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Abstract: This paper considers one particular problem of general type of discrete tomography problems and 

introduces an approximate algorithm for its solution based on Lagrangian relaxation. A software implementation is 

given as well. 
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Introduction 

 

Discrete tomography is a field which deals with problems of reconstructing objects from its projections. Usually in 

discrete tomography object T , represents a set of points in multidimensional lattice. Some measurements are 

performed on T , each of which contains projection, which calculates number of points of T  along parallel 

directions. Given finite number of such measurements it is required to reconstruct object T , or if it is not possible 
to find unique reconstruction, construct an object which satisfies given projections. The object existence problem 
even by given 3 non-parallel projections is NP-complete [1]. 

In recent years discrete tomography draws huge attention because of the variety of mathematical formulations 
and applications. Theory of discrete tomography is widely used particularly in the field of medical image 
processing, which is based on so called computerized tomography. 

Lets consider 2-dimensional lattice and horizontal and vertical projections only. Object T  can be represented as 

a nm×  )1,0(  matrix, where 1s corresponds to points in T . Vector of row sums corresponds to horizontal 

projection and vector of column sums to vertical projection. So the problem of reconstructing the object by given 

horizontal and vertical projections is equivalent to the )1,0( -matrix existence problem with given R  and S  row 

and column sums. The latter problem was solved independently by Gale and Ryser in 1957. They gave sufficient 
and necessary condition for such a matrix existence and also proposed an algorithm for the matrix construction. 
Same problem with condition of rows inequality was investigated in [6]. 

In many cases orthogonal projections does not contain enough information for the objects unique reconstruction. 
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That's why often we consider different classes of such problems, where we impose additional constraints, for 
instance of geometrical nature. Such constraints narrow the solutions set but at the same time could make the 
problem hard to solve. Typical examples of such constraints are convexity and connectivity. 

We say that matrix has row (or horizontal) convexity feature if all ones in the row forms a continuous interval. 
Same way we define column (or vertical) convexity. Connectivity is the feature of moving between 1s in 
neighboring cells. In our case we consider only vertical and horizontal connectivity (not diagonal). 

Existence problem for connected matrices is NP-complete [2]. Existence problems for horizontally or vertically 
convex, and for both horizontally and vertically convex matrices are also NP-complete [3]. 

Different authors proved that horizontally and vertically convex and connected matrices reconstruction problem 
can be solved in polynomial time. Given description shows how sensitive are this kind of problems to input 
conditions. We see that existence problem's complexity changes along with adding new constraints. At the same 
time there are a lot of other notations of the problem for those the complexity is not even known. Particularly that 
means that they also lacks easy solution algorithms. 

So we consider several problems in the field of discrete tomography, propose ways for constructing such 
matrices that satisfy constraints (convex or nearly convex, satisfying given parameters or having values near to 
given parameters). Further we will formulate the problems as optimization problems and give ways for their 
approximation, based on the integer programming relaxation. The question is that integer programming model is 
known for being used to reformulate known NP complex optimization problems. This model's (precise or 
approximate algorithms construction) investigation is very important and often this model is used to approximate 
optimizations problems [4, 6]. Implemented algorithms and software package based on that algorithms give an 
ability to make calculations either for tomography problem or for similar problems, such that those calculations 
might guide us or give approximate or precise solutions. 

In this paper we will consider one problem from the field of discrete tomography, horizontally convex matrix 
existence problem. 

Horizontally convex matrix existence problem 

 

Since 1's in the horizontally convex matrix are in neighboring position then if we count the number of 1's in the 
matrices rows, that number for convex matrices will be maximum for the ones with same parameters. That's why 
problems that are often considered are related to number of neighboring 1's, their constraints and optimization. 

),,( 1 mrrR = , ),,( 1 nssS = , ),,( ''
1

'
mrrR =  vectors are given. Is there a nm×  

}{ , jixX =  matrix such that R  is row sum vector for that matrix and S  is column sums vector, and number 

of neighboring 1's in row i  is equal to '
ir . 
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In other words the problem is following, find the matrix with horizontal convexity in the class of )1,0(  matrices 

with given row and column sums. This problem is NP-complete, since for the case when 

mirr ii ,,1,1'
=−=  it's equivalent to the horizontally convex matrix existence problem. Given particular 

case just require the matrix to be horizontally convex by neighboring 1s in the rows. 

As we already mentioned lot of combinatorial problems are suitable to represent as integer linear optimization 
problems. Lets reformulate our problem as integer programming problem. 

Lets define }1,0{, ∈jiy  variables the way that it provides neighboring 1's in row i . 

 

1,,1;,,1),1(&)1()1( 1,,, −====⇔= + njmixxy jijiji 
 

 

This can be done by satisfying conditions 
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So we reformulate the problem in the following way. 

),,( 1 mrrR = , ),,( 1 nssS = , ),,( ''
1

'
mrrR =  vectors are given: Is there a nm×  

}{ , jixX =  matrix such that  
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Lagrangean relaxation and variable splitting 

 

So we have horizontal row convex matrix existence problem, which is reformulated as linear integer programming 

problem I . We also know that problem I  is NP-complete. To solve this problem we will use a method based on 
Lagrangian relaxation. 

 

Obviously if we drop some of the constraints we will get problems relaxation. Assume that we can call one or 
several constraints hard in the since that by dropping those constraints we can solve resulted integer 
programming problem more easily. Constraints dropping could be embedded in more common method which is 
called Lagrangian relaxation. We can apply Lagrangian relaxation to given method in various ways. One of the 
ways, which we will use here is following, if the problem can be splitted to subproblems, which have common 
variables, first split those variables and then relax their equality constraint. 

 

So, we take two set of variables h
jix ,  and v

jix ,  by duplicating jix ,  variables, and reformulate our problem as 
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We split our original problem using variable splitting to two problems, each of which has its own variable set and 
which would be independent without constraint (6). From this point of view constraint (6) is the hardest one. We 

will relax constraint (6) using Lagrangian relaxation with coefficients jiλ , . 

 

We get following problem )(λVSI , and its optimal value is )(λvVSI . 
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Then using same method we can further split the problems into subproblems for rows and columns, which itself is 
reducing to the finding of simple path, with given number of edges and biggest weight on directed graph. 

We can approach the problem in other way, by relaxing constraint (3) we would split the problem into two 

subproblems with jix ,  and jiy ,  variables. But this paper is limited with first approach. 

 

Obviously problem )(λVSI  is relaxation of problem I , hence )(λvVSI  is upper limit for value of I . Find 

best upper limit means to solve Lagrangian dual problem which is 

 

)(min λvv VSI

λ

VSD =
 

 

This is convex non-differential optimization problem: There are different methods for solving this problem. One of 
them is subgradient optimization method. Subgradient optimization on each step calculates the value of 

)(λvVSI  for given jiλ , , in this case that equals to solving following m  independent problems 

 

 (*) 

 

We will try to solve these problems using algorithm for finding simple path on acyclic directed graph with biggest 
cost and given number of edges. 
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Decomposed problem on graph and the solution 

We consider directed graph ),( EVG =  which vertex set consists of vertexes for each jx  variable plus s  

source and o  destination. We define edges in following way 

 

),( jxs     with weight jc  

1),,( −≤ jixx ji  with weight jc  

),( ox j    with weight 0 

 

Consider the paths form s  to o . Only r variables corresponding to jx  vertexes, are 1's according to (*) and 

among them 'r  is neighboring 1's. Hence we are interested only in those paths from s  to o  that have only r  

vertexes and there are only 'r  with neighboring 1's. We need to find among those paths, the one that has 
maximum weight. Now by assigning 1's to variables corresponding to vertexes we will get solution to the problem 
(*). 

 

 

 

Now lets give algorithmic description. 

Let ),( pjz  is weight of the longest path from s  to jx  vertex with p  vertexes on it. Lets ),,( qpjw  is 

weight of the longest path from s  to jx  which has p vertexes on it and there are q  neighboring vertexes with 

corresponding variables equal to 1. In this case ),( pjz  and ),,( qpjw  can be calculated the following 

way. First of all consider ),( pjz  

 

s o xj-1 xj 

cj 

cj 

0 

cj 

cj 
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))1,(max(),(

)1,(

j
xu

j

cpuzpjz
cjz

j

+−=

=

<  

 

And the optimal value we're looking for is ),(max),( rxzroz jj
= . 

This part of the problem is solving in the following way. 

For given n  and r  ][ ,, pjpj zZ =  array is constructed, where nj ,...,1=  and for j  

1,...,0 −= jp . In reality for fixed r  its enough to consider rp ,...,1=  layers, but np ,...,1=  

will satisfy calculations needed for all r . 

 

 

 

 

 

First of all 1,1z  value is calculated. That's equal to 1c . All values of row 1=p  are calculated in the same way 

jj cz =1, . To calculate pjz ,  by our formula we need to know values for 1−p  and for all 1,...,1 −j  

indexes. But in row 1−p  first non-zero value is in 1−= pj  position, which is on diagonal. So calculations 

can be done sequentially on ,...,...,1 rp =  rows and in rows in order npj ,...,= . This constructs are 

needed for software implementation and these give ability to measure number of operations in calculation. It 

doesn't exceed 3n , which means polynomial complexity. 

 

1 

n 

p 
r 

zj,p 

j 1 n 
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Maximal weight paths can be stored in a separate array. They can be stored as 0,1 vectors or as indexes of non 
zero elements which however won't significantly decrease number of computations. 

Now lets calculate values of ),,( qpjw . First of all lets consider edge values. From ),,( qpjw  we have 

maximal weight path from s  to jx  which has p  vertexes and there are q  pairs with neighboring 1's. 

1−≤ pq  and lets p 's are decreased up to 1+q . ),1,( qqjw + 's can be non-zero starting from 

1+≥ qj . For bigger q 's and smaller j 's ),,( qpjw 's are equal to 0. 

Interestingly q  can't be very small. If 



 +

>
2

1jp  then q  can't be 0 (at least 2 vertexes must have 

neighboring indexes). 

 

Let 



 +

=
3

1jτ . In that case τ  vertex pairs still might not be neighbors, which gives τ2  vertexes. After that 

any new vertex addition would add 2 new pairs. 

Now lets consider common case. For calculating ),,( qpjw  lets consider class where for j  jp ≤  and for 

pj,  pairs 1−≤ pq . This class is larger than needed but in reality it doesn't differ much from the minimal 

class which is necessary for calculations. For slight transition of edge values class is zeroed before performing 

calculations. Lets investigate value of ),,( qpjw . We do chain calculations and on each step consider 2 

cases 11 =−jx  and 01 =−jx . So we get following values 

 

jcqpjw +−−− )1,1,1(  and )),1,((max
1

j
xu

cqpuw
j

+−
−<

 

 

We are interested in maximum of these values. 

In jcqpjw +−−− )1,1,1(  all indexes are less than preceding and we assume that this value is already 

calculated in previous steps. For calculating )),1,((max
1

j
xu

cqpuw
j

+−
−<

 we do next step in chain 

calculation. 
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And the needed optimal value is )',,(max)',,( rrxwrrow jj
= . This problem practically can be solved in 

following way. 

For given n , r , 'r  we construct the class given above, array ][ ,,,, qpjqpj wW = , where for 

nj ,...,1=  and j  jp ,...,1=  and for pair pj,  1,...,0 −= pq . 

 

In reality for fixed r  it's enough to consider rp ,...,1=  layers and for q  all values where 1−≤ rq . 

But calculations must be done in such sequence to be executable. 

 

 

 

 

 

First 0,1,1w  values are calculated, 10,1,1 cw = , all values in row 1=p  are calculated in the same way 

jj cw =0,1, . More, 0=q  values were already considered. To calculate qpjw ,,  based on our formula we 

need to know values for 1−p  and all 1,...,1 −j . But in layer 1−p  with current q  value is either 0 or 

already calculated. Then calculations can be done in layers ,...,...,1 rp =  sequentially and in layers in order 

1 
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wj,p,q 
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of npj ,...,= . Given constructions are needed for software implementation and give ability to measure 

number of calculations. Those are not more than 4n  which means polynomial complexity. 

Maximal weight paths that we're looking for could be stored in separate array as 0,1 vectors or as array of 
indexes with non-zero values, which however won't significantly lower number of calculations. 

 

Software implementation 

Based on given methods a software system with an UI was implemented, which can be used to solve some 
problems from the field of discrete tomography based on Lagrangian relaxation. 

There are several fields which are used for data input. Since we are solving problems in the field of discrete 
tomography so input data are projections, in our case row sums and column sums. Also we are giving specific 
problem description by additional constraints. So we have special fields for that purpose. Then there is special 
control which can be used to reformulate given problem as mathematical programming problem. Then we can 
choose one or several constraints which we want to relax. Also we can do variable splitting etc. And there is an 
output window which is used for displaying results. For example value of Lagrangian Dual or variables difference 
as a result of splitting. 

 

 

 

In given example as a problem is considered horizontal row convexity existence problem. 
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Now lets describe one of the main classes in the implementation, ProblemBase abstract class. This class is base 
for all problem. Class encapsulates problem data. It also has several virtual functions which are used for problem 
solution. For example function which reformulates the problem as mathematical programming problem, chooses 
constraints for relaxation. Important function in ProblemBase is Solve method, which invokes the method for 
specific problem. Since most of the problems are reducing to relatively easy problems on graphs and methods for 
those solutions can be used for different problems we put those methods in a separate library. 
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