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ON RELIABILITY APPROACH TO MULTIPLE HYPOTHESES TESTING AND TO
IDENTIFICATION OF PROBABILITY DISTRIBUTIONS OF TWO STOCHASTICALLY
RELATED OBJECTS

Evgueni Haroutunian, Aram Yessayan, Parandzem Hakobyan

Abstract. This paper is devoted to study of characteristics of logarithmically asymptotically optimal (LAO)

hypotheses testing and identification for a model consisting of two related objects. In general case it is supposed

that L, possible probability distributions of states constitute the family of possible hypotheses for the first object

and the second object is distributed according to one of L, x L, given conditional distributions depending on the

distribution index and the current observed state of the first object. For the first testing procedure the matrix of
interdependencies of all possible pairs of the error probability exponents (reliabilities) in asymptotically optimal

tests of distributions of both objects is studied. The identification of the distributions of two objects gives an
answer to the question whether r, -th and r, -th distributions occurred or not on the first and the second objects,

correspondingly. Reliabilities for the LAO identification are determined for each pair of double hypotheses. By the
second approach the optimal interdependencies of lower estimates of all possible pairs of corresponding
reliabilities are found and lower estimates of reliabilities for the LAO identification are studied for each pair of
hypotheses. The more complete results are presented for model of statistically dependent objects, when
distributions of the objects are dependent, but its current states are independent. For an example of two
statistically dependent objects optimal interdependencies of pairs of reliabilities are calculated and graphically

presented.

Keywords: Multiple hypotheses testing, Identification of distribution, Inference of many objects, Error probability

exponents, Reliabilities.

1. Introduction

As a development of the results on two and on multiple hypotheses logarithmically asymptotically optimal (LAO)
testing of probability distributions of one object [1] -- [3], in paper [4] Ahlswede and Haroutunian formulated a
number of problems with respect to multiple hypotheses testing and identification for many objects. Haroutunian
and Hakobyan solved in [5] the problem of many hypotheses testing for two independent objects and in [6] the

problem of the identification of distributions being based on samples of independent observations. In
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prepublications [7] -- [10] Haroutunian and Yessayan studied many hypotheses LAO testing for two objects under

different kinds of relation.

LAO tests of its distributions for two hypotheses were analyzed first by Hoeffding [1], later by Csiszar and Longo
[2] and by other authors. Here we investigate characteristics of procedures of LAO testing and identification of

probability distributions of two stochastically dependent objects.
Let X, and X, be random variables (RVs) taking values in the same finite set of states X" and P(.X') be the
space of all possible distributions on X . There are given L, probability distributions (PDs)

G, =1{G, (x"),x' € X}, [, =1,L,, from P(X). The first object is characterized by RV X, which has one

of these L, possible PDs and the second object is dependent on the first and is characterized by RV X, which

can have one of L, x L, conditional PDs G, , ={G, , (x*|x"), x',x* e X}, I, =1,L;, [, =1,L, . Joint

PDs are G, oG, ={G,, (x'.x)x'x*eX} . (=LLL=1LL ,  where
G, (x',x7)= G, (xl)sz/ﬁ (x*|x"). Let (x,,x,) = ((x;,x),(x},%3),...(x},,x1)) be a sequence of results of
N independent observations of the pair of objects. The probability Gflv, 1, (x1,x,) of vector (x,,x,) is the

following product:

N
Gljlv,zz (x),x,) = szlv (xl)Gl];[/ll (x, [ x)= HG11 (Xi)Gzz/l1 (xj | x,l, ),
n=1

N N
with Gljlv (x,)= I_IGJ1 (x,) and Gl];//ll (%, [ x)= HGIZ/II (x, | x,).
n=1 i

For the object characterized by X, the non-randomized test (olN (x,) can be determined by partition of the

sample space X" on L, disjoint subsets A,’lv ={x 9" (x)=1},1,=1,L,, ie. the set Aflv consists of
vectors x, for which the PD G,1 is adopted. The probability alﬁml (") of the erroneous acceptance of PD

G1l provided that Gm] is true, /,,m, =E, m, # [,, is defined by the probability GNl of the set A,f’ :

A
) (@1)=G (A1), (1)
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We define the probability to reject Gm1 , When it is true, as follows

i (@ =3 a}), (9') =G (4)). 2)

ll 119€m1

Denote by ¢, the infinite sequences of tests for the first object. Corresponding error probability exponents, which

we call reliabilities £

Il\m1

(¢,) fortest ¢, are defined as

A— 1
Ell\m1 (%):zlviﬂ{_ﬁbg alﬁml (¢1N )f, my,l =1L, (3)

It follows from (2) and (3) that

Evml\m1 ((01) = mln Ell\m ((P1) ll’ml E’ ll :,é ml' (4)

bty #my

We shall reformulate now the Theorem from [3] for the case of one object with L, hypotheses. This requires

some additional notions and notations. For some PD O = {Q(x'),x' € X} the entropy H o(X,) and the

informational divergence D(Q || G, ), I, =1,L,, are defined as follows:

H (X)—— ZQ(X )log O(x"),

'ceX

D(EIG,)= 306 log g((x ))

E

L-l|L-1"

For given positive numbers E, let us consider the following sets of PDs Q = {O(x'),x' € X} :

ERREE)

A -
R, =1Q:D(QI|G) < Eyy b =1L 1, (58)

A -
R, ={0:D(Q|G,)>E, . [y =1.L, —1}, (50)
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and the elements of the reliability matrix £(¢, ) of the LAO test ¢, :

A
Ellvl = Ell\ll (Ezlul ):Ell\ﬁ , L =1L 1, (6a)
A - -
Ell\m1 :Ell\m1 (Ell\ll):gan D(Q” Gml)’ m = 1>L1: m 71:115 Z1 = 19L1 -1, (6b)
(S ll
« A
ELl\m1 B L \ml (EluaEz\za * Ll-l\Ll_l):ggf D(QH Gm1 )a m, :l,Ll -1, (60)
L
* * A %
ELl\Ll = ELl\Ll (Em ’E2\2""’EL1—1|L1—1):l{nliinlEll\Ll' (6d)
=4

Theorem 1 [3]: If all distributions Gl, [, =1,L,, are different in the sense that D(G,1 I Gml) >0, Fm,

and the positive numbers E,,E,,...., E,_,_, are such that the following inequalities hold

Em < min D(G |G )

h=2L

E, m <min( min D(G, |G, ), min_ E,

1
ll m1+l L1 —1 m1

(Ell\/1 ))9 m, = 2:L1 _19

ml\ml

then there exists a LAQ sequence of tests ¢, , the reliability matrix of which E(¢, ) = E (@)} is defined

in (6) and all elements of it are positive.Inequalities (7) are necessary for existence of tests sequence with

reliability matrix having in diagonal given elements E,lll1 , I, =1,L, -1, and all other elements positive .

Corollary 1 [3]: If, in contradiction to condition of strict positivity, one, or several diagonal elements E

mllm1 ’

m, =1,L, —1, of the reliability matrix are equal to zero, then the elements of the matrix determined in functions

ofthis E, .~ will be given as in the case of Stein's lemma [11], [12]

1lm

)=D(G, G, ), m #1,

Ell\ml( mllm

and the remaining elements of the matrix £(¢; ) will be defined by E,]‘,] >0, #m, =1L -1, as

follows from Theorem 1.
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Now we formulate the concept of LAO approach to the identification problem for one object, which was introduced

in [4]. We have one object, and there are known L, >2 possible PDs. Identification is the answer to the

question whether 7 -th distribution is correct, or not. As in the testing problem, the answer must be given on the

base of a sample x with the help of an appropriate test.

There are two error probabilities for each r, € [I,Ll]: the probability LT (¢y) to accept /-th PD

different from r;, when PD 7, is correct, and the probability LI (py) that 7, is accepted, when it is not
correct.

The probability e, ..., - (¢, ) coincides with the probability @, (¢y) which is equal to Z @, (Py)-

ll:ll::rl

The corresponding reliability E,1 (@) isequal to E,,1 n (@) which satisfies equality (4).

:trl\mlzrl

The reliability approach to identification assumes determining the optimal dependence of E,’: upon given

=n \ml #n

E

= E:fm, which can be an assigned value satisfying conditions (7). The solution of this problem

ll¢r1|m1=r1
assumes knowledge of some a priori PDs of the hypotheses.

The result from paper [4] is valid for the first object.

Theorem 2 [4]: In case of distinct hypothetical PDs G,,G,,..., GLl , under condition that the probabilities of all

s

L, hypotheses are strictly positive for given E i, = E:ﬂr1 the reliability E’;"Hml#‘l is the following:

* *

El1:r1\m1¢r1 (Erl\ll )= min inf D@l G’”l ), n=Li.
my iy #n Q:D(Q||Gr1 )éErl‘r1

In Section 2 we consider two related objects as one complex object and we obtain corresponding reliabilities for
LAO testing and identification. In Section 3 we will obtain the lower estimates of the reliabilities for LAO testing
and in Section 4 for identification for the dependent object. These estimates serve for deducing of lower estimates
of the reliabilities for LAO testing (in Section 5) and identification (in Section 6) of distributions of two related

objects. Results of certain calculations for an example will be graphically presented in Section 7.
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2. LAO Testing and Identification of the Probability Distributions for Two Stochastically Coupled
Objects

We expose the direct approach for LAO testing and identification of PDs for two related objects. It consists in
considering the pair of objects as one composite object [10]. The test, which we denote by @" | is a procedure

of making decision about unknown indices of PDs on the base of results of N observations (x,,x,) . For the

objects characterized by X,, X, the non-randomized test ®" (x,,x,) can be determined by partition of the

sample space (X x X)" on L, x L, disjoint subsets A,iv’,z ={(x,,x,): O (x,,x,)=(,1,)}, =1L,

I,=1,L, , ie. the set 4", consists of vectors (x;,x,) for which the PD G, , must be adopted. The
12 172

probability a,]lv, - (®") of the erroneous acceptance of PD G, ,, provided that G is true,

my,my

l,m =1L, I,,m,=1,L,, (m,m,)+(l,l,)is defined by the set A,’ﬁ,z

szlN,/z\ml,m2 (@ ) Gm1 sy ( /]1\/,/2 ) (8)

We define the probability to reject G when it is true, as follows

mm’

A
N Ny _
aml My iy ((D )_ Z 11 Ay lmy my (CD ) C;m1 My ( my,my ) (9)

(l1 ,12 )i(m1 oy )

Our intention is to study the reliabilities of the infinite sequence of tests @

Ell,12|ml,m2( ) llm{_ logalllz\mlmz(q) ), Lom =1,L, I, my=1,L,. (10)

From (9) and (10) we deduce that

Eml,mzlml,mz (q)) = min Eyl1 ’12|m1’m2 (q))’ ll ’ml = 17L1 ° ZZ 7m2 = I’LZ' (1 1)

(I Ly )#(my myy)
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The matiix E(®)={E, . » (®), L,m =1L, L,m,=1,L,} is called the reliability matrix of the

sequence of tests @ . Our aim is to investigate the reliability matrix of optimal tests, and the conditions ensuring
positivity of all its elements.

For given positive numbers £, ..., EL] LyLy Lyt let us consider the following sets of PDs

QoVi{Q(xl)V(x2 ] ), xxt e Xy

(12a)
A
R’v’z ={QoV : D(QoV || G’r’z )< EMM’,2 L, 0,=1L,1,=1,L, -1,
A
RLI’L2 ={QoV : D(QoV || G,l,,2 )> Ell’lzlll’lz ,0,=1L,1,=1,L, -1}, (12b)
and the elements of the reliability matrix £~ of the LAO test:
* * A
Lyl dy Ezl,zz\zl,zz (Ell,lz\ll,lz ):Ell,lz\ll,lz , L =1L, 1,=1L,-1, (13a)
* * A
Ell,lz\ml,mz - lz’ll,lzlml,m2 (l?ll,lz\ll,l2 )_Q();E]g l D(QOV H Gml’mZ )3 ml - laLla
172 (13b)
m, =1,L,, (I,,1,)# (m,m,), |, =1,L,, I, =1,L, -1,
;,Lz\m] iy = ZI,L2|m1,m2 (El,m,l ’E1,2|I,2’EI,3\I,3""ELI,Lz—I\Ll,LZ—l)
A (13c)
= inf D(QoV || Gml,mz ), my=LL, my,=1L, -1,
QUVGRLI,LZ

A
* * *

LiLylLLy EL1 LoylLy Ly (E1,1|1,1 9E1,2\1,2 sE1,3|1,3 ""EL] Ly=1IL;, Ly -1 )=min min_ Ell dylLyLy (13d)
L=1L 1y=1,L,-1



266 International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

For simplicity we can take (X, X,)=Y, XxX =Y and y=(y,,,,..., yy) €Y" , where

y, =(x,x2),n=1,N, then we will have L, x L, = L new hypotheses for one object

G,,, ={G, ("G, (x*|x).x'.x* e X}, [ =1,L,1, =1, L, , where G, , = K|,

. =K

5 (ll—l)Lerl2 ’

G,=K,, Gy=K, . Gy =K, G =K, | . G,

1

ZI = 1i‘Ll’ 12 = 1’L2 ’ all,lz\ml,mz = a(ll—l)Lerlzl(ml*l)Lz*mz ? ll l’Ll’ 12 - l’L2

E =E L=1,L, 1, =1,L,

ll,lz\ml My (ll—l)L2+l2\(ml—1)L2+m2 ’
and thus we have brought the original problem to the case of one object with L, x L, hypotheses.

So applying Theorem 1 we can deduce that there exists a LAO sequence of tests @, the reliability matrix of

which E* = {E, (®")} isdefinedin (13) and all elements of it are positive.

|m

Using Theorem 2 for this composite object we can deduce that identification reliabilities are connected with the

following formula

E_ .. (E,)=min inf D(QoV || K,,), r€[1,L]. (14)

m:m#r QoV:D(QoV”KV )SEr\r

Now let us consider the more general particular model, when X, and X, are related statistically, in the

following way G,l,,2 (x',x*) = G,1 (xl)Glz/ll (x*) . The probability of vector (x,,x,) is defined by the following

PDG,,

N
Gzllv,lz (x),x,) = Gzllv (x, )szzv/zl (x,)= HGII (xi )G12/11 (xyzl ),
n=l1

N N
where G," (x,) = [ [G, (x,) and G, (x,) =] ]G, (x.).
n=1 n=1

In this case we can analogously bring the problem to the problem on one object with L, x L, = L hypotheses,

where G, | ={G, (x)G,, (x*),.x',x* e X}, [, =1,L,, [, =1,L,, and for the sets R, , , [, =1,L,,

A

I, =1,L, of PDs QoV ={0(x" WV (x*),x',x* € X}:
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When the objects X, and X, can have only different distributions from same L given probability distributions

(PD) G,, G,, G;, .., G, from P(X), [4], [7] we can reduce the problem to the problem of one object and

Lx(L~1) hypotheses, where G, , ={G, (x' )G, (x*),x',x* € X}, /.1, =1,L, I, #1, (see [4], [7)).

3. An Approach to Multiple Hypotheses Testing for the Second (Dependent) Object

Let us remark that test @ can be composed of a pair of tests golN and qoév for the separate objects:
Y= (g, p)). For the second object characterized by RV X, depending on X, the non-randomized test
@2 (x,,x,,1,) based on vectors x,,x, and on the index of the hypothesis /, adopted for X, can be given for

each [/ and x; by division of the sample space X N on L, disjoint subsets

,2/11 (x)=1{x, :0) (x,,x,,1))=1,}, [, =1,L, I, =1,L, . We upper estimate the error probabilities for

second object proceeding from definition (8) .

m1 My ( l1 12) = Z Gm (xl)(;mz/m1 (A l (xl) | xl) < max (;mz/m1 (Alz/l (xl) | xl) Z GN (xl

X eA
‘cleAl 1 l xleAl

(15)
A
=G, (A )maX Gm S/my (A/2/11 (x)[x)= ﬁli\{lz\ml,m2 (CDN)a(Zz 1) # (my,m,).
xleAl
Consequently we can deduce that “reliabilities"
ﬁ._ 1 N N
F}l,lz\ml,mz (Q))_Il\llil;lo{_ﬁlog ﬂll,lzlm1 My (CD )}’(12 all) * (ml >, )9
ly,m, :E= L,my,=1,L,,
and
}:’ml,mz\ml,m2 ((I)) = min El Ay lmy ey ((D) (16)

(ll ,12 )¢(1n1 ,m2)
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are lower estimates for £ b Lol (D).

We can also introduce

A _
N NyD N N _ _
ﬂlzlll,ml,mz (9, )—ma% Gm2/1n1 (Azz/zl (x)1x), L #my, L,m =1,L, L,,my=1,L,, m,#1,,
xleAll
We define also
A -
N Ny o N N _ N N
ﬁmz\ll,ml m, (p,)= max Gm2/m1 (Aln2/11 (x)|x)= Z ﬂzzvl my (). (17)
XIEAII lzsﬁm2

The corresponding estimates of the reliabilities of test ¢." , are the following

A 1 - RS
Ez\ll,ml,mz (¢2):Ilviil;lo{_ﬁlogﬂlg\ll,ml,m2 ((Dév)}a lloml = laLla l2:m2 :l’LZa mz 7,: 12' (18)

Itis clear from (17) that

szul,ml,mz (¢,)= min Fzz\ll,ml,mz (©,), L;,m =1L, I,,my=1,L,. (19)

2:12 #mz

We need some notions and estimates from the method of types [11], [12]. The type of a vector x, isa PD
1 1 1 1
Qx1 :{Qxl(x):WN(x |x1)3x EX}a

where N(x'|x") is the number of repetitions of the symbol x' in vector X,. The subset of P(X) consisting

of the possible types of sequences x, € X V' is denoted by P, (X). The set of all vectors x, of the type Qx1
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is denoted by TQN (X,), remark that TQN (X,)=9 for Q & P,(X). The following estimates for the set
!

T, (X,) hold
!
(N+1) " exp{NH, (X))} <7y (X)) | expiNH, (X))}

For a pair of sequences (x,,x,) € X" x X" let N(x',x* | x,,x,) be the number of occurrences of pair
(x',x%) € X x X in the similar places in the pair of vectors (x;,,x, ). The joint type of the pair (x,,x,) is PD

0, .., =10, ., (x',x7).x",x* € X} defined by

0,

A1
- (xl,xz)ZﬁN(xl,x2 | x,,X,), x',x* e X.

The conditional type of x, for given x, is the conditional distribution

A
VXM2 ={Vx2,x1 (x* | x"),x",x* € X} defined as follows:

2 0

1 2
a2 2 ) N5
0,6 NG'Ix)

1 2
, x,x eX.

The conditional entropy of RV X, for given X is:

Ho s (1X)== 30, (W, , 1<) logh, (& |x).

Qxl ’ xl X,

For some condiional PD ¥ ={V(x*|x"),x',x> € X} the conditional divergences of PD
{OG" W (x* | x"),x',x* € X} with respect to PD {0(xNG,, (x* | x),x',x* e X} for all [,1, are

defined as follows
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Vix*|x"

A
DV |G = X Wt | x)log———2—,
7l I /1, 10) XEZQ( W(x"|x)log 612/11 (xz | xl)

also

2.1
G12/11 (x"|x)

2 Iy °
sz/m] (x |x )

A
D(Gy, |Gy, 10)= Y 0C )Gy, (6 log

The family of vectors x, of the conditional type 7~ for given x, of the type Qxl is denoted by 7; QN (X5 1 x)
)C] ’

and called V" -shell of x,. The set of all possible } -shells for x, of type Qxl is denoted by V,, (X, Qxl)' For

any conditional type V" and x, € TQN (X,) itis known that
|
w2
(N+1)™"" exp‘{NY"IQXl » (X1 X)) < TQ]Z] (X [x) < eXp{NHQx] » (X1 X)) (20)

For given positive numbers E2 L,=1,L,-1, for QeR,l(S.a),(S.b) and for each pair

|11 R 7[2 ’

l,,m, = E let us define the following regions and values:

A -
R, (Q=V :DWV |G,y | Q)< Fyy bl =1.L, -1, (212)

oMy mysly

A
R, @)=V : DV |Gy, |O)>F, . 1 =1L, ~1}, (21b)

R/];///1 (Qx] )= R[2/1] @)V (X, Qx] )

A

* *

=F F =F l
Lty .my 1y I ( Ly ly.my 1 ) Llly.mydy > b2

~1,L, -1, (22a)
A -
Ezlll,ml My = F}Z‘ll’ml My (F;zlll,m1 ,l2 ): lnf lnf D(V || sz/ml | Q)’ m2 = 1’l’2 ° mZ ;é 12 b

OcR, VeR, , (0)
1 1/l

(22b)

L,=1,L,—1,

* *

Lylly,mymy Fszl gy (F;ul ,m],l’E2|11,m1,2""’FL2—1|11,m1,L2—1)

A _ 22¢
Zinf inf DG, |0). m,=T., 1, 22

QeR; VeR ()]
) Ly/ly
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A
* * *

=F F, F v F .
Lyllymy Ly LZ\Zl,ml,Lz( Uiy,my 10520l my 29000 szl\ll,ml,Lz—l) lznlllLl’l Ll my Ly (22d)

We denote by F'(¢,) the matrix of lower estimates for E(¢, ).

Theorem 3: [f for fixed m,,l, = E all conditional PDs G,2 i l,=1,L,, are different in the sense that

DG, |G, 19)>0 , for all QeR, l,#m,, m,=1,L,, when the numbers

»'h

F”,] e Fz‘,1 290 F, Ly tty.my 1,1 AT such that the following inequalities hold

0< FIV my,1 < mm inf D(Gl A I Gl/m1 10), (23a)

—2 L2 QE

*

0 < sz\ll,ml,mz < rnln(l2 rnl;;l-i—rll L2 ngRf; D(Gl /ll || sz/m | Q) l—lnin—l F}Zvl’ml’mZ (EZVI My ,12 ))9

(23b)

for my,=2,L, 1,

then there exists a LAO sequence of tests (p; , the matrix of lower estimate of which F ((p; ) is defined in

(22) with all elements of it strictly positive.

Inequalities (23) are necessary for existence of test sequence with matrix of lower estimates F' (goz) having in

diagonal given elements £, [, =1,L, -1, and other elements positive.

2yl 2

Proof: For x, € X", x, eTN (X, ]x,) the conditional probability G, , (x,|x,) can be presented as

m/m

follows

m /m (x2 |xl) HGm /m1 (x |x )

Q,C1 Gy 2

(x X \x X,
H my/my (x | N ') = HGm Imy (X |
1
(24)
Vix*|x"

=exp(N 2, [0, (I [xDlog = 55+
N ,x2 ’”2/’"1

0, (XY (x* [x)logh (x* [ x)]}

=exp{-N[D(V || sz/ml ’Qx1)+HQx1,V(X2 | X1}
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We shall prove that the sequence of tests goz, defined for each x, € Bflv = U R TQN (X,) by the following
4

Qe

collection of sets constructed of conditional types

B,(;/Vll)(xl)z U Tézl,V(X2|x1)512:1’Lza

N
VeR (0,)
12/11 X

(25)

is optimal with respect to lower estimates of corresponding reliabilities and the lower estimate matrix £ ((o;) is

defined in (22). First we show that each V -vector x, is in one and only one of B,(ZJ/V,I) (x,), thatis

- - )
B (B, ) =D, =1,L, =1, my =1, +1,L,, and | JB}}) (x)=X".

mz/l1
=1

Really, (21.b) and (25) show that
B](ZI/\ZE (x, )ﬂBg\% x)=9, ,=1,L, -1

For 1,=1,L, -2, m,=1,+1,L, 1, for each x, € B;" let us consider arbitrary x, € B} (x;) . It follows
from (17.2) and (21) that if Qx1 eP,(X) there are VeV, (X,Qxl) such  that

DG, 10,)<F and x,eT,) ,(X,|x) . From (21) - (23) we have
xl’

2l myaly

*

) <DV G, 19,)- From definition (25) for each m, we see that

<
mz\l1 NN 12\11 MW (F}z\ll \m ,12

x, & B,)), (x,), thats x, & B,") (x,).

m2/m mz/l1

Now for m, =1,L, —1, I, # m, using (17), (20), (21), (23) -- (25) we can upper estimate 3"

ny \ll Jmy ey

follows:
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B (x))1x,) < max G1112/m TQZI v (X, [x)]x

*N
ﬂmz\ll,ml,m2 max sz/ml ( mz/l
€ 11 XIEBll VZD(VHsz/ml ‘Qxl )>E;n2\ll My My

G NXI,V(X2|X1)|X1)

< (N +1)*7
<S(N+D™ max sup mym (T

N .
eBY V:D(V|G 0, )>E
X [1 mz/m1 x mz\ll,ml,m2

< (N + 1)‘X|2 sup sup exp{_ND(V || sz/ml | Qxl )}

N Vv:D(V||G >FE
QX1 ER[] gl mz/ml ‘Qxl) mz\ll,ml,m2

<exp{-N inf inf D |G, 10.) -0y (D <exp(-N[F, , . , ~0,(1)]}

NVv.D(V|G >E
Qxl ER[] l mz/mllel) mz\ll,ml,m2

For [, # m, we estimate by analogy

(x)|x)= maXGr]nvz/ml( U TQle,V(X2|x1)|x1)

(N)

'Ble my ~ max Gm Im (Bz 0/
N MmN b 2N ¥

Rt V:VeRlz/l] (Qx])

xleBll

2
S(N-l-l)m ma)]\(f sup ’"/’"1( Q V(X |X1)|xl)
xleBll V:VeRl];[/ll (Qx )
(26)

2
S(N+D' sup - sup  exp{-ND(V'||G,, ,, 10,)}

N N
Q. €R;" V:IVeR (0, )
X [1 12/11 X

<exp{-N[ inf_inf D([G,, |0,)~o,()]}.

N N
Q. eR;" VVeR 0.)
X l1 12/11 X

Now we want to deduce the lower estimate

ﬂz | maXGN Im (Bl(/\//l) (x)x)= maXGm Imy ( U TQIZI v (X5 [x)]x)

I ,m.
21iM my fmy
EB eB . N

l l V.VeRlz/ll (Qx] )

N —xi?

2 max  sup Gm //1( 0, (X 1x)[x)2(N+1) * sup sup  exp{-ND(V || sz/m1 |Qx1)} (27)
ey vwerl, (© 1 o <rVvwer), (0, )
1 2'1 "1 10 21

>exp(-N[ inf_inf D(V|G,, [0)+o,(D)]}.

N N
Q. eR;" VVeR 0.)
x l] lz/l] X
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Taking into account (26), (27) and the continuity of the functional D(V||sz/1] | Q) we obtain that

}vlg}o {~N""log ﬁ,z‘, mymy } exists and in correspondence with (22.b) equals to F; Sy Thus
Fzz\ll oy (Q’z) = 12|11 mymy My = LL,, ,=1,L,.

The proof of the first part of the theorem will be accomplished if we show that the sequence of the tests qoz for

given Fw 1o ,Fszwl_ml,sz1 and for any sequence of tests ¢, is such that for all m,,/, =1,L,

ok *

12|l],m] smy T lz\l1 my.my

Consider sequence ¢, of tests, which is defined by the sets Dy (x,), D)) (x,), - D) (x,) such that

sk

A ,*‘, .. forsome /,,m, . Foralarge enough N we can replace this condition by the following
AN S R 257172

inequality

**N
ﬂZVI mymy ﬂzll1 my,my

Examine the sets Dj) (xl)ﬂB,(ZA/’,: (x,), I, =1,L, —1. This intersection cannot be empty, because in that

case
1312\1 A maXGl /i (Dlz/ll (x)]%) 2 maxG 2/1] (Bl(z/li (x)]x)
X Bl )LleBlN
| |
N N
2 max sup G12/11 (TQX1 v (X, [x)x)= exp{_N(F}zul,ml,zz +oy (1)},

N y.
xeB;" V:D(VNGy; 10, )<F
18 L %x 20l my

and we have a contradiction with (28). Let us show that D,‘;/V,f (x,) ’("];//)’1 (x)=D,m,,l,=1,L, -1,

I, # m,. Ifthere exists V' suchthat D(V' || G, , |0) < and 7," Vo, (X, ]x) eD}z’f,l) (x,), then

mz\l1 my,my

ﬁj\;lvmlmz maXGN/ll(Dz(%)(x1)|x1)>maXG /1( vo, (X, [x)]x,) 2 exp{-N[F, |11m1m2+0N(1)]}
R B/ XIEBI
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When & # D,“/V,) Fo (X |x)# T}, (X2 | x,) , we also obtain that

ok _ N
B, Lylmymy — MAX sz/z1 (Dl ‘ x,)> max G myl (Dl

N VQ (X, %) x) 2 exp{-N(F, mylymy. m2+0N(1))}'
x]EBll EBI

Thus we conclude that F°

Lty ny oy < Fo ity WHiCh - contradicts to (19). Hence we obtain that

D) (x)( B (x) = B (x,) for I, =1, L, —1.

The following intersection D; ) (x,) ﬂBENj (x,) is empty too, because otherwise we arrive to

**N
ﬂL ﬁL2|lI Sy iy 2

2\11 Jmy sy

which contradicts to (28), it means that D) (x,) = By (x,)  forall , =1, L, .

The proof of the second part of the Theorem is simple. If one of the conditions (23) is violated, then from (21),

(22) and (23) - (26) it follows that at least one of the elements F,

l|lmm2

is equal to 0. For example, let

Ftmm = min mmD(Gl NG, . 10), then there is [, em,+1,L, such that
N T A Oy 1 27

Eymmy Zmin (G, |G momy | Q). After using (22b) we obtain that F~ =0. From (19) we see
b Qe 2"

mylmy Iy dy

< min F,*V o, (FL . ) - Theorem is proved.
Ly=Lmy1 22 2R

that F

m \ll my,my

Corollary 2: If in contradiction to conditions (23) one, or several diagonal elements F, lL,=1,L, -1,

pllmysly

of the reliability matrix are equal to zero, then the elements of the matrix determined in functions of this E2| byl

are given as in the case of Stein's lemma [11], [12]

Fzzwl,ml,z2 (Flz‘lymplz) = Qing; D(Gzz/zl I sz/m1 10), m, =1,L, m, # l[a
1
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and the remaining elements of the matrix (¢, ) are defined in function of positive Ep gy >0, [, #m,

[, =1,L,—1, as follows from Theorem 3.

Proof: Really, if F,zllpml,,2 =0, then ,8,2",] dy is not exponentially decreasing . Thus using Stein's lemma we

have

1
lim log—ﬂ(N) (ﬂz(N) (p)=c)= _Qian D(G12/1l I sz/m] 10), 1, # m,.
€ ll

15|, ,my ,m [ ,my,l
Now o N T lalhemymy M llmy

So the corollary is proved.

4. On Identification of the Probability Distribution of the Dependent Object

In this section we will obtain the lower estimates of the reliabilities of LAO identification for dependent object.

Then we deduce the lower estimates of the reliabilities for LAO identification of two related objects.

There exist two error probabilities for each », =1, L, : the probability Aoy my (py) to accept /,

My =

different from r,, when r, is in reality, and the probability Cprly my (¢y) to accept r,, when it is not

,m2 ¢V2

correct.

The upper estimate S, ., . (@) Of & .y 0 - (2') I8 already known, it coincides with the

B,

o) \11 Sy STy

(@2") which is equal to z ﬂlz‘ll’ml’rz (@) . The corresponding reliability 15’,2#2‘,1’”,1’,”2:r2 (p,) is

12 :12¢r2

equal to E,zl,],m1 ”y (¢,) which satisfies the equality (19).

The reliability approach to identification of lower estimates assumes determining the optimal dependence of

* *

upon given F,: =F which can be an assigned values satisfying

lzzrz\ll,ml,m2 #ry #rzlll,ml,mz=r2 rz\ll,ml,r2 ’

conditions (23).
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Theorem 4: In case of distinct PDs GW1 , szl yeees GLZV1 , for every I, under condition that the upper estimates

of probabilities of all L, hypotheses are strictly positive the reliability" Efrz\’pmpmﬁrz for given
lz;trz\ll,ml,mzzrz = Ez\ll,ml,rz IS the fOIIOWIng:
Foetommnyery B )= min  inf inf DV G, 19 1, =1,L,.

my:m~,#r, QeR, V:D(V||G |O)<F, .
272702 ll ;’2/11 rz\ll,ml,l2

Proof: We have

Z ﬂrz\ll,ml,m2 Pr(mZ/ml)

IBN :PrN(m2#rz,lz=r2/ll,m1):m2:m2#r2
ly=ryllymy,my#ry Pr(m, # r,/m,) Z Pr(m,/m,)

mzirz

Consequently, we obtain that

F__, F = lim ——log B,
lz—iz\ll,ml,mz;trz( r2|ll,m1,r2) }/lzr)olo N gﬂlz—;z\ll,ml,mZ#FZ

— 1
= lim —ﬁ(log Z ﬁrz\’pml’mz Pr(m,/m,)—log Z Pr(m,/m,))

N—>o© .
mz.mz#’—r2 mz#’-r2

ﬂrQ\ll My iy Pr(m2/m1)

— 1
= lim _N(logmaxﬂrz\ll,ml,mz +10g Z _log Z Pr(m2/ml )) = min F"'QV] sy

N=e0 mymyFr, max ol my#r, mymy#r,
And using (22.h) we prove the theorem.
5. LAO Hypotheses Testing for Two Stochastically Dependent Objects
In this section we find the “reliabilities" F,1 Lyl for LAO testing which will be lower bounds for corresponding

E, 1w, m, - Using (15) we can prove the following lemma
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Lemma: If the elements E’ﬂml (¢,) and F, (@,) are positive, then

oMl mymy

Ey oy (@)= By (@) + ) (92), 1y 7Ly 1y 15, (29a)
Ey iy (@)= Eyy, (@), my # 1, my =1, (29b)
El,lz|m1,m2 (@)= Flz\zl sy (@,), m =1, my#1,. (29¢)

Proof: The following relations hold for upper estimates of error probabilities

ﬁlfilz\ml,mz (q)N) = aljl\\/ml (q)lN )ﬁllzv\ll,ml,mz (wév )7 ml ?é ll H m2 7& 12 s (308)
ﬂlj\flz\ml,mz (@)= a/?\/ml (" )(1- ﬂ/jzv\/l my (@), my # 1, my =1, (30b)
ﬂlf{lzpnl My ((DN) = (1 - alzl\;ml (¢IN ))IBIIZV\II,ml,m2 (q02N)5 ml = ll s m2 7& 12 : (300)

Thus, in light of (3) and (18), we obtain (29) . The lemma is proved.

Let us define the following subsets of P(X') forgiven strictly positive elements

ELl,zzul,z2 ; El,Lz\zl,zz L=LL-11=1L,-1:

A
R/1 ={Q2D(Q||G,1)SELI b, L=1,L-11,=1L,-1,

sl

A
R12/11 Q)= DV || G12/11 |0) < le,Lzul,lz}a L=1,L-1,1=1L,-1,

A
RL1 ={0:D(Q|| G11)> ELl,lzul,z2 , h=1LL-1,,=1,L, -1},

A
RL2/11 Q)= DV || G12/11 | Q) > le,Lz\zl,lz’ L=1L-11=1L, -1}
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Assume also
* A s A
Lyl 0y :Fz],Lzul,l2 ) ELlJleJz :ELl,lz\ll,lz A =LL -1, ,=1,L,-1, (31a)
. A
yayms, = inf DO G, ), m #1, (31b)
Q:QERZ1
A

=inf inf DG, [0), m*1, (31c)

Ll
1alh-ma QeR, VVeR, , (Q)
| 2’

A

* * *

m 1, i=12, (31d)

=F +E
ll ,lz\ml Jy ml,lz\ml Sy ll,mz\ml,m2 ’

A

* *

ml,mz\ml,m2 = ll,lz\ml,m2 . (316)

min
(/1 ,12 )#( m ,mz)

Theorem 5: If all distributions Gm1 , my=1,L, , are different, that is D(G,1 I Gm1)>0 , L Fm

l,,m =1,L,, and all conditional distributions Glz/ﬁ’ l,=1,L,, are also different for all [, = E, in the

sense that D(G, , || G, 19)>0, [, # my,, then the following statements are valid.

When given elements ELlJleJz and E1°L2|ll’l2 , 1, =1,L -1, [, =1,L, -1, meet the following conditions

0< EL1,12|1,12 < ITE%D(GZI H Gl)a (323)
O < Fvl]»Lleal < 1'1}2111:12 ngf D(Gl /l || Gl/ml | Q)7 (32b)
0< EL dylly <min[ min_ Elj,12|m1,l2 1’1’111’1 D(Gz G, )] /L, =2, —1, (32c)

l1 lm1 -1 l1 m+ L1

0< Fll""zvl’ <m1n[ min E
12 lmz—l

|yl s 2 min _ inf D(Gl o/l [ Gm Imy | O)], [ _2 L,-1, (32d)

12 —m2+1 L2 QeRl

thenthere exists a LAO  test sequence ", the lowerestimate matrix of which

F(®")={F, (@")} is defined in (31) and all elements of it are positive.

1512 lmysmy
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When even one of the inequalities (32) is violated, then at least one element of the lower estimate matrix

F(®") isequalto 0.

Proof: It is proved in [7] that £ Wy = E Ly [, =1, L, —1.By analogy we can deduce that

E2|ll,m1 5 FLZ\II iyl L,=1,L,-L (33)

Applying the theorem of Kuhn-Tucker in (22.b) we can show that the elements F,z‘,l’m1 b l,=1,L, -1 canbe

determined by elements F;

Ly |ty sy sy > m 7&12’ 12 = 19[’2’

A

= inf inf D || Gzz/l1 | O).

—1
0eR, V:D(V|G. , |0)<F,
a WGy 11, 1O=F 1

*
F

12\11 ,ml,lz ( 12\11 Sy ey )

my,my

From (23) it is clear that sz\ﬁsmu my €N be equal only to one of F}z\ll’ml’mz’ I, =m,+1,L,.Assume that

(33) is not correct, thatis F/

mz\ll,ml,m2 = F}zlll,ml,mz b l2 = m2 +1’L2 _1'

From (22.b) it follows that

A
Flzul my.l, (F}zul my ’MZ)ZSHRf B i‘lgq DV || G12/1l 10)
€ : S
11 m2/11 lz\ll,ml My
= inf inf D || Gzz/z1 |0)= Fm2|ll,ml,12 s my, L, =1,L, -1,
QeRll V:D(V”sz/ll |Q)3Fm2\ll,m1 My
my, <l,,
but from conditions (23) it follows that 1’7,2”1,,”1,,2 < szvl’”’l’lz for m, =1,1, —1. Our assumption is not true,

thus (33) is valid.



International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010 281

Hence we can rewrite the inequalities (7) and (23) as follows:

0< ELI\I < ITE%D(Gml || Gl)a (343)
0< FLz\ll,ml < ngRfl‘ Izrnlegz D(Gm 5/ || Gl/ll | Q) (34b)
0<E,, <min[ min £, , min_D(G, [G)], §=2,L -1, (340)

l1 11— l1 1-HL1

o< 17L2‘[1 A < mll’l[ mln F}2|[1 7y 2 inf mln D(G[ H/l H sz/l |Q)] l 27L2 -1 (34d)

12 L/ 27 eRl 12 12+1 )

According to Theorem 1 and Theorem 2 there exist LAO sequences of tests ¢, and ¢, , for the first and second
objects, such that the elements of the matrices E(gol* ) are determined in (6) and the lower estimate matrix

F ((p; ) is determined in (22). The inequalities (34.a), (34.c) are equivalent to the inequalities (7) and (34.b),
(34.d) are equivalent to the inequalities (23). Then using Lemma we deduce that the lower estimate matrix

F (CD*) is determined in (31). The proof of the second assertion of the Theorem is obvious.

6 . On Identification of the Probability Distributions of Two Stochastically Dependent Objects

In this section we study an approach to deducing optimal interdependencies of lower estimates of corresponding

reliabilities for LAO identification. The LAO test @ is the compound test consisting of the pair of LAO tests (pl*
and (p; for respective separate objects, and for it the equalities (29) take place. The statistician has to answer to

the question whether the pair of distributions (7;,7,) occurred or not. Let us consider two types of error

probabilities for each pair (#,,r,), # =E,rz =1,L, . We denote by «) the

([1 [2)#(”1 2)'(”’1 mz) (’”1 2)

probability, that pair (7;,7,) is true, but it is rejected. Note that this probability is equal to « (d"). Let

rl|rr

N

Ol 1))~y Ny gy ) be the probability that (7;,7,) is accepted, when it is not correct. The corresponding

reliabilities are E(,IV,Z)#(,17,2)‘(,”1,,"2):(,.1 ) Erp"z"‘prz and E(IIJZ):(rI’rz)l(ml’mz)#("l ) Our aim is to determine

H N
the dependence of E(,1 Iy )=y omymy G ryy O GVEN EL (D7)
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Now let us suppose that hypotheses G,,G,,..., GL1 have a priori positive probabilities Pr (7,), # = E and

Gy, -Gy, 5> Gy, have a priori positive conditional probabilities Pr (r, 1)), r,=1,L,,and consider the

probability, which we are interested

z ﬂ(rl,rz)\(ml,mz)Pr((mlamz ))
Pr ((my,my) # (r,,r,), (1, 1,) = (”1:”2)) (mymy iCmymy (171 )

Bisarormmins = Pr((m,,m,)# (r,,1,)) > Pr(m,m,)

(m1 iy )#(r1 ,rz)

Consequently, we obtain that

F’lh"”l””z ’ (35)

F, ., _ = min
(ll ’12 ) (’1 "2 )|(’"1 2 )#(rl 2 ) (m1 N ):(m1 My )#(rl 7 )

For every LAO test @ from (11), (29) and (35) we obtain that

Ell ,l2 ):(r1 o) )\(ml My )%(r1 ) = m #I;};%ng%rz (Erl\ml (Erl‘ll )9 F;Z‘ll My 1y (1;;2|l1 T )l (36)

where E iy (Erm) ) are determined by (6) and (22) for, correspondingly, the first and

’ )2\11 Sy my (E’z\ll,ml,rz

the second objects. For every LAO test @ from (16) and (29) we deduce that

F’l*rz"vrz B mlf,?}nlzl#rz (E’l"”l ’E‘lesml"”z ) B mm(E’l"l ’Frz"l Ty ) (37)

andeachof £ ,E

\}’ Il myry

satisfies the following conditions:

O<Er1 <mln{ min_ E’ﬂ"ﬁ(E’ ‘,) min D(G G, )} (38a)

llr1 —1+L1

0< erz\l1 iy < mln[ mln Ez\l my mz( Lyllymy [2) anf mln D(Gl I ” 1 lmy | Q):| (38b)

12 lr -1 eRl 12 r2+1 L2
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From (6.b) and (22.b) we see that the elements E’ (El |,) [, = 1,7 —1 and E;

l \m 2\11 my,my ( 12\11 my /2 )

[, =1,r,—1 are determined only by E,ll,1 and F}zvl’mplz' But we are considering only elements Erllrl and

Frzl,1 1y . We can use Corollary 1, Corollary 2 and upper estimates (38.a), (38.b) as follows:
0<E,, < mm{ m1n D(G, |G,), min D(G, ||G, )} (39a)
=1 rl l1 r1+l L1

0< Frzul,ml,rz < mm{ inf min D(G, ylmy G, Sl |0),inf min D(G, o | Grz\ml Q)} (39b)

Q<R; 1y=1.ry1 Q<Ry hy=ry+LL,

From (37) we have that F iy Er n , When E < Frzl,1 .y , and when
=F _, then F <FE_ . Hence, it can be implied that given strictly positive element
N lry rallysmyary nllmyary nl
ol must meet both inequalities (39.a) and (39.b).

Using (37) we can determine reliability F(, Ly Y=oy ry oy Y ) in function of E oty 88 follows:
F(ll”2):(’1”‘2)‘(’”1””2)*(’1’2)(Frl’rz‘yl’rz )_ min |- flm Frl’rz‘ﬁ’rz )’F’2|’1””1’”’2 (Frl’rz"l”‘z )J’ (40)
myFrmy 1y
where Erl‘m1 (Frl,rzlr1 Jz) and Fr2 |ll’ml’m2( - ) are determined respectively by (6.b) and by (22.b). Finally

we obtained

Theorem 6: If the distributions G ,and G =1,L,, m, =1, L, are different and the given strictly

m\m ’ 1

positive number F satisfies condition (39.a) or (39.b), then the lower estimate F,

(11 Jz ):(rl o) )l(ml RUY) )#("1 ﬂrz)

\r;

of E ) can be calculated by (40).

(11 112 ):(rl 1) )|(m1 B )#(”1 Bb)

In the particular case, when X, and X, are related statistically [8], [9] that is the second object depending on

PD of the first is characterized by RV X', which can have one of L, x L, conditional PDs

,2/,1 =1{G, Lt (x*),x*e X}, ,=1,L,, I,=1,L,,wewil have A, 1 ={x,:0) (x,,,)=1,},

=1L, I,= l,L in place of the set Al I (x,) and in that case from [8] we have
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G,]n\;,mz (Aljl\jzz )= Z GN (xl)Gm Imy (x,)= Z G (xl) Z sz/m1 (x,)

N
(e, XIEA[ X EA/ I

=G, (4G, (4)), (,1)# (m,my).

The probabilities of the erroneous acceptance of PD G,/l1 provided that G

denoted by
12\11 Jmy iy ((02 ) sz/ml ( 112\7/11 )9 lZ # m2'

The probability to reject Gm m, , Wwhen it is true is denoted as follows

A
— N N
m2|l gy (¢2 ) - m2/m1 (14m2/11 ) - Z alz\ll Sy iy (¢2 )

ly#m,

Thus in the conditions and in the results of Theorems 3-6, instead of conditional divergences

inf D(G] i 1 Gy, 1 Q)+ inf DG, | Q) we will have just divergences
Qe QER[1
D(Glz/ll [ Gn12/n1 ), DIV || G, myIm; ) and in place of Flzul my sy (D), Fl1 Lyl (@), 1,,m =1,L,,

Lom, =1L, wilbe E, . (D), E, . (D), [,m =1,L,, l,,m,=1,L,

And in that case regions defined in (21) will be changed as follows:

1/1 {V D(VHGI/I)

2‘11’”11”2}’ L=1,L,—1,

L {V DG, 10)>E

Lty .my.ly 2

lz :laLz _l}a

Rlz/zr1 R, 1yl NPy (X).

myimy 18 UG, l,m=1,L , are
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In case of two statistically dependent objects the corresponding regions will be

A
Rll =10:D(Q|| Gzl)S EL1,12\11,12}911 =1,L,-1,,=1,L, -1,

A
R12/11 =V DV || G12/11 )< Ezl,L2|11,l2 LL=1LL-1,1,=1L,-1,

A
RLI =10:D(Q|| G11)> EL1JleJz’ L=1L-11,=1L,-1},

A
RL2/11 =V DV || G12/11)> E, L=1L-11,=1L,-1}.

Loty ?

So in this case we obtain the optimal interdependencies of reliabilities. The results were shown in [8] and in [9].

For this model in next section will present some results of calculations.

7. Example

. Let us consider the set of two elements X ={0,1} and the following probability distributions given on X :

G, ={0.84;0.16}, G, ={0.23;0.77}, G,, ={0.78;0.22}, G,, ={0.21;0.79}, G,, ={0.59;0.41}
G,, ={0.32;0.68}. In Fig1 and Fig.2 the results of calculations of functions E,,, (E,, ) and

E o (Eyy1s By ) are presented. For these distributions we have D(G,|[|G)~1.3 and
D(G,, || G,,) =1.06. We see in Fig.1 that when an analog of the inequality (32.a) of Theorem 5 (for
statistically dependent objects) is violated then £, ,,, =0 and in Fig.2 we see that when analogs of (32.a) and

(32.b) equalities are violated then £, ,,, =0.
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8. Conclusion

We studied the more general model of stochastically dependence of two discrete random variables. For this

model reliability requirements to multiple hypotheses testing and identification are investigated. By the first
approach optimal interdependencies of elements of reliability matrix of test @ can be found when its L,L, —1

diagonal elements are given. But by this approach we do not have information about the reliabilities of the first
and the second objects. By the second approach at first we find optimal interdependencies of reliabilities of the
first object and then interdependencies of lower estimates of reliabilities of the second object. Similarly we also

solve the identification problem for two objects. Results of the second approach are applied to finding the optimal

interdependencies of lower estimates of reliabilities of two objects when L,L, —1 non diagonal elements of

lower estimate matrix are given. If random variables X and X, take values in different sets X', and X, only the

notations become more complicated, so we omit this “generalization”. The correspondence with other, less

general, cases of objects relation is discussed in [5] -- [10].
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