
International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

226

A NEW ALGORITM FOR THE LONGEST COMMON SUBSEQUENCE PROBLEM

Vahagn Minasyan

Abstract: This paper discusses the problem of determining the longest common subsequence (LCS) of two

sequences. Here we view this problem in the background of the well known algorithm for the longest increasing

subsequence (LIS). This new approach leads us to a new online algorithm which runs in time and in

 space where is the length of the input sequences and is the number of minimal matches between

them. Using an advanced technique of van Emde Boas trees the time complexity bound can be reduced to

 preserving the space bound of .

Keywords: longest common subsequence, longest increasing subsequence, online algorithm.

ACM Classification Keywords:G.2.1 Discrete mathematics: Combinatorics

Introduction

Let and , , be two sequences over some alphabet of size

, . A sequence , , over is called a subsequence of , if can be obtained from

 by deleting some of its elements, that is if exists a set of indices such that
 and for . is said to be a common subsequence of and , if it is a

subsequence of both sequences and ; is said to be a longest common subsequence (LCS) of and , if it

has the maximum length among all common subsequences of and ; that length is called the LCS length of
and . In general the longest common subsequence is not unique.

The Longest Common Subsequence Problem (LCS Problem) is to determine a LCS of and . Oftenthe
problem of determining theLCS length is also referred to as LCS Problem. This is due to the fact that most of
algorithms intended to find the LCS length can easily be modified to determine a LCS [Bergroth, 2000]. In this
paper we will concentrate on determining the LCS length rather thandetermining an actual LCS.The first known
solution of the LCS Problem is based on dynamic programming [Cormen, 2009].For and

denote by the LCS length of sequences and ; thus is the LCS length of and . Note

that thefollowing recursion holds for :

International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

227

if or

(1) if

 if

Based on this relation it is easy to construct an algorithm which fills an array of size , where -th cell

contains the value of . As it follows form (1) such algorithm has to fill the rest of array before obtaining the

value of -th cell, so it will determine the LCS length of sequences and in time and

space (time for filling each cell and space for holding each cell).A simple trick can be used to make

this algorithm require only space to obtain the value of the -th cell [Cormen, 2009]. Here we
give some definitions which will be used later in the paper. For and the pair is

called matching between sequences and if ; it is called minimal (or dominant) matching if for every

other matching such that it holds and or and .Note that if and

 are two integers such that and , then theLCS Problem for two sequences of size and is

asymptotically not harder than the LCS Problem for two sequences of size and . Indeed, given two

sequences of size and and an algorithm which solves the LCS Problem for two sequences of size and

, we can lengthen the given sequences (by appending to themsymbols which don’t occur in the initial

sequences) up to size and respectively and pass the resulting two sequences to the given algorithm. It is

easy to see that such algorithm will solve the LCS Problem for two sequences of size and in asymptotically

the same time and space bounds as the given algorithm solves the LCS Problem for two sequences of size

and . This means that each lower bound for the LCS Problem for two sequences of size andeachupper

bound for the LCS Problem for two sequences of size are respectively lower and upper bounds for the LCS

Problem for two sequences of size and (recall that). At [Aho, 1976] the LCS Problem is examined
using the decision tree model of computation where the decision tree vertices represent “equal-unequal”
comparisons. There it is shown that each algorithm solving the LCS Problem and fitting this model has time

complexity lower bound of , where is the number of distinct symbols occurring in the sequences (i.e. the
alphabet size). This means that the LCS Problem with unrestricted size of the alphabet has time complexity lower

bound of , as such LCS Problem can be viewed as an LCS Problem with restricted alphabet of size

.In practice the underlying encoding scheme for the symbols of the alphabet implies a topological order
between them. Algorithms which take into account this fact don’t fit the decision tree model with “equal-unequal”
comparisons examined at [Aho, 1976]. At [Masek, 1980] it is presented an algorithm which applies the “Four
Russians” trick to the dynamic programming approach, thusit doesn’t fit the model examined at [Aho, 1976] and

International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

228

has time complexitybound of .This bound isasymptotically the best known for general case LCS
Problem[Cormen, 2009].

Previous Results

Lot of algorithms have been developed for the LCS Problem that, although not improving the time complexity
bound , exhibit much better performance for some classes of sequences and [Bergroth, 2000].

Consider the special case when the alphabet consists of first integers, i.e. , and the

sequences and are two permutations of . It is easy to check that this case can be reduced to the case

where is the identical permutation (by replacing by for in both sequences and we will get

two sequences which are equivalent to the initial ones with respect to the LCS Problem). In this case each LCS of
 and is an increasing sequence of some of first integers and each such sequence is a LCS of and .

Thusin the case when and are permutations the LCS Problem is reduced to the problem of determining a

longest increasing subsequence of permutation . The Longest Increasing Subsequence (LIS) Problem is to
determine a non decreasing subsequence of maximum length in the given sequence of integers. The LIS
Problemcan be solved in time [Fredman, 1975], and using advanced data structures like van Emde

Boas trees [Cormen, 2009]thistime bound can be reduced to . Thus these bounds apply to the
LCS Problem in the case of permutations.Also there are many algorithms for the general case LCS Problem

which except and are also sensitive for other parameters like the LCS length, the alphabet size, the number
of matches and the number of minimal matches. A survey on such algorithms is given at [Bergroth, 2000].The

table below gives a brief remark of some of known algorithms for the LCS Problem. There denotes the LCS

length, denotes the alphabet size, denotes the number of all matches and denotes the number of minimal

matches. It is known [Baeza-Yates, 1999] that for two random sequences of length the expected LCS length is

 and the expected number of minimal matches is [Tronicek, 2002]. This means that (except the 5th)

none of the algorithms mentioned in the table hastime complexity upper bound less than not only in the
worst case but also in the average case.

All these algorithms are developed in the background of building the array mentioned in the dynamic

programming approach, and they purport to perform fewer operations in order to obtain the -th cell of that
array. In this paper we view the LCS Problem inanother background, namely the background of the classical
algorithm for the LIS Problem described at [Fredman, 1975]. For sure each term we deal with in this background
has its direct analogue in the background of the array; however our approach can be justified by the fact

that it leadsus to simpler constructions and an algorithm for the LCS Problem which can be reduced

to if using van Emde Boas trees (details are in the next section). Initially algorithms from 10th to

16th require space, but at [Apostolico, 1987] a trick is introduced which can be used to reduce the space

International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

229

complexity to , however in this case the time complexity bounds increase by a multiplicative factor of
. The 9th algorithm requires space but that trick cannot be used to reduce this space complexity

bound[Apostolico, 1987]. Recall that is the number of minimal matches. It can be checked that

[Rick, 1994] and it is known that in average it holds [Tronicek, 2002]. This means the 9th,10th and
14th algorithms mentioned in the table above have better time complexity bounds than the others mentioned

there. The algorithm we present here has better time complexity bound than 10th and 14th in case when
 (or if the van Emde Boas trees are used), and it has better space complexity bound

than 9th in cases when (see [Cormen, 2009] for the -notation). Roughly speaking the algorithm we
present here has better time and space complexity bounds than the ones mention in the table above when the
alphabet size if relevantly larger. We present the algorithm in the next section.

No. Year Authors Time Complexity Ref.

1 1974 Wagner, Fischer [Cormen, 2009]

2 1977 Hunt, Szymansky [Hunt, 1977]

3 1977 Hirschberg [Hirschberg, 1977]

4 1977 Hirschberg [Hirschberg, 1977]

5 1980 Masek, Paterson [Masek, 1980]

6 1982 Nakatsu et al. [Nakatsu, 1982]

7 1984 Hsu, Du [Hsu, 1984]

8 1986 Myers [Myers, 1980]

9 1987 Apostolico, Guerra [Apostolico, 1987]

10 1987 Apostolico, Guerra [Apostolico, 1987]

11 1990 Chin, Poon [Chin, 1990]

12 1990 Wu, Manber, Myers [Wu, 1990]

13 1992 Apostolico et al. [Apostolico, 1992]

14 1994 Rick [Rick, 1994]

15 1994 Rick [Rick, 1994]

16 2002 Goeman, Clausen [Goeman, 2002]

International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

230

The New Algorithm

First we will discuss the algorithm for the LIS Problem presented at [Fredman, 1975]. That algorithm is an online

algorithm meaning that it sequentially handles the elements of the input sequence and determines the LIS length
of the sequence handled so far.Online algorithms have advantage that they can run on dynamically changing
input data. For instanceunlike the Selection Sort, the Insertion Sort algorithm can maintain the sorted list upon the
appendingof the next element to the input list [Cormen, 2009]. Thus such algorithms are defined as update
procedures which are to be performed upon the appending of the next element. Now back to the LIS Problem.Let

 be a sequence of integers and let be an integer which is being appended to . We will

describe an online algorithm which determines the LIS length of which is appended by . Denote by the

LIS length of and by the LIS lengthof . Note that or . For there are increasing
subsequences of length in . Let be the minimumof their last elements. It is easy to check that

 (2)

We denote by the analogue of in : for let denote the minimum of the last elements of

increasing subsequences of length of . In order to obtain an online algorithm for the LIS Problem we will

describe how to determine values based on values . Firstly note that if and only if

, and if so then . It is easy to check that this claim can be generalized for any : let

denote if and otherwise let be the least index such that . It is easy to check that for

it holds and otherwise . Thus we have described a way how to obtain values based on

values . Next the online algorithm for the LIS Problem is described. The algorithm maintains the values

 in an array . Upon the appending of the next element to sequence the algorithm just

searches for the index mentioned above and updates the value at that index.

LIS-update

Input: the next element of sequence

Output:the LIS length of the sequences handled so far

Method:

1.
2.
3.
4.
5.
6.

International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

231

Note that each call of this procedure requires time where is the LIS length of the sequence handled so

far. Thus we have described an online algorithm for the LIS Problem which runs in time and in

space where is the length of the sequence handled so far and is the LIS length of that sequence. Next we
will present an online algorithm for the LCS Problem which determines the LCS length of two sequences of length

and , , in time where is the number of minimal matches between the input sequences.
As for the LCS Problem there are two input sequences some clarification is needed regarding the notion of online
algorithms.By an online algorithm for the LCS Problem we mean an algorithm which can accept the next element
of either of the two input sequences and provide the LCS length of the two sequences handled so far. Let

 and be two sequences over some alphabet of size and let be

a symbol being appendedto . We will describe an online algorithm which determines the LCS length of and

, where is appended by . Denote by the LCS length of and and by the LCS length of and .

Note that or . For there are subsequences of length common to and . Let be

the minimum index such that there is a subsequence of length common to and ending at in .It is easy to
check that

 (4)

Similarly for we define as the minimum index such that there is a subsequence of length
common to and ending at in , and we get

 (5)

We will call the indices at (4) thresh indices or thresh values of sequence with respect to and the indices at (5)
thresh indices or thresh values of sequence with respect to . Let for be the thresh values of

sequence with respect to and be the thresh values of with respect to . In order to obtain an online

algorithm for the LCS Problem we will describe how to determine indices and based on indices

and . Firstly note that if and only if there is some index , , such that

, and if so then is the minimum of such -s. It is easy to check that this claim can be generalized for

any : if is the first occurrence of in after and then and otherwise

(see Figure 1).

International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

232

Figure 1

Thus we have described a way how to obtain sequences and and their thresh indices based on sequences

 and and their thresh indices.So during this some thresh values are updated and the others are not.A trivial
approach would be to handle all thresh values and update them if they has to be updated, however better would

be to handle only those thresh values which has to be updated.Let be the first occurrence of in

aftersome . Note that the least thresh value exceeding which has to be updated is the first occurrence of

thresh value after . This means that while searching for the first occurrence of (after some thresh value) the

thresh values can be ignored.Also note that the thresh values of with respect to , i.e. the , can be

obtained easily:there is a new thresh value there if and only if and if so then . It can be

checked that each update of a thresh value corresponds to a minimal match.Next the algorithm is presented. It
consists of two update procedures: one for calling upon the appending the next element to sequence and

another upon the appending the next element tosequence . We will restrict only on the second one as the first
one can be obtained just by swapping symbols “A” and “B” in the text of the procedure. The algorithm maintains
the sequences and in arrays and respectively and for each symbol of alphabet

 it maintains the set of occurrences of in and in binary search trees and

respectively.The algorithm also maintains the thresh indices and in binary search trees

 and respectively. Following is the update procedure which is to be called upon the

appending the next element to sequence .The procedure uses two temporary variables and which
correspondto the next and previous values of updating thresh indices.

Note that each iteration of the while loop at lines 3-12 updates a thresh value (at the end of each iteration)

and the operations carried out during each iteration require time as they are performed on binary
search trees. Recall that each update of the thresh value corresponds to a minimal match, so we have described
an online algorithm for the LCS Problem which runs in time and in space where and

are the lengths of the sequences handled so far and is the number of minimal matches between that
sequences. These bounds can be improved if using van Emde Boas trees [Cormen, 2009] instead of binary

search trees.van Emde Boas tree is a data structure that for some a priory fixed integer can store some of first

 integers,itsupports operations of insertion deletion and search for the upper bound with worst case time
complexity bound of and it requires space regardless the number of integers stored in it. At

[Cormen, 2009] it is shown how this data structure can be modified to require only space where is the

International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

233

number of stored elements (there the modified data structure is called y-fast trie). In this case the operations of
insertion and deletion do not have worst case time complexity bound of but this bound holds for the

amortized time complexity. This fits with our needs as we perform insertions and deletions, thus we
conclude that if using these modified van Emde Boas trees then the algorithm presented in this paper will run in

 time and in space.

LCS-updateB

Input: the next element of sequence

Output:the LCS length of the sequences and handled so far

Method:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

234

Bibliography

[Aho, 1976]A. Aho, C. Hirschberg, J. Ullman. Bounds on the Complexity of the Longest Common Subsequence Problem.
Journal of the Association for Computing Machinery, Vol. 23, No. 1, 1976, pp. 1-12.

[Apostolico, 1987]A. Apostolico, G. Guerra. The longest common subsequence problem revisited. Algorithmica 2, 1987, pp.
315-336.

[Apostolico, 1992]. Apostolico, S. Browne, C. Guerra. Fast Linear-Space Computations of Longest Common Subsequences.
Theoretical Computer Science, Vol. 92, 1992, pp. 3-17.

[Baeza-Yates, 1999] R. Baeza-Yates, R. Gavalada, G. Navarro, R. Scheihing.Bounding the Expected Length of Longest
Common Subsequences and Forestes.Theory of Computing Systems, Vol. 32, 1999, pp. 435-452.

[Bergroth, 2000]L. Bergroth, H. Hakson, T. Ratia.A Survey of Longest Common Subsequence Algorithms.Proceedings of the
Seventh International Symposium on String Processing Information Retrieval, 2000, pp. 39-48.

[Chin, 1990]. F. Chin, C. Poon. A Fast Algorithm for Computing Longest Common Subsequences of Small Alphabet
Size.Journal of Information Processing, Vol.13, No. 4,1990, pp. 463-469.

[Cormen, 2009] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to algorithms (Third Edition), pp. 43-65, pp. 390-
397, pp.531-561, 2009.

[Fredman, 1975] M. Fredman. On Computing the of Longest Increasing Subsequences. Discrete Mathematics, Vol. 11, No.
1, 1975, pp. 29-35.

[Goeman, 2002]H. Goeman, M. Clausen. A new practical linear space algorithm for the longest common subsequence
problem.Kybernetika, Vol. 38, No. 1, 2002, pp. 45-66.

[Hirschberg, 1977]D. Hirschberg.Algorithms for the Longest Common Subsequence Problem.Journal of Association for
Computing Machinery, Vol. 24, No. 4, 1977, pp. 664-675.

[Hsu, 1984]W. Hsu, M. Du. New algorithms for the LCS problem. Journal of Computer and Syste Sciences, Vol. 29, 1984,
pp. 133-152.

[Hunt, 1977]J. Hunt, T. Szymanski. A fast algorithm for computing longest common subsequences.Communications of
Association for Computing Machinery, Vol. 20, No. 5, 1977, pp. 350-353.

[Masek, 1980] W. Masek, M. Paterson. A Faster Algorithm Computing String Edit Distances. Journal of Computer and
System Sciences, Vol. 20, No. 1, 1980, pp. 18-31.

[Myers, 1986]E.Myers. An Difference Algorithm and its Variations. Algorithmica 1, 1986, pp. 251-266.
[Nakatsu, 1982]N. Nakatsu, Y. Kambayashi, S. Yajima. A Longest Common Subsequence Algorithm Suitable for Similar Text

Strings. Acta Informatica Vol. 18, 1982, pp. 171-179.
[Rick, 1994] C. Rick. New Algorithms for the Longest Common Subsequence Problem.Research Report No. 85123-CS,

Department of Computer Science, University of Bonn, 1994.
[Tronicek, 2002]Z. Tronicek.Common Subsequence Automatation.Research Report DC-2002-02, Department of Computer

Science and Engineering, Czech Technical University, 2002.
[Wu, 1990] S. Wu, U. Manber, G. Myers, W. Miller.An Sequence Comparison Algorithm.Information Processing

Letters, Vol. 35, 1990, pp. 317-323.

Authors' information

VahagnMinasyan – Postgraduate student, Yerevan State University, faculty of Informatics and Applied

Mathematics, department of Discrete Mathematics and Theoretical Informatics, Armenia, 0025, Yerevan, 1st Alex

Manoogian; e-mail: vahagn.minasyan@gmail.com

	Introduction
	Horizontally convex matrix existence problem
	Lagrangean relaxation and variable splitting
	Decomposed problem on graph and the solution
	Software implementation
	Bibliography
	Authors' Information
	Introduction
	Construction
	Verification
	Bibliography
	Authors' Information
	Introduction
	Previous Results
	The New Algorithm
	Bibliography
	Authors' information
	Introduction
	Interference Minimization in Disk Graph Model of Wireless Networks
	Interference Minimization in Physical Model of Wireless Networks
	Formal Definitions
	Set Covering and Interference Minimization
	LP Formulations
	Approximation Algorithm for Interference Minimization in Physical Model of Wireless Networks
	Algorithm performance
	Conclusion and Future Work
	References
	Appendix A
	Authors’ Information
	1. Introduction
	2. A View on Mind
	3. Basic Approaches and Assumptions
	4. Refining Constituents of Cognizers
	5. Questioning Validity of Mind
	6. Conclusion
	Bibliography
	Authors' Information
	1. Introduction
	2. LAO Testing and Identification of the Probability Distributions for Two Stochastically Coupled Objects
	3. An Approach to Multiple Hypotheses Testing for the Second (Dependent) Object
	4. On Identification of the Probability Distribution of the Dependent Object
	5. LAO Hypotheses Testing for Two Stochastically Dependent Objects
	6 . On Identification of the Probability Distributions of Two Stochastically Dependent Objects
	7. Example
	8. Conclusion
	Bibliography
	Authors' Information
	Introduction
	Problem
	Solution of the task
	Results
	Conclusion
	References
	Authors' Information

