 
 END 

 

a. A asks AS for B’s address. 
b. Agent server AS checks whether B is located  in its environment, if yes, then it sends this address to A. 
c. A sends B a key k generated at random which is referred to as the session key. 
d. B decrypts the message and gets the session key. 
e. Both parties encrypt messages using symmetric encryption key constructed at the session set-up, which is 
already know to each of the parties. 

No encryption problem is created in this case, since messages are exchanged within a certain system i.e.  
massages do not go through the non-secure network, consequently  no third party can reveal their secrets  
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We now consider the case when agent B is located on  another agent server, denoted as AS1 . 

a. Agent A asks AS for B’s address. 
b. AS checks agent B's location and if it is not located within its environment, runs public-key distribution 
protocol to ask registry server (RS) for B’s public key and address. 
c. RS creates a massage containing B’s address and its public key, signs it with secret key sk(CA) and sends 
to AS. 
d. AS decrypts the message and sends its contents to A.  
e. A generates a key k (session key) at random, encrypts it with pk(B) and sends it to B. 
f. The same steps a.b.c.d. are performed by B to learn A's address from agent server  AS1.    
g. B generates its own session key k1 and sends it together with the key k, previously sent by A, back to A 
encrypted with pk(A). 
h. Upon receipt A decrypts the message and recovers the session key k1, which sends back to B. 
i. Both parties authenticate each other and encrypt messages using symmetric encryption key pair k, k1 
established at the session set-up, which is already known to each of them. 

 
4.  Agent A  from agent server AS to agent server AS1  transfer protocol  

A -> AS: MOV(AS1) 
AS -> CA : LOC(AS1) 
CA -> AS : {LOC(AS1), pk(AS1)}sk(CA) 

AS -> AS1 : {k}pk(AS1) 
AS1 -> CA : LOC(AS) 
CA -> AS1 : {LOC(AS), pk(AS)}sk(CA) 
AS1 -> AS : {k, k1}pk(AS) 
AS -> AS1 : {k1}pk(AS) 

SESSION 
 

a. Agent A asks AS for transfer to AS1. 

b. AS runs public-key distribution protocol to ask registry server (RS) for AS1’s address and public key. 
c. RS creates a massage with AS1’s address and its public key, signs it using secret key sk(CA) and 
sends to AS. 
d. AS decrypts the message, generates a session key k at random, encrypts it with AS1’s public key 
pk(AS1) and sends it to AS1.  
e. AS1 repeats the steps taken in b.c.d. to request RS for AS’s address and public key 
f. AS1 generates its own session key k1 and sends it together with  the key k, previously sent by AS, back 
to AS encrypted with pk(AS). 
g. Upon receipt A decrypts the message and recovers the session key k1 which sends to B. 
h. Both parties authenticate each other and encrypt messages using session symmetric encryption key, 
which is already known to each of them. 
i. Finally AS sends agent A to AS1, and upon reception AS1 registers its new address in RS. 
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Comment: There is a slight weakness in security here. For example an agent, which has been removed and 
added again, can be removed yet another time by a replay attack. We choose not to do anything about this rather 
minor problem, which could be solved by including the nonce into the part, which is signed. It is the responsibility 
of local CA to make sure that no certificate is added more than once. The methods of CA are secure enough, 
such that they could in principle be remotely callable. 

 

Comment: The methods of protocols have a significant overhead. This is mainly because they involve a high 
number of cryptographic calculations. This is no big problem since they are very rare events. The methods of the 
NetInt must however be optimized for speed. Jumping is a special case because it involves a considerable 
overhead, but a common operation should preferably be in the framework. The jumping mechanisms in NetInt are 
optimized for security and flexibility. If they should also be optimized for speed, protocols for negotiating shared 
keys between hosts with much communication should be included. In this way secure highways can be made 
available on the most used jumping paths. All these optimizations are possible but non-essential and rather 
complicated to manage, and have therefore been left out. 

 

Comment: Like any other cryptoprotocol algorithms the proposed solutions also require protocol security proving. 
CSP and FDR were applied for checking security properties of such algorithms[4]. A check on Session protocol 
performed by using these tools revealed that not only the session key but also the sender name should be 
transferred  to achieve the necessary level of protocol security.  
To test a protocol like this one with FDR we have to build models of well-behaved nodes (Alice and Bob) and an 
intruder (Cameron) and see how the latter can interfere with the former. 
As we have already said, the encryptions and similar will be modelled as symbolic objects: we create an 
appropriate data type to contain them. It consists of various constants we will need, public-key (PK) and 
symmetric-key encryption constructions and a sequencing construct. 
 
datatype fact =  Sq. Seq(fact) | 

PK. (fact , fact) | 

Encrypt. (fact, fact) | 
Alice | Bob | Cameron | 
Na | Nb | Nc | 
pkA | pkB | pkC | 
skA | skB | skC | 

AtoB | BtoA | Cmessage 
 

The type fact contains various collections of constants, which can be collected together into sets for later use. 
The three identities used are those of two nodes we will later treat as reliable, plus one (Cameron) for the intruder 
to assume when it acts as another party. 
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nodes= {Alice, Bob, Cameron} 
publickey = {pkA, pkB, pkC} 
secretkey = {skA, skB, skC} 

nonces = {Na, Nb, Nc} 
sessmess = {AtoB, BtoA, Cmessage} 

 
Almost all possible actions for both parties are modeled. For example, both Alice and Bob can either act as an 
initiator of the protocol (Send) or as the responder (Resp). 

User(id,ns) = if ns == <> then STOP else 
Send(id,ns) [] Resp(id,ns) 

In a similar manner intruder actions are constructed.  

Equally, we would expect the intruder to be unable to learn the secrets AtoB and BtoA, since these are never 
revealed to Cameron deliberately. The spy or intruder can hear whatever passes between Alice and Bob, can 
interact with them as Cameron, and can intercept and fake messages. Such data is too bulky to be covered here 
and much more details could be found in [5]  

Based on check results appropriate changes have been made in the protocol (not only the session key but also 
the sender name should be transferred), which makes a good background to assure that parties could engage in 
an intact communication over a non-secure communications media, without running a risk of intrusion. 

NetInt Software System 

NetInt system is implemented in Java programming language in WINDOWS operating system environment. 
Moreover, exploitation of Java programming allows NetInt software system to be executed on any operating 
system containing Java Virtual Machine. The proposed NetInt agent environment is an automated dialogue 
system that enables direct communication of the user with the system; consequently availability of an appropriate 
Interface (see Fig 4) is required. 

NetInt agent system management interface includes the following main parts. The left part of the interface 
presents AgentServer of current node with its agents and places. The main tools that enable management 
(run/remove) of agents in the system are located at the top. The bottom part of the interface provides data on the 
agent or place such as agent name, type, its creation time and the name of its creator, run time, current state of 
the system, user descriptions, etc. The right part of Interface displays RegistyServer of NetInt, i.e. the whole 
NetInt agent system. 

The type Agent is used to create and transport agents in NetInt system. All agents in the network are inherited 
from this type. The basic methods responsible for transportation of agents are getNextLocation, getLocation and, 
move, as well run method which is called during initiation stage.   

The Crypto_Methods type is implemented for generating and distributing the public and secret keys as well as for 
encrypting data. The following functions KeyPairGeneration, GetKeys Message_Encryption, 
Message_Decryption, RSASignature, Message_Encryption_and_Sign, SignatureVerification, respectively, are 
used in Crypto_Methods to perform these procedures. 
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Fig. 4 Interface of NetInt agent system managment 
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