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A NEW ALGORITM FOR THE LONGEST COMMON SUBSEQUENCE PROBLEM 
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Abstract: This paper discusses the problem of determining the longest common subsequence (LCS) of two 

sequences. Here we view this problem in the background of the well known algorithm for the longest increasing 

subsequence (LIS). This new approach leads us to a new online algorithm which runs in  time and in 

 space where  is the length of the input sequences and  is the number of minimal matches between 

them. Using an advanced technique of van Emde Boas trees the time complexity bound can be reduced to 

 preserving the space bound of . 
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Introduction 

Let and , , be two sequences over some alphabet  of size 

, . A sequence , , over  is called a subsequence of , if  can be obtained from 

 by deleting some of its elements, that is if exists a set of indices  such that 
 and  for .  is said to be a common subsequence of  and , if it is a 

subsequence of both sequences  and ;  is said to be a longest common subsequence (LCS) of  and , if it 

has the maximum length among all common subsequences of  and ; that length is called the LCS length of  
and . In general the longest common subsequence is not unique.  

 

The Longest Common Subsequence Problem (LCS Problem) is to determine a LCS of and . Oftenthe 
problem of determining theLCS length is also referred to as LCS Problem. This is due to the fact that most of 
algorithms intended to find the LCS length can easily be modified to determine a LCS [Bergroth, 2000]. In this 
paper we will concentrate on determining the LCS length rather thandetermining an actual LCS.The first known 
solution of the LCS Problem is based on dynamic programming [Cormen, 2009].For  and  

denote by  the LCS length of sequences and ; thus  is the LCS length of  and . Note 

that thefollowing recursion holds for : 



International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010 

 

227 

 

 

 

 

if  or   

(1)  if   

 if   

 

Based on this relation it is easy to construct an algorithm which fills an array of size , where -th cell 

contains the value of . As it follows form (1) such algorithm has to fill the rest of array before obtaining the 

value of -th cell, so it will determine the LCS length of sequences  and in  time and  

space (  time for filling each cell and  space for holding each cell).A simple trick can be used to make 

this algorithm require only  space to obtain the value of the -th cell [Cormen, 2009]. Here we 
give some definitions which will be used later in the paper. For  and  the pair  is 

called matching between sequences  and  if ; it is called minimal (or dominant) matching if for every 

other matching  such that  it holds  and  or  and .Note that if  and 

 are two integers such that and , then theLCS Problem for two sequences of size  and  is 

asymptotically not harder than the LCS Problem for two sequences of size  and . Indeed, given two 

sequences of size  and  and an algorithm which solves the LCS Problem for two sequences of size  and 

, we can lengthen the given sequences (by appending to themsymbols which don’t occur in the initial 

sequences) up to size  and  respectively and pass the resulting two sequences to the given algorithm. It is 

easy to see that such algorithm will solve the LCS Problem for two sequences of size  and  in asymptotically 

the same time and space bounds as the given algorithm solves the LCS Problem for two sequences of size  

and . This means that each lower bound for the LCS Problem for two sequences of size  andeachupper 

bound for the LCS Problem for two sequences of size  are respectively lower and upper bounds for the LCS 

Problem for two sequences of size  and  (recall that ). At [Aho, 1976] the LCS Problem is examined 
using the decision tree model of computation where the decision tree vertices represent “equal-unequal” 
comparisons. There it is shown that each algorithm solving the LCS Problem and fitting this model has time 

complexity lower bound of , where  is the number of distinct symbols occurring in the sequences (i.e. the 
alphabet size). This means that the LCS Problem with unrestricted size of the alphabet has time complexity lower 

bound of , as such LCS Problem can be viewed as an LCS Problem with restricted alphabet of size 

.In practice the underlying encoding scheme for the symbols of the alphabet implies a topological order 
between them. Algorithms which take into account this fact don’t fit the decision tree model with “equal-unequal” 
comparisons examined at [Aho, 1976]. At [Masek, 1980] it is presented an algorithm which applies the “Four 
Russians” trick to the dynamic programming approach, thusit doesn’t fit the model examined at [Aho, 1976] and 
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has time complexitybound of .This bound isasymptotically the best known for general case LCS 
Problem[Cormen, 2009]. 

 

Previous Results 

Lot of algorithms have been developed for the LCS Problem that, although not improving the time complexity 
bound , exhibit much better performance for some classes of sequences  and  [Bergroth, 2000]. 

Consider the special case when the alphabet  consists of first  integers, i.e. , and the 

sequences  and  are two permutations of . It is easy to check that this case can be reduced to the case 

where  is the identical permutation (by replacing  by  for  in both sequences  and  we will get 

two sequences which are equivalent to the initial ones with respect to the LCS Problem). In this case each LCS of 
 and  is an increasing sequence of some of first  integers and each such sequence is a LCS of and . 

Thusin the case when  and are permutations the LCS Problem is reduced to the problem of determining a 

longest increasing subsequence of permutation . The Longest Increasing Subsequence (LIS) Problem is to 
determine a non decreasing subsequence of maximum length in the given sequence of integers. The LIS 
Problemcan be solved in time [Fredman, 1975], and using advanced data structures like van Emde 

Boas trees [Cormen, 2009]thistime bound can be reduced to . Thus these bounds apply to the 
LCS Problem in the case of permutations.Also there are many algorithms for the general case LCS Problem 

which except  and are also sensitive for other parameters like the LCS length, the alphabet size, the number 
of matches and the number of minimal matches. A survey on such algorithms is given at [Bergroth, 2000].The 

table below gives a brief remark of some of known algorithms for the LCS Problem. There  denotes the LCS 

length,  denotes the alphabet size,  denotes the number of all matches and  denotes the number of minimal 

matches. It is known [Baeza-Yates, 1999] that for two random sequences of length  the expected LCS length is 

 and the expected number of minimal matches is  [Tronicek, 2002]. This means that (except the 5th) 

none of the algorithms mentioned in the table hastime complexity upper bound less than not only in the 
worst case but also in the average case. 

All these algorithms are developed in the background of building the  array mentioned in the dynamic 

programming approach, and they purport to perform fewer operations in order to obtain the -th cell of that 
array. In this paper we view the LCS Problem inanother background, namely the background of the classical 
algorithm for the LIS Problem described at [Fredman, 1975]. For sure each term we deal with in this background 
has its direct analogue in the background of the  array; however our approach can be justified by the fact 

that it leadsus to simpler constructions and an  algorithm for the LCS Problem which can be reduced 

to  if using van Emde Boas trees (details are in the next section). Initially algorithms from 10th to 

16th require  space, but at [Apostolico, 1987] a trick is introduced which can be used to reduce the space 
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complexity to , however in this case the time complexity bounds increase by a multiplicative factor of 
. The 9th algorithm requires  space but that trick cannot be used to reduce this space complexity 

bound[Apostolico, 1987]. Recall that  is the number of minimal matches. It can be checked that  

[Rick, 1994] and it is known that in average it holds  [Tronicek, 2002]. This means the 9th,10th and 
14th algorithms mentioned in the table above have better time complexity bounds than the others mentioned 

there. The algorithm we present here has better time complexity bound than 10th and 14th in case when 
 (or  if the van Emde Boas trees are used), and it has better space complexity bound 

than 9th in cases when  (see [Cormen, 2009] for the -notation). Roughly speaking the algorithm we 
present here has better time and space complexity bounds than the ones mention in the table above when the 
alphabet size if relevantly larger. We present the algorithm in the next section. 

 

No. Year Authors Time Complexity Ref. 

1 1974 Wagner, Fischer  [Cormen, 2009] 

2 1977 Hunt, Szymansky  [Hunt, 1977] 

3 1977 Hirschberg  [Hirschberg, 1977] 

4 1977 Hirschberg  [Hirschberg, 1977] 

5 1980 Masek, Paterson  [Masek, 1980] 

6 1982 Nakatsu et al.  [Nakatsu, 1982] 

7 1984 Hsu, Du  [Hsu, 1984] 

8 1986 Myers  [Myers, 1980] 

9 1987 Apostolico, Guerra  [Apostolico, 1987] 

10 1987 Apostolico, Guerra  [Apostolico, 1987] 

11 1990 Chin, Poon  [Chin, 1990] 

12 1990 Wu, Manber, Myers  [Wu, 1990] 

13 1992 Apostolico et al.  [Apostolico, 1992] 

14 1994 Rick  [Rick, 1994] 

15 1994 Rick  [Rick, 1994] 

16 2002 Goeman, Clausen  [Goeman, 2002] 
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The New Algorithm 

First we will discuss the algorithm for the LIS Problem presented at [Fredman, 1975]. That algorithm is an online 

algorithm meaning that it sequentially handles the elements of the input sequence and determines the LIS length 
of the sequence handled so far.Online algorithms have advantage that they can run on dynamically changing 
input data. For instanceunlike the Selection Sort, the Insertion Sort algorithm can maintain the sorted list upon the 
appendingof the next element to the input list [Cormen, 2009]. Thus such algorithms are defined as update 
procedures which are to be performed upon the appending of the next element. Now back to the LIS Problem.Let 

 be a sequence of integers and let  be an integer which is being appended to . We will 

describe an online algorithm which determines the LIS length of  which is  appended by . Denote by  the 

LIS length of  and by  the LIS lengthof . Note that or . For  there are increasing 
subsequences of length in . Let be the minimumof their last elements. It is easy to check that 

 

  (2) 

 

We denote by  the analogue of in : for  let  denote the minimum of the last elements of 

increasing subsequences of length  of . In order to obtain an online algorithm for the LIS Problem we will 

describe how to determine values  based on values . Firstly note that  if and only if 

, and if so then . It is easy to check that this claim can be generalized for any : let  

denote  if  and otherwise let  be the least index such that . It is easy to check that for  

it holds and otherwise . Thus we have described a way how to obtain values  based on 

values . Next the online algorithm for the LIS Problem is described. The algorithm maintains the values 

 in an array . Upon the appending of the next element  to sequence  the algorithm just 

searches for the index  mentioned above and updates the value at that index. 

 

LIS-update 

Input: the next element  of sequence  

Output:the LIS length of the sequences  handled so far 

Method: 

1.  
2.  
3.  
4.  
5.  
6.  
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Note that each call of this procedure requires  time where  is the LIS length of the sequence handled so 

far. Thus we have described an online algorithm for the LIS Problem which runs in  time and in  

space where  is the length of the sequence handled so far and  is the LIS length of that sequence. Next we 
will present an online algorithm for the LCS Problem which determines the LCS length of two sequences of length 

and , , in  time where  is the number of minimal matches between the input sequences. 
As for the LCS Problem there are two input sequences some clarification is needed regarding the notion of online 
algorithms.By an online algorithm for the LCS Problem we mean an algorithm which can accept the next element 
of either of the two input sequences and provide the LCS length of the two sequences handled so far. Let 

 and  be two sequences over some alphabet  of size  and let  be 

a symbol being appendedto . We will describe an online algorithm which determines the LCS length of and 

, where  is appended by . Denote by  the LCS length of  and  and by  the LCS length of and . 

Note that or . For  there are subsequences of length common to and . Let  be 

the minimum index such that there is a subsequence of length common to  and  ending at in .It is easy to 
check that 

 

  (4) 

 

Similarly for  we define  as the minimum index such that there is a subsequence of length  
common to  and  ending at in , and we get 

 

  (5) 

 

We will call the indices at (4) thresh indices or thresh values of sequence with respect to  and the indices at (5) 
thresh indices or thresh values of sequence  with respect to . Let for  be the thresh values of 

sequence with respect to  and  be the thresh values of  with respect to . In order to obtain an online 

algorithm for the LCS Problem we will describe how to determine indices  and  based on indices 

and . Firstly note that  if and only if there is some index , , such that 

, and if so then  is the minimum of such -s. It is easy to check that this claim can be generalized for 

any : if  is the first occurrence of  in  after  and  then  and otherwise  

(see Figure 1). 

 

 



International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010 

 

232 

 
Figure 1 

 

Thus we have described a way how to obtain sequences  and  and their thresh indices based on sequences 

 and  and their thresh indices.So during this some thresh values are updated and the others are not.A trivial 
approach would be to handle all thresh values and update them if they has to be updated, however better would 

be to handle only those thresh values which has to be updated.Let  be the first occurrence of  in  

aftersome . Note that the least thresh value exceeding  which has to be updated is the first occurrence of 

thresh value after . This means that while searching for the first occurrence of  (after some thresh value) the 

thresh values can be ignored.Also note that the thresh values of  with respect to , i.e. the , can be 

obtained easily:there is a new thresh value there if and only if  and if so then . It can be 

checked that each update of a thresh value corresponds to a minimal match.Next the algorithm is presented. It 
consists of two update procedures: one for calling upon the appending the next element to sequence  and 

another upon the appending the next element tosequence . We will restrict only on the second one as the first 
one can be obtained just by swapping symbols “A” and “B” in the text of the procedure. The algorithm maintains 
the sequences  and  in arrays and  respectively and for each symbol  of alphabet 

 it maintains the set of occurrences of  in  and  in binary search trees  and  

respectively.The algorithm also maintains the thresh indices  and  in binary search trees 

 and  respectively. Following is the update procedure which is to be called upon the 

appending the next element to sequence .The procedure uses two temporary variables  and which 
correspondto the next and previous values of updating thresh indices. 

Note that each iteration of the while loop at lines 3-12 updates a thresh value (  at the end of each iteration) 

and the operations carried out during each iteration require  time as they are performed on binary 
search trees. Recall that each update of the thresh value corresponds to a minimal match, so we have described 
an online algorithm for the LCS Problem which runs in  time and in  space where  and  

are the lengths of the sequences handled so far and  is the number of minimal matches between that 
sequences. These bounds can be improved if using van Emde Boas trees [Cormen, 2009] instead of binary 

search trees.van Emde Boas tree is a data structure that for some a priory fixed integer  can store some of first 

 integers,itsupports operations of insertion deletion and search for the upper bound with worst case time 
complexity bound of and it requires  space regardless the number of integers stored in it. At 

[Cormen, 2009] it is shown how this data structure can be modified to require only  space where  is the 
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number of stored elements (there the modified data structure is called y-fast trie). In this case the operations of 
insertion and deletion do not have worst case time complexity bound of  but this bound holds for the 

amortized time complexity. This fits with our needs as we perform  insertions and deletions, thus we 
conclude that if using these modified van Emde Boas trees then the algorithm presented in this paper will run in 

 time and in  space. 

 

 

LCS-updateB 

Input: the next element  of sequence  

Output:the LCS length of the sequences  and handled so far 

Method: 

1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
10.  
11.  
12.  
13.  
14.  
15.  
16.  
17.  
18.  
19.  
20.  
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