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CONSTRAINT CONVEXITY TOMOGRAPHY AND LAGRANGIAN APPROXIMATIONS 

Levon Aslanyan, Artyom Hovsepyan, Hasmik Sahakyan 

 

Abstract: This paper considers one particular problem of general type of discrete tomography problems and 

introduces an approximate algorithm for its solution based on Lagrangian relaxation. A software implementation is 

given as well. 

Keywords: discrete tomography, lagrangian relaxation. 

ACM Classification Keywords: F.2.2 Nonnumerical Algorithms and Problems: Computations on discrete 

structures. 

Introduction 

 

Discrete tomography is a field which deals with problems of reconstructing objects from its projections. Usually in 

discrete tomography object T , represents a set of points in multidimensional lattice. Some measurements are 

performed on T , each of which contains projection, which calculates number of points of T  along parallel 

directions. Given finite number of such measurements it is required to reconstruct object T , or if it is not possible 
to find unique reconstruction, construct an object which satisfies given projections. The object existence problem 
even by given 3 non-parallel projections is NP-complete [1]. 

In recent years discrete tomography draws huge attention because of the variety of mathematical formulations 
and applications. Theory of discrete tomography is widely used particularly in the field of medical image 
processing, which is based on so called computerized tomography. 

Lets consider 2-dimensional lattice and horizontal and vertical projections only. Object T  can be represented as 

a nm×  )1,0(  matrix, where 1s corresponds to points in T . Vector of row sums corresponds to horizontal 

projection and vector of column sums to vertical projection. So the problem of reconstructing the object by given 

horizontal and vertical projections is equivalent to the )1,0( -matrix existence problem with given R  and S  row 

and column sums. The latter problem was solved independently by Gale and Ryser in 1957. They gave sufficient 
and necessary condition for such a matrix existence and also proposed an algorithm for the matrix construction. 
Same problem with condition of rows inequality was investigated in [6]. 

In many cases orthogonal projections does not contain enough information for the objects unique reconstruction. 

That's why often we consider different classes of such problems, where we impose additional constraints, for 
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instance of geometrical nature. Such constraints narrow the solutions set but at the same time could make the 
problem hard to solve. Typical examples of such constraints are convexity and connectivity. 

We say that matrix has row (or horizontal) convexity feature if all ones in the row forms a continuous interval. 
Same way we define column (or vertical) convexity. Connectivity is the feature of moving between 1s in 
neighboring cells. In our case we consider only vertical and horizontal connectivity (not diagonal). 

Existence problem for connected matrices is NP-complete [2]. Existence problems for horizontally or vertically 
convex, and for both horizontally and vertically convex matrices are also NP-complete [3]. 

Different authors proved that horizontally and vertically convex and connected matrices reconstruction problem 
can be solved in polynomial time. Given description shows how sensitive are this kind of problems to input 
conditions. We see that existence problem's complexity changes along with adding new constraints. At the same 
time there are a lot of other notations of the problem for those the complexity is not even known. Particularly that 
means that they also lacks easy solution algorithms. 

So we consider several problems in the field of discrete tomography, propose ways for constructing such 
matrices that satisfy constraints (convex or nearly convex, satisfying given parameters or having values near to 
given parameters). Further we will formulate the problems as optimization problems and give ways for their 
approximation, based on the integer programming relaxation. The question is that integer programming model is 
known for being used to reformulate known NP complex optimization problems. This model's (precise or 
approximate algorithms construction) investigation is very important and often this model is used to approximate 
optimizations problems [4, 6]. Implemented algorithms and software package based on that algorithms give an 
ability to make calculations either for tomography problem or for similar problems, such that those calculations 
might guide us or give approximate or precise solutions. 

In this paper we will consider one problem from the field of discrete tomography, horizontally convex matrix 
existence problem. 

Horizontally convex matrix existence problem 

 

Since 1's in the horizontally convex matrix are in neighboring position then if we count the number of 1's in the 
matrices rows, that number for convex matrices will be maximum for the ones with same parameters. That's why 
problems that are often considered are related to number of neighboring 1's, their constraints and optimization. 

),,( 1 mrrR = , ),,( 1 nssS = , ),,( ''
1

'
mrrR =  vectors are given. Is there a nm×  

}{ , jixX =  matrix such that R  is row sum vector for that matrix and S  is column sums vector, and number 

of neighboring 1's in row i  is equal to '
ir . 
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In other words the problem is following, find the matrix with horizontal convexity in the class of )1,0(  matrices 

with given row and column sums. This problem is NP-complete, since for the case when 

mirr ii ,,1,1'
=−=  it's equivalent to the horizontally convex matrix existence problem. Given particular 

case just require the matrix to be horizontally convex by neighboring 1s in the rows. 

As we already mentioned lot of combinatorial problems are suitable to represent as integer linear optimization 
problems. Lets reformulate our problem as integer programming problem. 

Lets define }1,0{, ∈jiy  variables the way that it provides neighboring 1's in row i . 

 

1,,1;,,1),1(&)1()1( 1,,, −====⇔= + njmixxy jijiji 
 

 

This can be done by satisfying conditions 
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So we reformulate the problem in the following way. 

),,( 1 mrrR = , ),,( 1 nssS = , ),,( ''
1

'
mrrR =  vectors are given: Is there a nm×  

}{ , jixX =  matrix such that  
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Lagrangean relaxation and variable splitting 

 

So we have horizontal row convex matrix existence problem, which is reformulated as linear integer programming 

problem I . We also know that problem I  is NP-complete. To solve this problem we will use a method based on 
Lagrangian relaxation. 

 

Obviously if we drop some of the constraints we will get problems relaxation. Assume that we can call one or 
several constraints hard in the since that by dropping those constraints we can solve resulted integer 
programming problem more easily. Constraints dropping could be embedded in more common method which is 
called Lagrangian relaxation. We can apply Lagrangian relaxation to given method in various ways. One of the 
ways, which we will use here is following, if the problem can be splitted to subproblems, which have common 
variables, first split those variables and then relax their equality constraint. 

 

So, we take two set of variables h
jix ,  and v

jix ,  by duplicating jix ,  variables, and reformulate our problem as 
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We split our original problem using variable splitting to two problems, each of which has its own variable set and 
which would be independent without constraint (6). From this point of view constraint (6) is the hardest one. We 

will relax constraint (6) using Lagrangian relaxation with coefficients jiλ , . 

 

We get following problem )(λVSI , and its optimal value is )(λvVSI . 
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Then using same method we can further split the problems into subproblems for rows and columns, which itself is 
reducing to the finding of simple path, with given number of edges and biggest weight on directed graph. 

We can approach the problem in other way, by relaxing constraint (3) we would split the problem into two 

subproblems with jix ,  and jiy ,  variables. But this paper is limited with first approach. 

 

Obviously problem )(λVSI  is relaxation of problem I , hence )(λvVSI  is upper limit for value of I . Find 

best upper limit means to solve Lagrangian dual problem which is 

 

)(min λvv VSI

λ

VSD =
 

 

This is convex non-differential optimization problem: There are different methods for solving this problem. One of 
them is subgradient optimization method. Subgradient optimization on each step calculates the value of 

)(λvVSI  for given jiλ , , in this case that equals to solving following m  independent problems 

 

 (*) 

 

We will try to solve these problems using algorithm for finding simple path on acyclic directed graph with biggest 
cost and given number of edges. 
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Decomposed problem on graph and the solution 

We consider directed graph ),( EVG =  which vertex set consists of vertexes for each jx  variable plus s  

source and o  destination. We define edges in following way 

 

),( jxs     with weight jc  

1),,( −≤ jixx ji  with weight jc  

),( ox j    with weight 0 

 

Consider the paths form s  to o . Only r variables corresponding to jx  vertexes, are 1's according to (*) and 

among them 'r  is neighboring 1's. Hence we are interested only in those paths from s  to o  that have only r  

vertexes and there are only 'r  with neighboring 1's. We need to find among those paths, the one that has 
maximum weight. Now by assigning 1's to variables corresponding to vertexes we will get solution to the problem 
(*). 

 

 

 

Now lets give algorithmic description. 

Let ),( pjz  is weight of the longest path from s  to jx  vertex with p  vertexes on it. Lets ),,( qpjw  is 

weight of the longest path from s  to jx  which has p vertexes on it and there are q  neighboring vertexes with 

corresponding variables equal to 1. In this case ),( pjz  and ),,( qpjw  can be calculated the following 

way. First of all consider ),( pjz  

 

s o xj-1 xj 

cj 

cj 

0 

cj 

cj 
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))1,(max(),(

)1,(

j
xu

j

cpuzpjz
cjz

j

+−=

=

<  

 

And the optimal value we're looking for is ),(max),( rxzroz jj
= . 

This part of the problem is solving in the following way. 

For given n  and r  ][ ,, pjpj zZ =  array is constructed, where nj ,...,1=  and for j  

1,...,0 −= jp . In reality for fixed r  its enough to consider rp ,...,1=  layers, but np ,...,1=  

will satisfy calculations needed for all r . 

 

 

 

 

 

First of all 1,1z  value is calculated. That's equal to 1c . All values of row 1=p  are calculated in the same way 

jj cz =1, . To calculate pjz ,  by our formula we need to know values for 1−p  and for all 1,...,1 −j  

indexes. But in row 1−p  first non-zero value is in 1−= pj  position, which is on diagonal. So calculations 

can be done sequentially on ,...,...,1 rp =  rows and in rows in order npj ,...,= . This constructs are 

needed for software implementation and these give ability to measure number of operations in calculation. It 

doesn't exceed 3n , which means polynomial complexity. 

 

Maximal weight paths can be stored in a separate array. They can be stored as 0,1 vectors or as indexes of non 
zero elements which however won't significantly decrease number of computations. 

1 

n 

p 
r 

zj,p 

j 1 n 
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Now lets calculate values of ),,( qpjw . First of all lets consider edge values. From ),,( qpjw  we have 

maximal weight path from s  to jx  which has p  vertexes and there are q  pairs with neighboring 1's. 

1−≤ pq  and lets p 's are decreased up to 1+q . ),1,( qqjw + 's can be non-zero starting from 

1+≥ qj . For bigger q 's and smaller j 's ),,( qpjw 's are equal to 0. 

Interestingly q  can't be very small. If 



 +

>
2

1jp  then q  can't be 0 (at least 2 vertexes must have 

neighboring indexes). 

 

Let 



 +

=
3

1jτ . In that case τ  vertex pairs still might not be neighbors, which gives τ2  vertexes. After that 

any new vertex addition would add 2 new pairs. 

Now lets consider common case. For calculating ),,( qpjw  lets consider class where for j  jp ≤  and for 

pj,  pairs 1−≤ pq . This class is larger than needed but in reality it doesn't differ much from the minimal 

class which is necessary for calculations. For slight transition of edge values class is zeroed before performing 

calculations. Lets investigate value of ),,( qpjw . We do chain calculations and on each step consider 2 

cases 11 =−jx  and 01 =−jx . So we get following values 

 

jcqpjw +−−− )1,1,1(  and )),1,((max
1

j
xu

cqpuw
j

+−
−<

 

 

We are interested in maximum of these values. 

In jcqpjw +−−− )1,1,1(  all indexes are less than preceding and we assume that this value is already 

calculated in previous steps. For calculating )),1,((max
1

j
xu

cqpuw
j

+−
−<

 we do next step in chain 

calculation. 
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And the needed optimal value is )',,(max)',,( rrxwrrow jj
= . This problem practically can be solved in 

following way. 

For given n , r , 'r  we construct the class given above, array ][ ,,,, qpjqpj wW = , where for 

nj ,...,1=  and j  jp ,...,1=  and for pair pj,  1,...,0 −= pq . 

 

In reality for fixed r  it's enough to consider rp ,...,1=  layers and for q  all values where 1−≤ rq . 

But calculations must be done in such sequence to be executable. 

 

 

 

 

 

First 0,1,1w  values are calculated, 10,1,1 cw = , all values in row 1=p  are calculated in the same way 

jj cw =0,1, . More, 0=q  values were already considered. To calculate qpjw ,,  based on our formula we 

need to know values for 1−p  and all 1,...,1 −j . But in layer 1−p  with current q  value is either 0 or 

already calculated. Then calculations can be done in layers ,...,...,1 rp =  sequentially and in layers in order 

of npj ,...,= . Given constructions are needed for software implementation and give ability to measure 

number of calculations. Those are not more than 4n  which means polynomial complexity. 

Maximal weight paths that we're looking for could be stored in separate array as 0,1 vectors or as array of 
indexes with non-zero values, which however won't significantly lower number of calculations. 
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Software implementation 

Based on given methods a software system with an UI was implemented, which can be used to solve some 
problems from the field of discrete tomography based on Lagrangian relaxation. 

There are several fields which are used for data input. Since we are solving problems in the field of discrete 
tomography so input data are projections, in our case row sums and column sums. Also we are giving specific 
problem description by additional constraints. So we have special fields for that purpose. Then there is special 
control which can be used to reformulate given problem as mathematical programming problem. Then we can 
choose one or several constraints which we want to relax. Also we can do variable splitting etc. And there is an 
output window which is used for displaying results. For example value of Lagrangian Dual or variables difference 
as a result of splitting. 

 

 

 

In given example as a problem is considered horizontal row convexity existence problem. 

 

Now lets describe one of the main classes in the implementation, ProblemBase abstract class. This class is base 
for all problem. Class encapsulates problem data. It also has several virtual functions which are used for problem 
solution. For example function which reformulates the problem as mathematical programming problem, chooses 
constraints for relaxation. Important function in ProblemBase is Solve method, which invokes the method for 
specific problem. Since most of the problems are reducing to relatively easy problems on graphs and methods for 
those solutions can be used for different problems we put those methods in a separate library. 
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ON HYPERSIMPLE wtt -MITOTIC SETS, WHICH ARE NOT tt -MITOTIC 

Arsen H. Mokatsian 

 
Abstract: A Т-complete wtt-mitotic set is composed, which is not tt-mitotic. A relation is found out between 

structure of computably enumerable sets and the density of their unsolvability degrees.  

Let us adduce some definitions: 

A computably enumerable (c.e.) set is tt - mitotic ( wtt - mitotic) set if it is the disjoint union of two c.e. 

sets both of the same tt -degree ( wtt -degree) of unsolvability. 

Let A be an infinite set. f majorize  A  if  [ ]))(( nznfn ≥∀ , where  ,, 10 zz   are the members of  A  

in strictly increasing order. 

A is hyperimmune (abbreviated h-immune) if A is infinite and ( f  recursive∀ ) [f  does not majorize A]. 

A is hypersimple  if  A is  c.e. and A  is  hyperimmune. 

A is hyperhyperimmune if A is infinite and (∃¬  recursive )f so that 

[ ( ) ( )( ) ][&][ )()()()( & ∅=⇒≠∀∀∅≠∀ vfufufuf WWvuvuAWWu  finite is ]. 

A is hyperhypersimple  if  A is computably enumerable  and A  is  hyperhyperimmune. 

We shall denote T-degrees by small bold Latin letters. 

A degree 0′≤a is low if 0′=′a (i.e. if the jump a′ has the lowest degree possible). 

Theorem (Martin [6]). a is the degree of a maximal set  ⇔  a is the degree of a hypersimple set ⇔ [ a  

is c.e.  and 0 ′′=′a ].  

Theorem (R. Robinson [8]). Let  b  and c  be c.e. degrees such that  bc <  and  c  is low. Then there 

exist incomparable low c.e. degrees 0a  and  1a , such that 10 aab ∪=  and ca >i ,  for 2<i . 

Griffiths ([3])  proved that there is a low c.e. T-degree u such that if  v is a c.e. T-degree and u ≤ v then 

v  is not completely mitotic. 

In this article it is proved the following theorem: 

Theorem. There exists a low c.e. T-degree u such that if v is a c.e. T-degree and u ≤ v then v contains 

hypersimple wtt -mitotic set, which is not  tt -mitotic. 

From the abovementioned theorems of Martin and R. Robinson follows that it is impossible to replace 

hypersimple by hyperhypersimple. 

Keywords: computably enumerable (c.e.) set, mitotic, wtt -reducibility, tt -reducibility, hypersimple set, low 

degree.  

ACM Classification Keywords: F. Theory of Computation, F.1.3 Complexity Measures and Classes. 
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Introduction 

We shall use notions and terminology introduced in [9], [10]. 

The definitions of tt - and wtt - reducibilities are from [9]. 

↓)(xϕ  denotes, that )(xϕ  is defined, and  ↑)(xϕ  denotes, that )(xϕ  is undefined. 

 

Definition. The order pair << kxx ,,1  >, α >, where < kxx ,,1  > is a k -tuple of integers and α   is a k -ary 

Boolean function ( 0>k ) is called a truth-table condition (or tt -condition) of norm k . The set { kxx ,,1  } is 

called the associated set of the tt -condition.  

 

Definition. The tt -condition << kxx ,,1  >,α >, is satisfied by A  if ( ) 1)(,),( 1 =kAA xcxc α , where Ac  is 

characteristic function for  A . 

 

Each tt -condition is a finite object; clearly an effective coding can be chosen which maps all tt -conditions (of 

varying norm) onto ω , on condition that  

{ }( )xzzx xtt ≤∀  condition- the ofset  associated of member the is |max)( . 

Assume henceforth that a particular such coding has been chosen. Where we speak of  “ tt -condition x ”, we 

shall mean the tt -condition with the code number x . 

 

Definition. A is truth-table reducible to B  (notation: BA tt≤ ) if there is a computable function f  such that for 

all x , [ ttAx ⇔∈ -condition )(xf  is satisfied by B ]. We also abbreviate “truth-table reducibility” as 

“ tt -reducibility”. 

 

Definition. A  is weak truth-table reducible to B (notation: BA wtt≤ ) if  

( z∃ )[ B
zAc ϕ=  (∃ computable f )  

( x∀ )[ )( xfD contains all integers whose membership in B  is used in the  computation of )(xB
zϕ ]]. 

 

Definition. A c.e. set is  tt - mitotic ( wtt - mitotic) set if it is the disjoint  union  of two c.e. sets both of the same 

tt -degree ( wtt -degree) of unsolvability.  
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Let BA tt≤  and )( x∀ [ ttAx ⇔∈ -condition )(xf  is satisfied by B ] and  fn =ϕ . Then we say that 

BA tt≤  by nϕ . 

 

Let us modify denotations defined in [4] with the purpose to adapt them to our theorem. 

We say that ),,,( 11 ϕϕoo AA  is  tt -mitotic splitting of A   if oA  and 1A  are c.e., AAAo =1 ,  

∅=1AAo  , 0AA tt≤  by 0ψ   and  0AA tt≤  by 0ψ 1AA tt≤  by 1ψ . 

 

Let h  be a recursive function from ω  onto 4ω . 

Define ( iiii ZY ψϑ ,,, ) to be a quadruple  (
321

,,, iiii WW
o

ϕϕ ), where ),,,()( 3210 iiiiih = . If  A  is  c.e. then 

we say that the non- tt -mitotic condition of i  order is satisfied  for A , if it is not the case that  ( iiii ZY ψϑ ,,, ) is 

a tt -mitotic splitting of A . 

 

Denotation.    


 ↓

=
otherwise

nifx
sniu si

i
ktt n

,0
,)(,,

),,( ,ϕ
  

 , 

where  tt-condition )(niϕ = << i
k

i
n

xx ,,1  >, i
nα > . 

 

We define two computable functions that will be of  use later. 

1.   { } { }{ }nmsmZiunmsmYiunsnik sttstt ≤≤= :),,,(:),,,(,max),,( 32  , 

2.  ( )
( )], Z)( -1)(

 )( -1)([),,(
by satisfiedcondition

by satisfiedcondition

iiA

iiA

nttnc
YnttncnsiAL

ψ
ϑµ

⇔=¬
⇔=¬= ∨

 

where  ),,,()( 3210 iiiiih = . 

Adduce some information, concerning  hypersimple sets.  

 

Definitions. 

Let  A be an infinite set. f majorizes  A  if  [ ]))(( nznfn ≥∀ , where  ,, 10 zz   are the members of   A  in 

strictly increasing order. 

A is hyperimmune (abbreviated h-immune) if  A is infinite and  ( f  recursive∀ )  [f  does not majorize A]. 
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A is hypersimple  if  A is computably enumerable  and   A  is  hyperimmune. 

 

A useful characterization of hyperimmune sets is given in the following theorem. 

 

Theorem (Kuznecov, Medvedev, Uspenskii [ 7]).  A  is hyperimmune ⇔  A is infinite and  

( ) ( ) ][ ])[(&][)( )()()( ∅=⇒≠∀∀∅≠∀∃¬ vfufuf DDvuvuADuf recursive . 

 

Definitions. 

A is hyperhyperrimmune if  A is infinite and ( )f  recursive∃¬   

[ ( ) ( )( ) ][&][ )()()()( & ∅=⇒≠∀∀∅≠∀ vfufufuf WWvuvuAWWu  finite is ]. 

A is hyperhypersimple  if  A is computably enumarable  and   A  is  hyperhyperimmune. 

A degree 0′≤a is low if 0′=′a (i.e. if the jump a′ has the lowest degree possible). 

 

Theorem (Martin [6]). a is the degree of a maximal set  ⇔  a is the degree of a hypersimple set ⇔ [ a  is c.e.  

and 0 ′′=′a ].  

 

Theorem (R. Robinson [8]). Let  b  and c  be c.e. degrees such that  bc <  and  c  is low. Then there exist 

incomparable low c.e. degrees 0a  and  1a , such that 10 aab ∪=  and ca >i ,  for 2<i . 

Griffiths ([3])  proved that there is a low c.e. T-degree u such that if  v is  a c.e. T-degree and u ≤ v  then v  is not 
completely mitotic. 

 

Let us prove the following theorem. 

 

Theorem. ≤ There exists a low c.e. T-degree u such that if v is a c.e. T-degree and u v then v contains 
hypersimple wtt -mitotic set, which is not  tt -mitotic. 

From the abovementioned theorems of Martin and R. Robinson follows that it is impossible to replace 
hypersimple by  hyperhypersimple. 

 

Proof. This statement is proved using a finite injury priority argument. We construct a member U  of u  in stages 
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s , ss
UU

 ω∈
= . We also construct sets ω∈eeV }{   to  witness that each c.e. T-degree in upper cone of u  

contains a  wtt -mitotic but non-tt-mitotic set. 

Denote 010 \=},)=(2)(:{= ωωωω xyyx ∃ . 

Construct U , ω∈eeV }{  to satisfy, for all ω∈e , the requirements: 

↓)(}{: eeN U
e  has a limit in s , the stage. 

〉〈 ieR , : The non-tt-mitotic condition of order i  is satisfied  for eV . 

( ) &][: )(, &( ∅≠∀>< ADuP ufiie  computable total isϕ  

 ( ) )()(])[( )()()( ) ezvfuf VDzDDvuvu
i

⊂∃⇒∅=⇒≠∀∀ ϕ . 

eV
ee WP Λ=:~  for some computable functional .Λ  

We also ensure by permitting that eTe WUV ⊕≡  and else 10
ewtte VV ≡  (where 

1100 =&= ωω  eeee VVVV ). 

If  eT WU ≤  then the above ensure that eTeTe WWUV ≡⊕≡  and eV  is not tt-mitotic. Hence, )( eWdeg  is 

not tt-mitotic but is wtt -mitotic, and )(= Udegu  is the required degree. 

Let 〈  , 〉  be computable bijective pairing function increasing in both coordinates. At each stage s  place markets 

),,( sxeλ  on elements of seV , . Values of λ  will be used both as witnesses to prevent the tt-mitoticity of  eV  

sets (by corresponding  iiii ZY ψϑ ,,, ) and to ensure that eW  is  T -reducible to eV . Initially 

 2)1),4(=,0),( −+〉〈 xexeλ  for all ω∈xe, . 

 

Also define a function ),,( sieξ  for all ω∈ie,  (at each stage s ), iie =,0),(ξ  for all ω∈ie, . We use ξ  to 

ensure that only members of sufficiently large magnitude enter U  at stage s , so we can satisfy the lowness 

requirements eN . 

According to the theorem (Kuznecov, Medvedev, Uspenskii) the satisfaction of >< ieP , (for all i  ) ensure the 

hypersimplicity of eV . 

Order the requirements in the following priority ranking: 

,,,,,,,,, 222111000 PRNPRNPRN   
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The ω∈eeP }~{  do not appear in this ranking.  

eN  requires attention if it is not satisfied and ↓])[(}{ see U .  

〉〈 ieR ,  requires attention  if it is not  satisfied  and  

( )↓↓∀ ≤ )(&)()( xxx s
i

s
iy ψϑ ,  where )),,(,(= ssieey ξλ . 

),,,( iiii ZY ψϑ  is threatening  A  through  x  at stage  s  if it is partially satisfied and all the following hold: 

i) si ≤ , 

ii) ),,( siALx < , 

iii) ∅=s
i

s
i ZY  , 

iv) ))(()( mZYmc s
i

s
i

s
A =   for all  ),,( sxikm ≤ . 

(Note, that actually 〉〈 ieR ,  is partially satisfied, if  〉〈 ieR , requires attention (via some ),,( sy λ= ) and 

corresponding 2,1 −− yy   belong to  eV , 1−y   belongs  to  1+sU . See Construction, Part A , a) ).  

We will build ss
UU


=  and sess VV ,=


 for all ω∈e . Initially all requirements eN , 〉〈 ieR ,  are declared  

unsatisfied. 

 

Construction 

Stage 0=s . Let ∅=0U , ∅=,0eV   for all ω∈e .  

Stage 1+s .  

 

Part A.  Act on the highest priority requirement which requires attention, if such a requirement exists. 

 

a)  If eN  requires attention then set ( ) ( )ssiesie ,ˆ,ˆ=1,ˆ,ˆ ++ ξξ  for each eie ≥〉〈 ˆ,ˆ . This action prevents 

injury to eN  by lower priority requirements as we assume that s  bounds the use of the halting computation. 

Define )1,,( +sξ   not specified in Part A to be the same as  ),,( sξ . 

Declare eN  satisfied; declare all lower priority R , N  unsatisfied. 

If 〉〈 ieR ,  require attention via ( )ssieey 1),,,(,= +ξλ  then set  2}1,{=~
,1, −−+ yyVV sese   and 
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1}{=~
1 −+ yUU ss  . (Note that such 〉〈 ie,  cannot be e≥ , so  ),,(1),,( siesie ξξ =+ ). Declare 〉〈 ieR ,  

partially satisfied.   

Define 1,1,
~,~

++ sese UV   not specified in Part A, a) to be the same as  1,1, , ++ sese UV   respectively. 

 

b)  If ( iiii ZY ψϑ ,,, ) is threatening 1,
~

+seV  through y  at stage  1+s  (so 〉〈 ieR , is partially satisfied  via 

( ) ),,,,( ssieey ξλ= ), then set  }{~~~
1,1, yVV sese ++ =  and }{~=

~~
11 yUU ss ++ . 

If  〉〈 ieR , is partially satisfied,  via ( ) ),,,,( ssieey ξλ= , whether ( iiii ZY ψϑ ,,, ) is threatening 1,
~

+seV  through 

y  at stage  1+s  or not define ( ) =1),,,,(1 +ssiee ξλ  ( )sssiee ),,,(, +ξλ  . 

 

Define  )1,,(,
~~,

~~ 1
1,1, +++ sUV sese λ   not specified in Part A, b) to be the same as ),,(,~,~

1,1, sUV sese λ++  

respectively. 

Such definition of 1λ  allow us to satisfy 〉〈 ieR ,  requirement (after Part A) whether ( iiii ZY ψϑ ,,, ) is threatening 

1,
~

+seV  through y  or not (if don't take into consideration higher priority requirements). 

Declare 〉〈 ieR ,  satisfied; declare all lower priority  NR,  unsatisfied. 

 

Part B. If sese WWx ,1, \+∈  then  set  

{ } and1),,(
~~= 1

1,
*

1, +++ sxeVV sese λ  

.jallfor ω1)1),1,,(,(=1),,( 12 ∈++++++ ssjxeesjxe ξλλ  

Find all î  such that 1),,()1),,ˆ,(,( 1 +≥+ sxessiee λξλ  and declare 
〉〈 ieR ˆ,  unsatisfied for each such î . 

Define  )1,,(, 2*
1, ++ sV se λ   not specified in Part B  to be the same as )1,,(,

~~ 1
1, ++ sV se λ  respectively. 

Note that for all ),,(, sies ξ is increasing in both  e  and i . 

 

Part C.  Let  ( ) }ˆˆˆˆ|1,ˆ,ˆ{max{1 e,ii,ei,esiems ≤+=+   with  all for ξ , 

( ) }}ˆˆˆ|1,ˆ,ˆ{ 2 e,i,iei,esie ≤+   with  all for λ . 
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If ( )↓∃ + )()( 1, zz siϕ , denote  ( ))(0 zDyyz
iϕ

µ == . Then, if 00 mz >    and ieP ,  is not satisfied,   

set  ( ) }{
~~&}1,{)()( 011

*
1,1, zUUyyVVzDyy sssesei

 ++++ =+=⇒=∀ ϕ . 

Set  .allfor iisssieessiee ≥+++++ ˆ,1)1),,ˆ,(,(=)1,1),ˆ,(,( 2 ξλξλ  

 

Define  )1,,(,, 1,1, +++ sUV sese λ   not specified in Part C, to be the same as )1,,(,
~~, 2

1,
*

1, +++ sUV sese λ  

respectively. 

Declare ieP ,   satisfied, declare all lower priority NR,  unsatisfied. 

 

Verification 

Lemma 1.  For all e , i : 

    1.  eN  is met,     ),(=),,(lim iesies ξξ  exists.      

    2  〉〈 ieR ,  is met,   ( )ssiees ),,,(,lim ξλ  exists.  

Proof. By induction on iej ,= . 

Suppose there exists a stage  0s   such that for all  ie ˆ,ˆ  with jie <ˆ,ˆ : 

1. 
〉〈 ieN ˆ,ˆ  is met and never acts after stage 0s ,  )ˆ,ˆ(),ˆ,ˆ(lim iesies ξξ =  exists and is attained by 0s . 

2. 
〉〈 ieR ˆ,ˆ  is met and never acts after stage 0s ,  ),ˆ( ),,ˆ,ˆ(lim ssiees ξλ exists and is attained by 0s . 

1). The proof  of  point 1  is similar to Lemma 1 of  Theorem 2.2.2  [3].  

After  stage 0s  the requirements  
〉〈 ieN ˆ,ˆ , 〉〈 ieR ˆ,ˆ  (for all ie ˆ,ˆ  with jie <ˆ,ˆ ) do not injury  jN . Positive 

requirements  
〉〈 ieP ˆ,ˆ  for all ie ˆ,ˆ  with jie <ˆ,ˆ , can injury  jN  only finitely. So there is stage 1s after which if 

jN  receives attention, then it is met and never injured, so there is a 12 ss >  after which jN  does not receive 

attention. (Else set  12 ss = ). Thus ),()1,,( 2 iesie ξξ =+ , because )1,,( 2 +sieξ is not changed after. 

2).  Now consider point  2. Note, that positive requirements  〉〈 ieP , , eP~   injury each of the requirements  

with lower priority only finitely. 
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Let   the stage 1s  is such stage, that 01 ss > and 
〉〈 ieN ˆ,ˆ , 〉〈 ieR ˆ,ˆ , 

〉〈 ieP ˆ,ˆ ,
〉〈 ieP ˆ,ˆ

~   

(for all ie ˆ,ˆ  with jie <ˆ,ˆ ) are met and never acts after stage 1s . 

The following Lemma is used (in [4 ], [ 5]) for building the non-T -mitotic set :  

 

Lemma. If  ( )iiii ZY ψθ ,, , is threating  A   through x  at  stage sAAxs −∈,  and for all xm ≠  such that 

),,( sxikm ≤  we have )(mAA sm − , then the non-T -mitotic condition of order  i  is satisfied for  A . 

Similar lemma is thrue for tt -reducibility.  

Let 0s  is such stage that 
>< ieN ˆ,ˆ , 

>< ieR ˆ,ˆ >< ieP ˆ,ˆ  are met and never  acts after stage 1s .  

If there isn’t  such ),1),,(,( ssieey ′+′= ξλ  (where 1ss >′ ),  that 〉〈 ieR ,  is partially satisfied  (via y ), then 

〉〈 ieR ,  is met. 

 

If there exists such y  and   ( )iiii ZY ψϑ ,, ,  never threatens eV  through y  after stage s′ , then certainly the 

condition is satisfied. On the other hand, if  ( )iiii ZY ψϑ ,, ,  threatens eV  through  y  at time st ′> , then put  

y  into eV  at time 1+t , and never put any other number ),,( tyik≤  into eV  after stage t , so 〉〈 ieR ,  is met. 

 

Lemma 2. 〉〈 ieP ,  is met. 

According to Lemma1  )ˆ,ˆ(),ˆ,ˆ()( 00 iesies ξξ =∃ [ , for all   withie ˆ,ˆ  ),()ˆ,ˆ( ieie ≤  & 

 ( ) ( ))ˆ,ˆ(,ˆ),,ˆ,ˆ(,ˆ& 00 ieessiee ξλξλ =   for all ]    with ),()ˆ,ˆ(ˆ,ˆ ieieie ≤ .  

Denote ( ){ })},()ˆ,ˆ(ˆ,ˆ|)ˆ,ˆ(,ˆ{)},,()ˆ,ˆ(|)ˆ,ˆ({max0 ieieieieeieieiem ≤≤=     with all for  all for ξλξ . 

Then if  ( ) &][ )(&( ∅≠∀ ADu ufi  computable total isϕ  

( )∅=↓∃∃⇒∅=⇒≠∀∀ > )(0,)()( },,1,0{&)()()(])[()(
0

) zsisvfuf i
DmzzsDDvuvu ϕϕ  . 

Thus, according to constraction 〉〈 ieP ,  is met, because )( zi
Dϕ enters eV . 
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Lemma 3 . eTe WUV ⊕≤ .  

Proof. By permitting: in the construction a number k  enters eV  only if a number less than or equal to k  enters 

U  or enters eW . 

 

Lemma 4.  For all e , eP~  is satisfied, that is eV
eW Λ= .  

Proof. To determine whether eWz∈  we need to find a stage such that ),,( szeλ  has attained its limit. eV  

computably determines ),(,,0),( zee λλ   (note that ),,( syeλ  changes only if a number ),,( syeλ≤  

enters eV ). 

Find a stage zs  such that 
zseV , ¹ ez V=1+γ ¹ ,1+zγ  where )},(,,0),({max= zeez λλγ  . Then 

eWz∈   iff   
zseWz ,∈ . 

 

Lemma 5.  eV  is wtt -mitotic.  

Proof. 1) Prove 10
ewtte VV ≤  (and  hence 1

ewtte VV ≤ ). 

To determine whether  0
eVx∈   find such stage s , that  1

,seV ¹ 1=2 eVx + ¹ 2+x . Then 0
,

0
see VxVx ∈⇔∈ , 

because  

i)  if  si ˆ,∃¬ , such that ( iiii ZY ψϑ ,,, ) is threatening 1,
~

+seV  through x  at stage  ŝ , then 0
eVx∈  , only if  a 

number  less than or equal to 1+x  enters, 

ii) otherwise, then find a stage s′ (this stage s′ obligatory is s≤ ) such that  ∈−1x 1
eV .  If after the  stage s′  

such changes happen in 1
,seV ¹ 2+x , which lead to displacement of marker ),,( sxe ′λ  and   we have 

0
,seVx∉ , then  0

eVx∉ . Thus 0
,

0
see VxVx ∈⇔∈ . 

2) Prove 01
ewtte VV ≤ .  

 

The proof is similar to abovementioned in item 1), only  without point  ii). 
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A NEW ALGORITM FOR THE LONGEST COMMON SUBSEQUENCE PROBLEM 

Vahagn Minasyan 

 

Abstract: This paper discusses the problem of determining the longest common subsequence (LCS) of two 

sequences. Here we view this problem in the background of the well known algorithm for the longest increasing 

subsequence (LIS). This new approach leads us to a new online algorithm which runs in  time and in 

 space where  is the length of the input sequences and  is the number of minimal matches between 

them. Using an advanced technique of van Emde Boas trees the time complexity bound can be reduced to 

 preserving the space bound of . 

Keywords: longest common subsequence, longest increasing subsequence, online algorithm. 

ACM Classification Keywords:G.2.1 Discrete mathematics: Combinatorics 

 

Introduction 

Let and , , be two sequences over some alphabet  of size 

, . A sequence , , over  is called a subsequence of , if  can be obtained from 

 by deleting some of its elements, that is if exists a set of indices  such that 
 and  for .  is said to be a common subsequence of  and , if it is a 

subsequence of both sequences  and ;  is said to be a longest common subsequence (LCS) of  and , if it 

has the maximum length among all common subsequences of  and ; that length is called the LCS length of  
and . In general the longest common subsequence is not unique.  

 

The Longest Common Subsequence Problem (LCS Problem) is to determine a LCS of and . Oftenthe 
problem of determining theLCS length is also referred to as LCS Problem. This is due to the fact that most of 
algorithms intended to find the LCS length can easily be modified to determine a LCS [Bergroth, 2000]. In this 
paper we will concentrate on determining the LCS length rather thandetermining an actual LCS.The first known 
solution of the LCS Problem is based on dynamic programming [Cormen, 2009].For  and  

denote by  the LCS length of sequences and ; thus  is the LCS length of  and . Note 

that thefollowing recursion holds for : 
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if  or   

(1)  if   

 if   

 

Based on this relation it is easy to construct an algorithm which fills an array of size , where -th cell 

contains the value of . As it follows form (1) such algorithm has to fill the rest of array before obtaining the 

value of -th cell, so it will determine the LCS length of sequences  and in  time and  

space (  time for filling each cell and  space for holding each cell).A simple trick can be used to make 

this algorithm require only  space to obtain the value of the -th cell [Cormen, 2009]. Here we 

give some definitions which will be used later in the paper. For  and  the pair  is 

called matching between sequences  and  if ; it is called minimal (or dominant) matching if for every 

other matching  such that  it holds  and  or  and .Note that if  and 

 are two integers such that and , then theLCS Problem for two sequences of size  and  is 

asymptotically not harder than the LCS Problem for two sequences of size  and . Indeed, given two 

sequences of size  and  and an algorithm which solves the LCS Problem for two sequences of size  and 

, we can lengthen the given sequences (by appending to themsymbols which don’t occur in the initial 

sequences) up to size  and  respectively and pass the resulting two sequences to the given algorithm. It is 

easy to see that such algorithm will solve the LCS Problem for two sequences of size  and  in asymptotically 

the same time and space bounds as the given algorithm solves the LCS Problem for two sequences of size  

and . This means that each lower bound for the LCS Problem for two sequences of size  andeachupper 

bound for the LCS Problem for two sequences of size  are respectively lower and upper bounds for the LCS 

Problem for two sequences of size  and  (recall that ). At [Aho, 1976] the LCS Problem is examined 
using the decision tree model of computation where the decision tree vertices represent “equal-unequal” 
comparisons. There it is shown that each algorithm solving the LCS Problem and fitting this model has time 

complexity lower bound of , where  is the number of distinct symbols occurring in the sequences (i.e. the 
alphabet size). This means that the LCS Problem with unrestricted size of the alphabet has time complexity lower 

bound of , as such LCS Problem can be viewed as an LCS Problem with restricted alphabet of size 

.In practice the underlying encoding scheme for the symbols of the alphabet implies a topological order 
between them. Algorithms which take into account this fact don’t fit the decision tree model with “equal-unequal” 
comparisons examined at [Aho, 1976]. At [Masek, 1980] it is presented an algorithm which applies the “Four 
Russians” trick to the dynamic programming approach, thusit doesn’t fit the model examined at [Aho, 1976] and 
has time complexitybound of .This bound isasymptotically the best known for general case LCS 
Problem[Cormen, 2009]. 
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Previous Results 

Lot of algorithms have been developed for the LCS Problem that, although not improving the time complexity 

bound , exhibit much better performance for some classes of sequences  and  [Bergroth, 2000]. 

Consider the special case when the alphabet  consists of first  integers, i.e. , and the 

sequences  and  are two permutations of . It is easy to check that this case can be reduced to the case 

where  is the identical permutation (by replacing  by  for  in both sequences  and  we will get 

two sequences which are equivalent to the initial ones with respect to the LCS Problem). In this case each LCS of 

 and  is an increasing sequence of some of first  integers and each such sequence is a LCS of and . 

Thusin the case when  and are permutations the LCS Problem is reduced to the problem of determining a 

longest increasing subsequence of permutation . The Longest Increasing Subsequence (LIS) Problem is to 
determine a non decreasing subsequence of maximum length in the given sequence of integers. The LIS 
Problemcan be solved in time [Fredman, 1975], and using advanced data structures like van Emde 

Boas trees [Cormen, 2009]thistime bound can be reduced to . Thus these bounds apply to the 
LCS Problem in the case of permutations.Also there are many algorithms for the general case LCS Problem 
which except  and are also sensitive for other parameters like the LCS length, the alphabet size, the number 
of matches and the number of minimal matches. A survey on such algorithms is given at [Bergroth, 2000].The 
table below gives a brief remark of some of known algorithms for the LCS Problem. There  denotes the LCS 

length,  denotes the alphabet size,  denotes the number of all matches and  denotes the number of minimal 

matches. It is known [Baeza-Yates, 1999] that for two random sequences of length  the expected LCS length is 

 and the expected number of minimal matches is  [Tronicek, 2002]. This means that (except the 5th) 

none of the algorithms mentioned in the table hastime complexity upper bound less than not only in the 
worst case but also in the average case. 

All these algorithms are developed in the background of building the  array mentioned in the dynamic 

programming approach, and they purport to perform fewer operations in order to obtain the -th cell of that 
array. In this paper we view the LCS Problem inanother background, namely the background of the classical 
algorithm for the LIS Problem described at [Fredman, 1975]. For sure each term we deal with in this background 

has its direct analogue in the background of the  array; however our approach can be justified by the fact 
that it leadsus to simpler constructions and an  algorithm for the LCS Problem which can be reduced 

to  if using van Emde Boas trees (details are in the next section). Initially algorithms from 10th to 

16th require  space, but at [Apostolico, 1987] a trick is introduced which can be used to reduce the space 

complexity to , however in this case the time complexity bounds increase by a multiplicative factor of 
. The 9th algorithm requires  space but that trick cannot be used to reduce this space complexity 

bound[Apostolico, 1987]. Recall that  is the number of minimal matches. It can be checked that  

[Rick, 1994] and it is known that in average it holds  [Tronicek, 2002]. This means the 9th,10th and 
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14th algorithms mentioned in the table above have better time complexity bounds than the others mentioned 

there. The algorithm we present here has better time complexity bound than 10th and 14th in case when 
 (or  if the van Emde Boas trees are used), and it has better space complexity bound 

than 9th in cases when  (see [Cormen, 2009] for the -notation). Roughly speaking the algorithm we 
present here has better time and space complexity bounds than the ones mention in the table above when the 
alphabet size if relevantly larger. We present the algorithm in the next section. 

 

 

No. Year Authors Time Complexity Ref. 

1 1974 Wagner, Fischer  [Cormen, 2009] 

2 1977 Hunt, Szymansky  [Hunt, 1977] 

3 1977 Hirschberg  [Hirschberg, 1977] 

4 1977 Hirschberg  [Hirschberg, 1977] 

5 1980 Masek, Paterson  [Masek, 1980] 

6 1982 Nakatsu et al.  [Nakatsu, 1982] 

7 1984 Hsu, Du  [Hsu, 1984] 

8 1986 Myers  [Myers, 1980] 

9 1987 Apostolico, Guerra  [Apostolico, 1987] 

10 1987 Apostolico, Guerra  [Apostolico, 1987] 

11 1990 Chin, Poon  [Chin, 1990] 

12 1990 Wu, Manber, Myers  [Wu, 1990] 

13 1992 Apostolico et al.  [Apostolico, 1992] 

14 1994 Rick  [Rick, 1994] 

15 1994 Rick  [Rick, 1994] 

16 2002 Goeman, Clausen  [Goeman, 2002] 
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The New Algorithm 

First we will discuss the algorithm for the LIS Problem presented at [Fredman, 1975]. That algorithm is an online 

algorithm meaning that it sequentially handles the elements of the input sequence and determines the LIS length 
of the sequence handled so far.Online algorithms have advantage that they can run on dynamically changing 
input data. For instanceunlike the Selection Sort, the Insertion Sort algorithm can maintain the sorted list upon the 
appendingof the next element to the input list [Cormen, 2009]. Thus such algorithms are defined as update 
procedures which are to be performed upon the appending of the next element. Now back to the LIS Problem.Let 

 be a sequence of integers and let  be an integer which is being appended to . We will 

describe an online algorithm which determines the LIS length of  which is  appended by . Denote by  the 

LIS length of  and by  the LIS lengthof . Note that or . For  there are increasing 
subsequences of length in . Let be the minimumof their last elements. It is easy to check that 

 

  (2) 

 

We denote by  the analogue of in : for  let  denote the minimum of the last elements of 

increasing subsequences of length  of . In order to obtain an online algorithm for the LIS Problem we will 

describe how to determine values  based on values . Firstly note that  if and only if 

, and if so then . It is easy to check that this claim can be generalized for any : let  

denote  if  and otherwise let  be the least index such that . It is easy to check that for  

it holds and otherwise . Thus we have described a way how to obtain values  based on 

values . Next the online algorithm for the LIS Problem is described. The algorithm maintains the values 

 in an array . Upon the appending of the next element  to sequence  the algorithm just 

searches for the index  mentioned above and updates the value at that index. 

 

LIS-update 

Input: the next element  of sequence  

Output:the LIS length of the sequences  handled so far 

Method: 

1.  
2.  
3.  
4.  
5.  
6.  
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Note that each call of this procedure requires  time where  is the LIS length of the sequence handled so 

far. Thus we have described an online algorithm for the LIS Problem which runs in  time and in  

space where  is the length of the sequence handled so far and  is the LIS length of that sequence. Next we 
will present an online algorithm for the LCS Problem which determines the LCS length of two sequences of length 

and , , in  time where  is the number of minimal matches between the input sequences. 
As for the LCS Problem there are two input sequences some clarification is needed regarding the notion of online 
algorithms.By an online algorithm for the LCS Problem we mean an algorithm which can accept the next element 
of either of the two input sequences and provide the LCS length of the two sequences handled so far. Let 

 and  be two sequences over some alphabet  of size  and let  be 

a symbol being appendedto . We will describe an online algorithm which determines the LCS length of and 

, where  is appended by . Denote by  the LCS length of  and  and by  the LCS length of and . 

Note that or . For  there are subsequences of length common to and . Let  be 

the minimum index such that there is a subsequence of length common to  and  ending at in .It is easy to 
check that 

 

  (4) 

 

Similarly for  we define  as the minimum index such that there is a subsequence of length  

common to  and  ending at in , and we get 

 

  (5) 

 

We will call the indices at (4) thresh indices or thresh values of sequence with respect to  and the indices at (5) 
thresh indices or thresh values of sequence  with respect to . Let for  be the thresh values of 

sequence with respect to  and  be the thresh values of  with respect to . In order to obtain an online 

algorithm for the LCS Problem we will describe how to determine indices  and  based on indices 

and . Firstly note that  if and only if there is some index , , such that 

, and if so then  is the minimum of such -s. It is easy to check that this claim can be generalized for 

any : if  is the first occurrence of  in  after  and  then  and otherwise  

(see Figure 1). 
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Figure 1 

 

Thus we have described a way how to obtain sequences  and  and their thresh indices based on sequences 

 and  and their thresh indices.So during this some thresh values are updated and the others are not.A trivial 
approach would be to handle all thresh values and update them if they has to be updated, however better would 

be to handle only those thresh values which has to be updated.Let  be the first occurrence of  in  

aftersome . Note that the least thresh value exceeding  which has to be updated is the first occurrence of 

thresh value after . This means that while searching for the first occurrence of  (after some thresh value) the 

thresh values can be ignored.Also note that the thresh values of  with respect to , i.e. the , can be 

obtained easily:there is a new thresh value there if and only if  and if so then . It can be 

checked that each update of a thresh value corresponds to a minimal match.Next the algorithm is presented. It 

consists of two update procedures: one for calling upon the appending the next element to sequence  and 

another upon the appending the next element tosequence . We will restrict only on the second one as the first 
one can be obtained just by swapping symbols “A” and “B” in the text of the procedure. The algorithm maintains 

the sequences  and  in arrays and  respectively and for each symbol  of alphabet 

 it maintains the set of occurrences of  in  and  in binary search trees  and  

respectively.The algorithm also maintains the thresh indices  and  in binary search trees 

 and  respectively. Following is the update procedure which is to be called upon the 

appending the next element to sequence .The procedure uses two temporary variables  and which 
correspondto the next and previous values of updating thresh indices. 

Note that each iteration of the while loop at lines 3-12 updates a thresh value (  at the end of each iteration) 
and the operations carried out during each iteration require  time as they are performed on binary 
search trees. Recall that each update of the thresh value corresponds to a minimal match, so we have described 
an online algorithm for the LCS Problem which runs in  time and in  space where  and  

are the lengths of the sequences handled so far and  is the number of minimal matches between that 
sequences. These bounds can be improved if using van Emde Boas trees [Cormen, 2009] instead of binary 

search trees.van Emde Boas tree is a data structure that for some a priory fixed integer  can store some of first 

 integers,itsupports operations of insertion deletion and search for the upper bound with worst case time 

complexity bound of and it requires  space regardless the number of integers stored in it. At 

[Cormen, 2009] it is shown how this data structure can be modified to require only  space where  is the 
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number of stored elements (there the modified data structure is called y-fast trie). In this case the operations of 
insertion and deletion do not have worst case time complexity bound of  but this bound holds for the 

amortized time complexity. This fits with our needs as we perform  insertions and deletions, thus we 
conclude that if using these modified van Emde Boas trees then the algorithm presented in this paper will run in 

 time and in  space. 

 

 

LCS-updateB 

Input: the next element  of sequence  

Output:the LCS length of the sequences  and handled so far 

Method: 

1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
10.  
11.  
12.  
13.  
14.  
15.  
16.  
17.  
18.  
19.  
20.  
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INTERFERENCE MINIMIZATION IN PHYSICAL MODEL OF WIRELESS NETWORKS 

Hakob Aslanyan 

 

Abstract: Interference minimization problem in wireless sensor and ad-hoc networks is considered. That is to 

assign a transmission power to each node of a network such that the network is connected and at the same time 

the maximum of accumulated signal straight on network nodes is minimum. Previous works on interference 

minimization in wireless networks mainly consider the disk graph model of network. For disk graph model two 

approximation algorithms with )( nO  and ))ln(( 2noptO  upper bounds of maximum interference are known, 

where n  is the number of nodes and opt  is the minimal interference of a given network. In current work we 

consider more general interference model, the physical interference model, where sender nodes' signal straight 

on a given node is a function of a sender/receiver node pair and sender nodes' transmission power. For this 

model we give a polynomial time approximation algorithm which finds a connected network with at most 

)/)ln(( 2 βnoptO  interference, where 1≥β  is the minimum signal straight necessary on receiver node for 

successfully receiving a message. 

Keywords: interference, wireless networks, graph connectivity, set cover, randomized rounding. 

ACM Classification Keywords: C.2.1 Network Architecture and Design - Network topology, G.2.2 Graph Theory 

- Network problems. 

 

Introduction 

We consider interference minimization problem in energy limited wireless networks (wireless sensor and ad-hoc 
networks) where recharging or changing the energy sources of nodes is not feasible and sometimes due to 
environmental conditions not possible. In such networks it is important to consider the minimization of energy 
consumption of algorithms running on network nodes. By decreasing energy consumption we increase nodes 
operability time and as a result networks' lifetime. In different wireless sensor network (WSN) applications 
definition of networks' lifetime may be different (till all the nodes are alive, network is connected, given area is 
monitored by alive nodes, etc). In current work we tend to decrease energy consumption of nodes by decreasing 
the maximum interference of network algorithmically. Wireless communication of two nodes which is experiencing 
the third one is called interference. High interference on a receiver node (high value of accumulated signal 
straights on a node) makes difficulty to determine and accept the signals dedicated to it, this makes necessity for 
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sender node to retransmit the signal until it is successfully accepted by receiver node, which is extra energy 
consumption and should be avoided. 

Interference Minimization in Disk Graph Model of Wireless Networks 

Consider a set of spatially distributed nodes, where each node equipped with radio transmitter/receiver and the 
power of nodes' transmitter is adjustable between zero and nodes' maximum transmission level. In disk graph 
model of network assumed that by fixing a transmission power for a node we define a transmission radius/disk of 
a node, i.e. the transmitted signal is reachable and uniform in any point of transmission disk of node and is zero 
outside of it. In this model two nodes considered connected if they are covered by each others transmission disks 
and interference on a given node defined as the number of transmission disks including that node. The overall 
interference of network is the maximum interference among all the nodes forming the network. The main 
weakness of disk graph model is the assumption that the radio coverage area is a perfect circle. 

Assigning a transmission powers to a given set of spatially distributed nodes such that nodes form a connected 

network with assigned transmission powers while the interference of network is minimal called interference 

minimization problem in wireless networks. 

One particular case of interference minimization problem described above is studied in [Rickenbach, 2005]. 
Authors considered the problem in one dimensional network, where all the nodes are distributed along the 
straight line, and named it a highway-model. For this model they showed that intuitive algorithm, which connects 
each node with its closest left and right nodes, can give a bad performance. An example of network where 
intuitive algorithm has worst performance is the exponential node chain, where distance between two consecutive 

nodes grows exponentially ( 110 ,2,,22 −n
  ). They also gave two algorithms for one dimensional case of 

interference minimization problem. The first algorithm, for a given set of distributed nodes, finds a connected 

network with at most )( ∆O  interference where ∆  is interference of uniform radius network under consideration 

and is )(nO  in some network instances. The second one is an approximation algorithm with )(4 ∆O  

approximation ratio. By applying computational geometry and ε -net theory to ideas given in [Rickenbach, 2005], 

[Halldorsson, 2006] proposes a algorithm which gives )( ∆O  interference bound for maximum interference in 

two and )( ∆∆logO  for any constant dimensional network. Authors of [Aslanyan, 2010] give iterative algorithm 

based on linear program relaxation techniques which guaranties ))ln(( 2noptO  interference bound for networks 

of n  nodes, opt  here is the optimal interference value for given instance of network. Logarithmic lower bound for 

interference minimization problem in disk graph model of networks under the general distance function is proven 
in [Bilo, 2006] by reducing minimum set cover to minimum interference problem. 
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Interference Minimization in Physical Model of Wireless Networks 

Again, consider a set of spatially distributed wireless nodes, where each node has a radio transmitter/receiver 
with adjustable power level. In physical model of wireless networks we refuse the assumption that the signal 
coverage of a node is a perfect circle and assume that the signal straight on any given point (node) of network is 
a function of sender node, the node in question and the level of transmitted signal. In this model we are also 
given a constant β  which is a signal acceptance threshold, i.e. it assumed that receiver node accepts the signal 

if it's straight is at least β . By this mean two nodes considered connected if their signals' straights are at least β  

on each other. Interference on a given node defined as a sum of signal straights on that node and interference of 
networks is the maximum interference among all the nodes forming the network. 

The disk graph model can be deduced from physical model if we consider a signal straight function which for 
every node and its transmission level draws a disk and outputs a positive constant for every node within that disk 

and zero for the rest. Another example of signal straight function is αξξ ),(=),,( vudvuf  where u  and v  are 

sender and receiver nodes respectively, ξ  is the transmission power of u , [ ]2,6∈α  is the path lost exponent 

and ),( vud  is the distance between nodes u  and v  [Pahlavan, 1995]. 

Interference minimization problem defined in a same way as for disk graph model. 

Assign a transmission powers to a given set of spatially distributed wireless nodes such that nodes form a 

connected network with assigned transmission powers and the interference of network is minimal. 

Our result is a deterministic polynomial time algorithm for interference minimization problem in wireless networks 
under the physical model of wireless networks in consideration, which for given network of n  wireless nodes finds 

a connected network with at most )/)ln(( 2 βnoptO  interference. 

Formal Definitions 

Consider a set V  of n  wireless nodes spatially distributed over a given area where nodes have adjustable 

transmission power and it can be fixed between zero and nodes' maximum transmission power. For any node 

Vu∈  denote the range of feasible transmission powers by ][0,= max
uuR ξ , where max

uξ  is the maximum 

transmission power for node u , and define a signal straight function +→× RRV uu :φ  where ),( ξφ vu  is the 

signal straight of node u  on node v  when u  uses the transmission power ξ . We assume that the signal straight 

function satisfies to following conditions   

    1.  for any uR∈21,ξξ , from 21 ξξ ≥  it follows that ),(),( 21 ξφξφ vv uu ≥   

    2.  for given +∈Rη  it is easy to find a uR∈ξ  (if exists) such that ηξφ =),(vu   

Suppose that for any node u  the suitable transmission power uξ  is fixed, then any two nodes u  and v  
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considered connected if βξφ ≥),( uu v  and βξφ ≥),( vv u  where 1≥β  is the signal acceptance threshold of 

network. Interference on a given node u  is the accumulated signal straight of all the nodes forming the network 

),(=)( }{\ vvuVv uuI ξφ∑ ∈  and )(max=)( VIVI Vv∈  is the overall network interference. At this point interference 

minimization problem can be formulated as follows: 

Given a spatially distributed set of wireless nodes, assign a suitable transmission power to each node such that 

the network is connected and the interference of network is minimal. 

This is the formulation of interference minimization problem by transmission power assignment. 

Consider a network graph ),(= EVG  where }),(,),(,,|),{(= βξφβξφ ≥≥∈ max
vv

max
uu uvVvuvuE  i.e. in graph 

G  two vertexes/nodes are incident if their maximum transmission powers are enough for communicating with 

each other. By this mean interference minimization problem is formulated as follows. 

For a given network graph ),(= EVG  find a connected spanning subgraph ),(= EVH ′  such that the 

interference of network computed by the selected set of edges is minimal. 

Formally, having the subgraph ),(= EVH ′  it is correct to further extract transmission power for any node u  as a 

minimum power such that u  can communicate with all of its neighbors in H , 

}),( that  allfor  ),(|{= Evuvvmin uu ′∈≥ βξφξξ ξ , which avoids unnecessary interference. 

Set Covering and Interference Minimization 

In the classical set cover problem a set S  and a collection C  of subsets of S  are given, it is required to find a 

minimum size sub collection C′  of C  such that the union of sets of C′  is S . In a decision version of set cover 

problem a positive integer k  is given and the question is if it is possible to choose at most k  subsets from 

collection C  such that the union of chosen sets is S . It is well known that decision version of set cover problem is 

NP-complete and in polynomial time the optimal solution can not be approximated closer than with a logarithmic 
factor [Johnson, 1974]. Several variants of set cover problem have been studied [Kuhn, 2005; Garg, 2006; 
Demaine, 2006; Guo, 2006; Mecke, 2004; Ruf, 2004; Aslanyan, 2003]. 

Being motivated by interference minimization problem in cellular networks the minimum membership set cover 
(MMSC) problem has been investigated in [Kuhn, 2005]. In MMSC a set S  and a collection C  of subsets of S  

are given, it is required to find a subset C′  of C  such that the union of sets in C′  is S  and the maximum 

covered element of S  is covered by as few as possible subsets from C′ . In a decision version of MMSC problem 

a positive integer k  is given and the question is if it is possible to choose a sub collection of C  such that the 

union of chosen sets is S  and each element of S  is covered by at most k  different subsets. [Kuhn, 2005] 

Contains the proofs of NP-completeness of decision version of MMSC problem and non-approximability of MMSC 

optimization problem by factor closer than )ln( nO  unless )( )loglog( nOnTIMENP ⊂ . Also, by using the linear 
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program relaxation and randomized rounding techniques, [Kuhn, 2005] gives a polynomial time algorithm, which 
approximates the optimal solution of MMSC with logarithmic factor )ln( nO . 

Minimum partial membership partial set cover (MPMPSC) problem has been proposed in [Aslanyan, 2010] and 
used for developing interference minimization algorithm for wireless networks (disk graph model under 
consideration). In MPMPSC a set 21= SSS ∪ , consisting of two disjoint sets 1S  and 2S , along with collection C  

of subsets of S  are given, it is required to find a sub collection C′  of C  such that the union of sets in C′  

contains all the elements of 1S  and the maximum covered element of 2S  is covered by as few as possible 

subsets from C′ . In a decision version of MPMPSC problem a positive integer k  is given and the question is if it 

is possible to choose a sub collection of C  such that the union of chosen sets contains all the elements of 1S  and 

each element of 2S  is covered by at most k  different subsets. It is known that the decision version of MPMPSC 

problem is NP-Complete and that the deterministic polynomial time algorithm exists which approximates the 
optimal solution of optimization version of MPMPSC by logarithmic factor |}))||,{|(( 21 SSmaxlogO  which 

asymptotically matches the lower bound [Aslanyan, 2010]. The approximation algorithm for MPMPSC is achieved 
by applying the same techniques which has been applied in [Kuhn, 2005] for solving the MMSC. 

Being motivated by interference minimization problem in physical model of wireless networks we consider a 
weighted minimum partial membership partial set cover (WMPMPSC) problem which is a generalization of 
MPMPSC. In WMPMPSC a set 21= SSS ∪ , consisting of two disjoint sets 1S  and 2S , along with collection C  

of subsets of S  are given. In each subset from C  the elements of 2S  have weights in [0,1] . The same element 

of 2S  may have a different weights in different sets of C . It is required to find a sub collection C′  of C  such that 

the union of sets in C′  contains all the elements of 1S  and the accumulated, among the subsets of C′ , weight of 

a node which has the maximum accumulated weight, is as small as possible. In a decision version of WMPMPSC 
problem a positive number k  is given and the question is if it is possible to choose a sub collection of C  such 

that the union of chosen sets contains all the elements of 1S  and the accumulated, among the chosen sets, 

weight of each node is at most k . It is easy to see that in WMPMPSC we get a instance of MPMPSC when each 

node has a weight 1  in all the sets of C . This last statement proves the NP-Completeness of the decision version 

of WMPMPSC and the logarithmic lower bound for optimization version of the problem. 

LP Formulations 

Let C′  denote a subset of the collection C . To each subset CC j ∈  we assign a variable {0,1}∈jx  such that 

CCx jj ′∈⇔1= . For C′  to be a set cover for S , it is required that for each element Su∈  at least one set jC  

with jCu∈  is in C′ . Therefore, C′  is a set cover for S  if and only if for all Su∈  it holds that 1≥∑ ∋ jujC x . Let 

z  is the maximum membership over all the elements caused by the sets in C′ . Then for all Su∈  it follows that 
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zx jujC ≤∑ ∋
. Then the integer linear program MMSCIP  of MMSC problem can be formulated as: 

minimize z    

subject to  ,1≥∑
∋

j
ujC
x  Su∈  (1) 

 ,zx j
ujC

≤∑
∋

 Su∈  (2) 

 ,{0,1}∈jx  CC j ∈  (3) 

Integer linear program MPMPSCIP  of MPMPSC would be: 

minimize z    

subject to  ,1≥∑
∋

j
ujC
x  1Su∈  (4) 

 ,zx j
ujC

≤∑
∋

 2Su∈  (5) 

 ,{0,1}∈jx  CC j ∈  (6) 

 

After introducing the weight function [0,1]: 2 →× SCw , where ),( uCw j  is the weight of u  in subset jC , the 

integer linear program WMPMPSCIP  of WMPMPSC can be formulated as: 

minimize z    

subject to  ,1≥∑
∋

j
ujC
x  1Su∈  (7) 

 ,),( zuCwx jj
ujC

≤∑
∋

 2Su∈  (8) 

 ,{0,1}∈jx  CC j ∈  (9) 

 

By applying randomized rounding technique to MMSCIP  with relaxation of constraints (3) , [Kuhn, 2005] gives a 

deterministic polynomial time approximation algorithm with 1))(ln))((1/(1 +′+ nzO  approximation ratio for 

MMSC problem, where z′  is the optimal solution for MMSCIP  relaxation. Later on [Aslanyan, 2010] states that by 

applying the same randomized rounding technique to MPMPSCIP  with relaxation of constraints (6)  gives a 

deterministic polynomial time approximation algorithm with 1)|})||,{|max(ln))((1/(1 21 +′+ SSzO  

approximation ratio for MPMPSC problem, where z′  is the optimal solution for MPMPSCIP  relaxation. In current 
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work we state that the same randomized rounding technique can be applied to WMPMPSCIP  with relaxation of 

constraints (9)  to achieve a deterministic polynomial time approximation algorithm with 

1)|})||,{|max(ln))((1/(1 21 +′+ SSzO  approximation ratio for WMPMPSC problem, where z′  is the optimal 

solution for WMPMPSCIP  relaxation. The proof of the last statement is presented in the Appendix of this work. To 

sum up, we have the following theorem. 

 

Theorem 1. For WMPMPSC problem, there exists a deterministic polynomial-time approximation algorithm with 

an approximation ratio of |}))||,{|(( 21 SSmaxlogO 1

Approximation Algorithm for Interference Minimization in Physical Model of Wireless Networks 

 

 

Algorithm takes a network graph ),(= EVG  with n  vertices as an input and after logarithmic number of 

)log( nOk ∈  iterations returns connected subgraph GGk ⊆  where interference of network corresponding to the 

graph kG  is bounded by )/)ln(( 2 βnoptO ⋅ , where Vn =  is the number of network nodes and opt  is the 

interference of minimum interference connected network. 

Algorithm starts the work with the graph ),(= 00 EVG  where ∅=0E . On the thl  iteration, 1≥l , algorithm 

chooses a subset 1\ −⊆ ll EEF  of new edges and adds them to already chosen edge set i
l
il FE 1

1=1 = −
− ∪ . As a 

consequence of such enlargement of edge set, interference on graph vertices may increase in some value 
depending on lF . Algorithm finishes the work if the graph ),(= ll EVG  is connected otherwise goes for the next 

iteration. Below we present how algorithm chooses the set of edges 1\ −⊆ ll EEF  on the thl  iteration. Algorithms' 

quality, i.e the final maximal interference on nodes (its upper estimate) is bounded by the accumulated through 
the iterations interferences which we try to keep minimal. Let ),(= 11 −− ll EVG  is the graph obtained after the 

thl 1)( −  iteration, and has the set of connected components },,{=)( 1
1

1
11

−
−−−
lk

lll CCGC  . Denote by 

11 \ −− ⊆ ll EEH  the set of all edges which have their endpoints in different connected components of 1−lG . On 

the thl  stage of algorithm a subset of 1−lH  is selected to further reduce the number of connected components 

which finally brings us to a connected subgraph. In this way we build the collection )),(( 11 −− ll HGCT  of special 

sets as follows. Starting with 1−lH  we add to the set )),(( 11 −− ll HGCT  of thl  stage specific weighted subsets 

                                                           

 

1See the Appendix A  for the proof. 
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VCCvuT v
l

u
l

l ∪−− },{=),( 11  defined by all 1),( −∈ lHvu , where u  belongs to connected component u
lC 1−  and v  

belongs to v
lC 1− . By selection of u  and v  we have that u

lC 1−  and v
lC 1−  are different. By definition of connectivity 

nodes u  and v  can communicate with each other if their signal transmission powers uvξ  and vuξ  satisfy to 

βξφ ≥),( uvu v  and βξφ ≥),( vuv u , where β  is the signal acceptance threshold. To avoid unnecessary energy 

consumption and to reduce interference it would be right to adjust transmission powers uvξ  and vuξ  such that 

βξφ =),( uvu v  and βξφ =),( vuv u , this is possible to do because of the second property of the signal straight 

function φ . Then the noise of the link ),( vu  on any node t  can be calculated as 

),(),(=)),,(( vuvuvu tttvuw ξφξφ +  which would be the weight )),,(( tvuTw l  of node t  in the subset ),( vuT l . And 

so ),( vuT l  is a composite set which includes two labels for components u
lC 1−  and v

lC 1−  and all the vertices in V  

along with the weights, which are the interference increase on nodes if the edge ),( vu  is selected as a 

communication link. In terms of WMPMPSC the labels of connected components will compose the set 1S  and 

weighted V  will be the set 2S . 

 

Figure 1  demonstrates connected components that are input to the stage l , and the set 1−lH  of all cross 

component edges. 

 

 

Figure 1: Connected components that are input to the l -th stage of the algorithm 

 

p
lC 1−  

q
lC 1−  

1
1−lC  

1
1
−
−
lk

lC  
2

1−lC  

1−lH  
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 After constructing )),(( 11 −− ll HGCT  we normalize the weights of elements by dividing all the weights by the 

maximum weight )),,((max=
1),(, tvuww

lHvutmax −∈  and solve the WMPMPSC on the set VGC l ∪− )( 1  and 

collection of subsets )),(( 11 −− ll HGCT , where condition for elements of )( 1−lGC  is to be covered and for 

elements of V  is to have minimum accumulated weight. Finally, based on the solution 

)),(()),(( 1111 −−−− ⊆ llll HGCTHGCW  of WMPMPSC we build the set lF  of network graph edges, selected at the 
thl  iteration of algorithm by adding to lF  all the edges 1),( −∈ lHvu  such that )),((),( 11 −−∈ ll

l HGCWvuT  and 

multiply all the weights by maxw  to receive the real interference increase. 

Algorithm performance 

Theorem 2. On each iteration of algorithm the number of connected components is being reduced at least by 

factor of two, which bounds the total number of iterations by )log( nO .   

Proof. For each connected component )( 11 −− ∈ l
u
l GCC  of graph 1−lG  the solution )),(( 11 −− ll HGCW  of 

WMPMPSC solved at thl  iteration contains at least one set )),((),( 11 −−∈ ll
l HGCWvuT  such that ),(1 vuTC lu

l ∈−  

(as )),(( 11 −− ll HGCW  is a cover for the set )( 1−lGC ). And as each set )),((),( 11 −−∈ ll
l HGCWvuT  contains 

exactly two connected components, then by adding the edge ),( vu  to our solution, we merge those two 

connected components into one (connecting by the edge ),( vu ). So every connected component merges with at 

least one other component, which reduces the number of connected components at least by factor of 2 .  

 

Lemma 1. Network corresponding to the graph ),(= l
l FVG , where lF  is the edge set obtained on the thl  

iteration of algorithm, has interference in ))/ln(( 2 βnoptO ⋅ .  

Proof. Consider the set of connected components },,{=)( 1
1

1
11

−
−−−
lk

lll CCGC   of thl  iterative step of algorithm. Let 

optE  is the set of the edges of some interference optimal connected network for our problem (edges of connected 

network with optimal interference opt ). Then there is a subset opt
l
opt EE ⊆  which spans connected components 

)( 1−lGC  and the network of the graph ),(= l
opt

l
opt EVG  has interference not exceeding the opt . 

 

Fact 1. The maximal vertex interference due to the spanner l
optE  of )( 1−lGC  is at most opt .  

Now let us build the set collection }),)/(,({=)),(( 1
l
opt

ll
optlopt EvuvuTEGCT ∈− .  

Fact 2. )),(( 1
l
optlopt EGCT −  is a sub collection of )),(( 11 −− ll HGCT  built on the thl  iteration of algorithm and is a 

cover for )( 1−lGC , i.e. )),(( 1
l
optlopt EGCT −  is a solution for the WMPMPSC problem, with some value *z , solved 
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on the thl  iteration of algorithm, not necessary optimal.  Now consider the matrix w
optP  representing the 

transmission signals on some node w  caused by communication links of l
optE . 































w

nunu
w

junu
w

unu
w

unu

w

nuiu
w

juiu
w
uiu

w
uiu

w

nuu
w

juu
w

uu
w

uu

w

nuu
w

juu
w
uu

w
uu

w
opt

PPPP

PPPP

PPPP

PPPP

P













21

21

222212

112111

=  

where 





 ∉=

=
               otherwise),,(

),(or   if,0

jii uuu

l
optjiw

juiu w
Euuji

P
ξφ

 

 

is the signal straight of node iu  on node w  when iu  uses the transmission power 
juiuξ  (communicates with node 

ju ).  

Fact 3. and the sum of the matrix elements will give the interference increase we count (the real interference 

increase is the sum of the maximal elements from each row) on node w  by edge set l
optE . Due to the Fact 1 and 

signal acceptance threshold β  for any vertex iu  the number of sets ),),((),( 1 wEGCTvuT l
optlopti

l
−∈  will not 

exceed the  β/opt , in other words the number of non zero elements on each row of matrix w
optP  is bounded by 

 β/opt .  

Fact 4. The interference increase on node w  by the edge set l
optE  can be calculated as w

juiuj
n
i Pmax1=∑  and 

due to the Fact 1 it doesn't exceed the opt .  

From facts 3 and 4 it follows that the sum of the matrix elements is bounded by β/2opt , which means that the 

optimal value of WMPMPSC problem solved on the thl  iteration of algorithm is bounded by β/2opt  and therefor 

by Theorem 1  the interference increase by the edge set lF  is bounded by )/ln( 2 βnoptO ⋅ . 

 

Theorem 3. The network built by WMPMPSC relaxation algorithm has at most ))/ln(( 22 βnoptO ⋅  interference. 

Proof. The proof is in combination of Theorem 2  and Lemma 1 .  
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Conclusion and Future Work 

In current work we considered the interference minimization problem in physical model of wireless networks and 
proposed a polynomial time approximation algorithm which for a given set of wireless nodes creates a connected 

network with at most )/)ln(( 2 βnoptO ⋅  interference. In some WSN applications network considered as functional 

while it is connected, therefore in future works on interference minimization the k -connectivity of network should 

be considered. Also considering the problem in Euclidean spaces, which is a realistic case for WSNs, may give a 
better approximation ratio. 
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Appendix A 

 

Here we show how randomized rounding technique used in [Kuhn, 2005] for solving the MMSCIP  can be used for 

solving WMPMPSCIP . This section mostly presents the work of [Kuhn, 2005]. 

Consider a instance ),,=( 21 wCSSS ∪  of WMPMPSCIP  and the solution vector x′  and z′  of WMPMPSCLP  relaxation 

of WMPMPSCIP . Consider the following randomized rounding scheme, where an integer solution mx 0,1∈  is 

computed by setting 



 ′=

=
otherwise           ,0

},1min{:y probabilit  with           ,1 ii
i

xp
x

α
 

independently for each }{1,..., ni∈ . Let iA  be the “bad” event that the thi  element is not covered. 

 

Lemma A1.  The probability that the thi  element remains uncovered is 

α−

∋

−∏ epAP j
iujC

i <)(1=)(  

Proof. The proof is in Lemma 1 of [Kuhn, 2005].  

Let iB  be the “bad” event that the weight of the thi  element is more than z′αβ  for some 1≥β . 

 

Lemma A2.  The probability that the weight of the thi  element is more than z′αβ  is 

z

j
ijw

iujC
zi

epBP
′−

∋
′ 








≤−+⋅ ∏

α

β

β

αβ β
β

β

1
),( )1)((11<)(  

Proof. We use a Chernoff-type argument. For 0>ln= βt , we have 
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≤

∑
⋅⋅≤ ∋∏
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β

ββ

αβ

β

αβ βββ

1)(),(1)(),(1)( 1=1  

The inequality and equality in the second line results by application of the Markov inequality and because of the 

independence of the jx . The equality and inequality in the third line hold because βln=t  and xex ≤+1 . For 

the inequalities in the last line we apply xx 1)(1 −≤− ββ  for 1≥β , [ ]0,1∈x  and zijwp j
iujC

′≤∑ ∋
α),( .  

Denote the probability upper bounds given by Lemmas 1A  and 2A  by iA  and iB :  

).1)((11:=   and   )(1:= ),(
j

ijw

iujC
zij

isjC
i pBpA −+⋅− ∏∏

∋
′

∋

β
β αβ  

In order to bound the probability for any “bad” event to occur, we define a function P  as follows 

).(1)(12:=),...,(
1=1=

1 i

n

i
i

n

i
m BAppP −−−− ∏∏  

 

Lemma A3.  The probability that any element is not covered or has a weight more than z′αβ  is upper-bounded 

by ),,( 1 mppP  : 

).,,(< 1
1=1=

mi

n

i
i

n

i
ppPBAP 

 







∪  

Proof. The proof is in Lemma 3 of [Kuhn, 2005].  

The following shows that if α  and β  are chosen appropriately, ),,( 1 mppP   is always less than 1 . 

 

Lemma A4.  When setting 1|})||,{|max(ln= 21 +SSα , then for },3/3/{max1= '' zz+β , we have 

4/5<),,( 1 mppP  .  

Proof. The proof is in Lemma 4 of [Kuhn, 2005]. 
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Lemmas A1 −A4 lead to the following randomized algorithm for the WMPMPSC problem. As a first step, the 
linear program WMPMPSCLP  has to be solved. Then, all ix′  are rounded to integer values {0,1}∈ix  using the 

described randomized rounding scheme with 1|})||,{|max(ln= 21 +SSα . The rounding is repeated until the 

solution is feasible (all elements are covered) and the weight of the integer solution deviates from the fractional 

weight 'z  by at most a factor αβ  for },3/3/{max1= '' zz+β . Each time, the probability to be successful is at 

least 1/5  and therefore, the probability of not being successful decreases exponentially in the number of trials. 

We will now show that ),,( 1 mppP   is a pessimistic estimator and that therefore, the algorithm described above 

can be derandomized. That is, P  is an upper bound on the probability of obtaining a “bad” solution, 1<P  ( P  is a 
probabilistic proof that a “good” solution exists), and the ip  can be set to 0  or 1  without increasing P . The first 

two properties follow by Lemmas A3 and A4, the third property is shown by the following lemma. 

 

Lemma A5.  

For all i , either setting ip  to 0  or setting ip  to 1  does not increase P : 

{ }),,1,,(),,,0,,(min),,( 11111  +−+−≥ iiiim ppPppPppP  

Proof. The proof is in Lemma 5 of [Kuhn, 2005].  

Lemmas A3, A4 and A5 lead to an efficient deterministic approximation algorithm for the WMPMPSC problem. 
First, the linear program WMPMPSCLP  has to be solved. The probabilities ip  are determined as described above. 

For α  and β  as in Lemma A4, 4/5<),,( 1 mppP  . The probabilities ip  are now set to 0  or 1  such that 

),,( 1 mppP   remains smaller than 4/5 . This is possible by Lemma A5. When all {0,1}∈ip , we have an 

integer solution for WMPMPSCIP . The probability that not all elements are covered or that the weight is larger than 

z′αβ  is smaller than 4/5<P . Because all ip  are 0  or 1 , this probability must be 0 . Hence, the computed 

WMPMPSCIP -solution is an αβ -approximation for WMPMPSC. 
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ON MEASURABLE MODELS OF PROMOTION OF  
NEGENTROPIC STRATEGIES BY COGNITION 

Pogossian Edward 

 

Abstract: Could models of mind be independent from living realities but be classified as mind if the mind uses the 

same criteria to form the class mind? In the paper a constructive view on the models of mind, cognizers, is 

presented and the measurable criteria and schemes of experiments on mentality of cognizers are discussed.  

Keywords: modeling, cognition, measures, negentropic, strategies. 

ACM Classification Keywords: A.0 General Literature.  

 

1. Introduction 

Due mind forms models of any realities including itself raises the question whether  models of mind can be mental 
not being  living realties (LR), assembled from LR or developed from the springs of LR? 

In other words, whether are models of mind which do not depend from LR but are classified as mind possible if 
mind uses the same criteria when forms the class mind?  

To answer the question constructive models of mind and criteria of measuring their mentality as well as the 
exhaustive experiments on revealing the truth are needed. 

In what follows a measurable approach to the models of mind, cognizers, is presented and the criteria and 
experiments of testing of mentality of cognizers are questioned.  

This approach to refining of cogs continues the approach started in [Pogossian,1983] and continued in 
[Pogossian,2005,2007] on interpretation of the recognized views on mind [Flavell,1962,Neuman,1966, 
Botvinnik,1984, Atkinson1993, Pylyshin,2004, Roy,2005, Winograd, 986,Mendler,2004,] by models having 
unanimous communalized meanings followed by experiments on validity of those models. 

The paper describes the author’s view on mental behavior and traditionally we should address to the readers by 
using words ''our view'' ,''we think», etc.  

On the other hand, mental behavior, we assume,  is  identified with ourselves and we plan to discuss   
personalized and communalized  constituents in communications.  

That explains why we find possible in the paper to use the pronoun ''I'' for the mind along with ''we'' and ''our'' 
when they seem to be appropriate  
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2. A View on Mind 

2.1. I am a mind and I am able to interpret, or model the realities I perceive, including myself, evaluate the quality, 
or validity of models and use those models to promote my utilities. 

The models are composed from cause-effect relationships  between realities, particularly between realities and 
utilities, and any composition of those relationships comprise the meanings of the realities. 

The basic, or nucleus utilities and meanings are inborn while mind incrementally enriches them by assimilating 
and accommodating by Piaget [Flavel,1962, Mandler, 2004] cause-effect relationships between realities and 
already known utilities and meanings solving corresponding tasks and problems .  

By Piaget  “Mind neither starts with cognition of itself  nor with cognition of the meanings of realities but cognizes 
their  interactions  and expanding to those two poles of interactions  mind organizes itself organizing the world” 
[Flavell,1962]. 

As much coincide ontology, or communalized (vs. personalized) meanings of realities with meanings of their 
models and as much those meanings are operational, i.e. allow to reproduce realities having equal with the 
models meanings, so better is the validity of the models.  

In what follows a personalized model of mind, a view W, and a communalized version of W , cognizers, are 
presented with discussion of  the validity of cognizers and schemas to meet the requirements.   

 

2.2.1. Minds are algorithms for promoting by certain effectors the utilities of living realities (LR) in their games 
against or with other players of those games. 

The players can be LR, assembles of LR  like communities of humans or populations of animals as well as  can 
be some realities that become players because not voluntarily but they affect LR inducing games with 
environments or the  units like programs or devices that have to be tested and response to the actions of 
engineers . To compare and discuss some hypothetic mental realities like Cosmic Mind by Buddhists  and Solaris 
by Stanislaw  Lem  are considered as players as well.  Note, that descriptions of religious spiritual creatures 
resemble algorithm ones. 

 

2.2.2. A variety of economic, military, etc. games can be processed by players. But all LR in different ways play 
the main negentropic games against overall increase of the entropy in the universe [Shrodinger,1956]. 

In those negentropic games with the environments LR and their populations realize some versified reproduction 
and on-the-job selection strategy elaboration algorithms (r SEA). 

The parent rSEA periodically generates springs of LR where each child of the springs realizes some particular 
strategy of survival of those children in on going environments. LR with successful survival strategies get the 
chance to give a new spring and continue the survival games realizing some versions of strategies of their 
parents while unsuccessful LR die. 
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2.2.3. The utilities of LR and their assembles initially are determined by their nucleus, basic interests in the games 
but can be expanded by new mental constructions promoting already known utilities. For example, the nucleus 
utilities of LR, in general, include the codes (genetic) of rSEA and algorithms for reconstructing rSEA using their 
genetic codes.  
 

2.2.4. The periods of reproduction, the power of the springs and other characteristics of rSEA are kinds of means 
to enhance survival abilities of LR and vary for different LR depending, particularly, from the resources of energy 
available to LR and the velocity of changes of the environments of LR. 
 

2.2.5. Minds can be interpreted as one of means to enhance the survival of LR.  In fact, minds realize SEA but in 
contrast to on-the-job performance rSEA the strategies elaborated by minds are auxiliary relatively to rSEA and 
are selected by a priory modeling.  

Correspondingly, the nucleus of mental LR in addition to rSEA codes include codes of mind developing 
algorithms like the adaptation algorithms by Piaget [Flavel,1962, Mandler, 2004]. 
 

2.3. Thus, modeling SEA, or mSEA, do, particularly, the following: 

- form the models of games and their constituents 

- classify models to form classes and other mental constructions 

- use mental constructions for a priori selection the most prospective strategies for the players  

- elaborate instructions for the effectors of players using the prospective strategies. 

The effectors transform the instructions into external and internal actions and apply to the environments of mSEA 
and mSEA themselves, correspondingly, for developing the environments and mSEA and enhancing the success 
of the players. 
 

2.4. Whether are the models of mind which are not dependent from LR but are classified as mind possible if mind 
uses the same criteria when forms the class mind?  

To answer to the question constructive models of mind and criteria of measuring their mentality as well as the 
exhaustive experiments on revealing the truth are needed. 
 

2.5. Let’s name cognizers the models of mind not depending from LR while the models of mental constructions 
name mentals.  

Apparently, this ongoing view W on mind is a kind of cognizers, say, for certainty, 1-cognizers, 1cogs or cogs in 
this paper. 

In what follows a constructive approach to cogs, the criteria and experiments of testing of mentality of cogs are 
presented.  
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3. Basic Approaches and Assumptions 

3.1. Further refining of cogs extends the approach described above on interpretation of the recognized views on 
mind by models having unanimous communalized meanings followed by experiments on validity of those models 
to mind. 

 

3.2.1. Later on it is assumed that cogs are object-oriented programs, say in Java.  

All programs in Java are either classes or sets of classes.  

Therefore, it is worth to accept that cogs and their constituents, mentals, are either Java classes or their 
compositions as well. 

 

3.3. Accepting the above stated assumption the experiments on quality of cogs were run for SSRGT games. 

Particularly, because chess represents the class and by variety of reasons  is recognized as a regular 
environment to estimate models of mind [Botvinnik,1984, Pogossian,1983,2007, Atkinson,1993, Furnkranz, 2001] 
in what follows the constructions of mentals and experiments on mentality of cogs are accompanied, as a rule, by 
interpretations in chess. 

 

3.4. Following to the view W cogs elaborate instructions for the effectors of players to promote their utilities. The 
effectors in turn transform instructions into actions applied to the players and their environments. They can be 
parts of the players or be constructed by cogs in their work. 

It is assumed that certain nucleus mentals of cogs as well as the players and their effectors are predetermined 
and process in discrete time intervals while mentals of cogs can evolve in time. 

The fundamental question on the origin of nucleus mentals and other structures needs further profound 
examination.  

4. Refining Constituents of Cognizers 

4.1.1. In general, percepts are the inputs of cogs and have the structure of bundles of instances of the classes of 
cogs composed in discrete time intervals. 

The realities of cogs are refined as the causes of their percepts.   

 The environments and the universe of cogs are the sets and the totality of all realities of cogs, correspondingly. 

More in details, the bundles of instances of attributes of a class X of cogs at time t are named X percepts at t and 
the causes of X/t percepts are named X/t realities. 

It is worth to consider t percepts and percepts as the elements of the unions of X/t percepts and t percepts, 
correspondingly, and assume that there may be multiple causes for the same percept.  
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Analogically, t realities and X/t realities are defined. 

In case percepts are bundles of instances of attributes of certain classes of cogs the realities causing them are 
the classes represented by those attributes.  

Otherwise, cogs learn about the realities by means of the percepts corresponded to realities and by means of the 
responses of those percepts when cogs arrange actions by effectors.  

Due cogs are continuously developed they start with percepts formed by nucleus classes followed by percepts 
formed by the union of new constructed and nucleus classes. 

 

4.1.2. Cogs promote utilities by using links between utilities and percepts.  They continuously memorize percepts, 
by certain criteria unite them in classes as concepts and distinguish realities to operate with them using matching 
methods associated with the concepts.   

In addition some concepts are nominated by communicators to communicate about the realities of the domains of 
the concepts with other cogs or minds and enhance the effectiveness of operations of cogs in the environments. 

 

4.2.1. The base criteria to unite percepts in concepts are cause-effect relationships (cers) between percepts, 
particularly, between percepts and utilities. 

For revealing cers cogs form and solve tasks and problems. 

Tasks are requirements to link given percepts (or realities) by certain cers and represent those cers in frame of 
certain classes.  

 

4.2.2. The basic tasks are the utility tasks requiring for given percepts to find utilities that by some cers can be 
achieved from the percepts. In chess utility tasks require to search strategies for enhancing the chances to win 
from given positions. 

The generalization, or classification tasks unite percepts (as well as some classes) with similar values into more 
advanced by some criteria classes and associate corresponding matching procedures with those classes to 
distinguish the percepts of the classes and causing them realities.  

The acquisition tasks create new classes of cogs by transferring ready to use classes from other cogs or minds 
while the inference tasks infer by some general rules new classes as consequences of already known to cogs 
classes. 

The question tasks can be considered as a kind of formation tasks inference tasks which induce new tasks 
applying syntax rules of question tags to the solutions of already solved tasks.   

The modeling tasks require revealing or constructing realities having certain similarities in meanings with the 
given ones. 
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Before refining meanings of realities let’s note that to help to solve the original tasks some approximating them 
model tasks can be corresponded. 

 

4.2.3. Problems are compositions of homogeneous tasks and solutions of problems are procedures composing 
the solutions of constituent tasks. 

The problems can be with given spaces of possible solutions (GSS) or without GSS, or the discovery ones.  

Tasks formation and tasks solving procedures form and solve tasks types.  

 

4.3.1. To refine the meanings of realities and mentals it is convenient to interpret the percepts, uniting them 
concepts, nucleus classes and the constituents of those mentals as the nodes of the graph of mentals  (GM) 
while the edges of GM are determined by utility, cers, attributive, part of and other relationships between those 
nodes. 

Then the meaning of a percept C can be defined as the union of the totality of realities causing C and the 
connectivity sub graph of GM with root in C. 

The meaning of a concept X is defined as the union of the meanings of the nodes of the connectivity sub graph of 
GM with the root in X. 

The meaning of realities R causing the percept C is the union of the meanings of the nodes of the connectivity 
sub graph of GM with the root in the percept C. 

 

4.3.2. Later on it is assumed that the knowledge of cogs unites, particularly, the cogs, GM and their constituents. 

 

4.4.1. Processing of percepts and concepts is going either consciously or unconsciously. While unconsciousness, 
usually, addresses to the intuition and needs the long way of research efforts for its explanation, the 
consciousness is associated with the named concepts and percepts in languages and their usage for 
communications. Particularly, the vocabularies of languages provide names of variety of concepts and realities 
causing those percepts. 

Mind operates with percepts, concepts and other mentals while names realities  causing those mentals when it 
should communicate.  

Particularly, this ongoing description of cogs follows to the rules for named realities while internally refers to 
corresponding mentals. 

 

4.4.2. When mind operates internally with the representations of realities it is always able to address to their 
meanings or to ground those representations [8].  
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For external communications mind uses representations of realities, communicators, which can be separated 
from the original carriers of the meanings of those realities, i.e. from the percepts of those realities, and become 
ungrounded.  

The role of communicators is to trigger [12] the desired meanings in the partners of communications. Therefore, if 
partners are deprived of appropriate grounding of the communicators special arrangements are needed like the 
ones provided by ontologies. If the communicators are not sufficiently grounded well known difficulties like the 
ones in human-computer communications can rise. 

Note, that if the model R` is a grounded reality the meaning of R’ can induce new unknown aspects of the 
meaning of the original ones. 

 

4.5. Realities R` represent realities R, or R` is a model of R, if meanings of R` and R intersect. 

Model R` is equal to R if R’ and R have the same meanings. The more is the intersection of the meanings of R 
and R` relative to the meaning of R the greater is the validity of R`. For measuring the validity of models a variety 
of aspects of the meanings of original realities can be emphasized. Particularly, descriptive or behavioral aspects 
of the meanings can be considered, or be questioned whether the meanings are views only of the common use or 
they are specifications.   

5. Questioning Validity of Mind 

5.1. Modeling problems require constructing realities having certain similarities in meanings with the original ones. 

When those realities are problems as well cogs correspond model problems to the original ones, run them to find 
model solutions and interpret them back to solve the original ones. 

Apparently, solutions of problems are the most valid models of those problems but, unfortunately, not always can 
be found in frame of available search resources.  

Valid models trade off between the approximations of the meanings of solutions of problems and between 
available resources to choose the best available approximations. 

Due of that inevitable trade off the models are forced to focus on only the particular aspects of those solutions. 

If communication aspects are emphasized the descriptive models and criteria of validity can be in use require the 
realities-models be equal only by communicative means of the communities. 

On-the-job or behavioral criteria evaluate validity of models by comparing the performances of corresponding 
procedures. 

The records of computer programs provide examples of descriptive models while when   processed programs 
become the subject of behavioral validity. Sorts of behavioral validity provide functional testing and question-
answer ones like Turing test. 
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Productive behavioral validity criteria compare the results of affection of the outputs of realities and their models 
on the environment. Fun Newman requirement on self-reproducibility of automata [Neuman, 1966] provides an 
example of productive validity. In its interpretation as reflexive reproducibility (RR) validity that criterion requires to 
construct 1-models of realities able to produce 2-models equal to the 1-models and able to chain the process. 

 

5.2. To formulate criteria of validity of cogs it is worth to summarize the refined to this end views on mind as the 
following:  

mind is an algorithm to solve problems on promotion of utilities of LR in their negentropic games 

mind is composed from certain constituent algorithms for forming and solving tasks of certain classes including 
the utility, classification, modeling, questioning classes 

mind uses solutions of problems to elaborate instructions for certain effectors to make the strategies of LR more 
effective and the environments of LR more favorable to enhance the success of LR in negentropic games. 

 

5.3. Criteria of validity of cogs to mind have to answer whether cogs have meanings that minds have about 
themselves.  

On the long way in approaching to valid cogs a chain of inductive inferences is expected aimed to converge 
eventually to target validity. 

Inductive inferences unite science with arts and, unfortunately, the term of their stabilization can not be 
determined algorithmically. Nevertheless, what can be done is to arrange those inferences with the trend to 
converge to the target stabilization in limit [19]. 

To approach to valid cogs it is worth to order the requirements to the validity of cogs and try to achieve them 
incrementally, step by step. 

The requirements v1- v4 to validity of cogs condition them to meet the following: 

v1. be well positioned relatively to known psychological models of mind 

v2. be able to form and solve the utility, classification, modeling and question tasks with acceptable 
quality of the solutions 

v.3. be able to use the solutions of tasks and enhance the success of the players 

v4. be able to form acceptable models of themselves, or be able to self modeling 

The requirements v2 - v4 follow the basic views on mind while v1 requires positioning cogs relatively, at least, to 
the recognized psychological models of mind to compare and discuss their strengths and weaknesses. 

Note, that parent minds of LR reproduce themselves in the children minds in indirect ways using certain forms of 
cloning, heritage and learning procedures. 



International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010 

 

257 

Some constituents of reproduction of LR can already be processed artificially, i.e. by regular for the human 
community procedures.  

The requirement v4 is questioning, in fact,   whether completely artificial minds, cogs, can reproduce new cogs 
equal themselves and to the biological ones. 

 

5.4. What are the validity criteria to make cogs equal by meaning to mind and whether cogs valid by those criteria 
can be constructed? 

It is a long way journey to answer to these questions and elaborate some approaches to implement. 

6. Conclusion 

Valid cogs, if constructed, confirm the assertion that mind is a modeling based problem formation and solving 
procedure able to use knowledge gained from the solutions to promote the utilities of LR in their negentropic 
games. 

Synchronously, mental cogs provide a constructive model of mind as the ultimate instrument for cognition.  
Knowledge on the nature of instruments for revealing new knowledge gives a new  look on the knowledge already 
gained or expected and raise new consequent questions.  

Therefore, revealing by cogs the new knowledge on the instruments of cognition it is worth to question the new 
aspects of relationships between mind and the overall knowledge mind creates and uses. 

Ongoing experiments on study of cogs are based on the technique of evaluating adaptive programs and their 
parts by local tournaments and use the game solving package with its kernel Personalized Planning and 
Integrated Testing (PPIT) and Strategy Evaluation units [Pogossian,1983,2005,2007]. 
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ON RELIABILITY APPROACH TO MULTIPLE HYPOTHESES TESTING AND TO 
IDENTIFICATION OF PROBABILITY DISTRIBUTIONS OF TWO STOCHASTICALLY  

RELATED OBJECTS 

Evgueni Haroutunian, Aram Yessayan,  Parandzem Hakobyan 

 

Abstract: This paper is devoted to study of characteristics of logarithmically asymptotically optimal (LAO) 

hypotheses testing and identification for a model consisting of two related objects. In general case it is supposed 

that 1L  possible probability distributions of states constitute the family of possible hypotheses for the first object 

and the second object is distributed according to one of 21 LL ×  given conditional distributions depending on the 

distribution index and the current observed state of the first object. For the first testing procedure the matrix of 

interdependencies of all possible pairs of the error probability exponents (reliabilities) in asymptotically optimal 

tests of distributions of both objects is studied. The identification of the distributions of two objects gives an 

answer to the question whether 1r -th and 2r -th distributions occurred or not on the first and the second objects, 

correspondingly. Reliabilities for the LAO identification are determined for each pair of double hypotheses. By the 

second approach the optimal interdependencies of lower estimates of all possible pairs of corresponding 

reliabilities are found and lower estimates of reliabilities for the LAO identification are studied for each pair of 

hypotheses. The more complete results are presented for model of statistically dependent objects, when 

distributions of the objects are dependent, but its current states are independent. For an example of two 

statistically dependent objects optimal interdependencies of pairs of reliabilities are calculated and graphically 

presented. 

Keywords: Multiple hypotheses testing, Identification of distribution, Inference of many objects, Error probability 

exponents, Reliabilities. 

 

1. Introduction 

As a development of the results on two and on multiple hypotheses logarithmically asymptotically optimal (LAO) 
testing of probability distributions of one object [1] -- [3], in paper [4] Ahlswede and Haroutunian formulated a 
number of problems with respect to multiple hypotheses testing and identification for many objects. Haroutunian 
and Hakobyan solved in [5] the problem of many hypotheses testing for two independent objects and in [6] the 
problem of the identification of distributions being based on samples of independent observations. In 



International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010 

 

260 

prepublications [7] -- [10] Haroutunian and Yessayan studied many hypotheses LAO testing for two objects under 
different kinds of relation. 

LAO tests of its distributions for two hypotheses were analyzed first by Hoeffding [1], later by Csiszár and Longo 
[2] and by other authors. Here we investigate characteristics of procedures of LAO testing and identification of 
probability distributions of two stochastically dependent objects. 

Let 1X  and 2X  be random variables (RVs) taking values in the same finite set of states X  and )(XP  be the 

space of all possible distributions on X . There are given 1L  probability distributions (PDs) 

}),({= 11

11
XxxGG ll ∈ , ,1,= 11 Ll  from )(XP . The first object is characterized by RV 1X  which has one 

of these 1L  possible PDs and the second object is dependent on the first and is characterized by RV 2X  which 

can have one of 21 LL ×  conditional PDs 2 1 1 2
/ /2 1 2 1

= { ( | ), , },l l l lG G x x x x X∈  ,1,= 11 Ll 22 1,= Ll . Joint 
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For the object characterized by 1X  the non-randomized test )( 11 xNϕ  can be determined by partition of the 

sample space NX  on 1L  disjoint subsets 1111111
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We define the probability to reject 
1mG , when it is true, as follows  

).(=)(=)(
1111|1

1=1:1

11|1

N
m

N
m

NN
ml

mll

NN
mm AGϕαϕα ∑

/

∆

 (2) 

Denote by 1ϕ  the infinite sequences of tests for the first object. Corresponding error probability exponents, which 

we call reliabilities )( 11|1
ϕmlE  for test 1ϕ  are defined as 

.1,=,)},(log1{lim=)( 11111|111|1
Llm

N
E NN

ml
N

ml ϕαϕ −
∞→

∆

 (3) 

 

It follows from (2) and (3) that  

,1,=,),(min=)( 11111|1
1=1:1

11|1
LmlEE ml

mll
mm ϕϕ

/    
.= 11 ml /  (4) 

 

We shall reformulate now the Theorem from [3] for the case of one object with 1L  hypotheses. This requires 

some additional notions and notations. For some PD }),({= 11 XxxQQ ∈  the entropy )( 1XHQ  and the 

informational divergence ),||(
1l

GQD  ,1,= 11 Ll  are defined as follows:  
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For given positive numbers 1|11|1 ,..., −− LLEE , let us consider the following sets of PDs }),({= 11 XxxQQ ∈ : 
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and the elements of the reliability matrix )( *
1ϕE  of the LAO test *

1ϕ :  
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1|1

*

1|1 llllllll EEEE
∆

,11,= 11 −Ll  (6a) 

 ),||(inf=)(=
1

1
1|1

*

1|1

*

1|1 m
lRQ

llmlml GQDEEE
∈

∆
,1,= 11 Lm ,= 11 lm / ,11,= 11 −Ll  (6b) 

 ),||(inf=),...,,(=
1

1

11|112|21|1
*

1|1

*

1|1 m
LRQ

LLmLmL GQDEEEEE
∈

∆

−− ,11,= 11 −Lm  (6c) 

 .min=),...,,(= *

1|1111,=1
11|112|21|1

*

1|1

*

1|1 Ll
Ll

LLLLLL EEEEEE
−

∆

−−  (6d) 

 

Theorem 1 [3]:  If all distributions 
1l

G , 11 1,= Ll , are different in the sense that 0>)||(
11 ml GGD , 11 = ml / , 

and the positive numbers 1|12|21|1 ,...,, −− LLEEE  are such that the following inequalities hold  

 ),||(min< 11
12,=1

1|1 GGDE l
Ll

 

 .............................................................................  

 )),(min),||(min(min<
1|1

*

1|1111,=1
11

11,1=1
1|1 llml

ml
ml

Lml
mm EEGGDE

−+
 ,12,= 11 −Lm  

(7) 

then there exists a LAO  sequence of tests *
1ϕ , the reliability matrix of which )( *

1ϕE )}({= *
11|1

ϕmlE  is defined 

in (6)  and all elements of it are positive.Inequalities (7)  are necessary for existence of tests sequence with 

reliability matrix having in diagonal given elements 
1|1 llE , 11,= 11 −Ll , and all other elements positive . 

 

Corollary 1  [3]:  If, in contradiction to condition of strict positivity, one, or several diagonal elements 
1|1 mmE , 

11,= 11 −Lm , of the reliability matrix are equal to zero, then the elements of the matrix determined in functions 

of this 
1|1 mmE  will be given as in the case of Stein's lemma [11], [12]  

,=),||(=)( 11111|11|1
lmGGDEE mlmmml /   

and the remaining elements of the matrix )( *
1ϕE  will be defined by 0>

1|1 llE , 11 = ml / , 11,= 11 −Ll , as 

follows from Theorem 1. 
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Now we formulate the concept of LAO approach to the identification problem for one object, which was introduced 

in [4]. We have one object, and there are known 21 ≥L  possible PDs. Identification is the answer to the 

question whether 1r -th distribution is correct, or not. As in the testing problem, the answer must be given on the 

base of a sample x  with the help of an appropriate test. 

 

There are two error probabilities for each [ ]11 1, Lr ∈ : the probability )(
1=1|11 Nrmrl ϕα ≠  to accept l -th PD 

different from 1r , when PD 1r  is correct, and the probability )(
11|1=1 Nrmrl ϕα ≠  that 1r  is accepted, when it is not 

correct. 

The probability )(
1=1|11 Nrmrl ϕα ≠  coincides with the probability )(

1|1 Nrr ϕα  which is equal to )(
1|1

11:1

Nrl
rll

ϕα∑
≠

. 

The corresponding reliability )(
1=1|11
ϕrmrlE ≠  is equal to )(

1|1
ϕrrE  which satisfies equality (4). 

 

The reliability approach to identification assumes determining the optimal dependence of *

11|1=1 rmrlE ≠  upon given 

*

1|1

*

1=1|11
= rrrmrl EE ≠ , which can be an assigned value satisfying conditions (7). The solution of this problem 

assumes knowledge of some a priori PDs of the hypotheses. 

The result from paper [4] is valid for the first object. 

 

 Theorem 2 [4]:  In case of distinct hypothetical PDs 
121 ,...,, LGGG , under condition that the probabilities of all 

1L  hypotheses are strictly positive for given *

1|1

*

1=1|11
= rrrmrl EE ≠  the reliability *

11|1=1 rmrlE ≠  is the following:  

 

.1,=),||(infmin=)( 111
1|1

)
1

||(:11:1

*

1|1

*

11|1=1
LrGQDEE m

rrErGQDQrmm
rrrmrl

≤≠
≠   

 

In Section 2 we consider two related objects as one complex object and we obtain corresponding reliabilities for 
LAO testing and identification. In Section 3 we will obtain the lower estimates of the reliabilities for LAO testing 
and in Section 4 for identification for the dependent object. These estimates serve for deducing of lower estimates 
of the reliabilities for LAO testing (in Section 5) and identification (in Section 6) of distributions of two related 
objects. Results of certain calculations for an example will be graphically presented in Section 7.  
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2. LAO Testing and Identification of the  Probability Distributions for Two Stochastically Coupled 
Objects 

 We expose the direct approach for LAO testing and identification of PDs for two related objects. It consists in 

considering the pair of objects as one composite object [10]. The test, which we denote by NΦ , is a procedure of 

making decision about unknown indices of PDs on the base of results of N  observations ),( 21 xx . For the 

objects characterized by 21, XX  the non-randomized test ),( 21 xxNΦ  can be determined by partition of the 

sample space NXX )( ×  on 21 LL ×  disjoint subsets )},,(=),(:),{(= 2121212,1
llxxxxA NN

ll Φ  11 1,= Ll

, 22 1,= Ll , i.e. the set N
llA
2,1

 consists of vectors ),( 21 xx  for which the PD 
2,1 llG  must be adopted. The 

probability )(
2,1|2,1

NN
mmll Φα  of the erroneous acceptance of PD 

2,1 llG  provided that 
2,1 mmG  is true, 

,1,=, 111 Lml  ,1,=, 222 Lml ),(=),( 2121 llmm / is defined by the set N
llA
2,1

  

).(=)(
2,12,12,1|2,1

N
ll

N
mm

NN
mmll AG

∆

Φα  (8) 

 

We define the probability to reject 
2,1 mmG , when it is true, as follows  

 

).(=)(=)(
2,12,12,1|2,1

)2,1(=)2,1(
2,1|2,1

N
mm

N
mm

NN
mmll

mmll

NN
mmmm AGΦΦ ∑

/

∆

αα  (9) 

 

Our intention is to study the reliabilities of the infinite sequence of tests Φ   

 

)},(log1{lim=)(
2,1|2,12,1|2,1

NN
mmll

N
mmll N

E Φ−Φ
∞→

∆

α ,1,=, 111 Lml  ,2l .1,= 22 Lm  (10) 

 

From (9) and (10) we deduce that  

 

),(min=)(
2,1|2,1)2,1(=)2,1(2,1|2,1
ΦΦ

/
mmll

mmll
mmmm EE ,1,=, 111 Lml .1,=, 222 Lml  (11) 
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The matrix ),({=)(
2,1|2,1
ΦΦ mmllEE ,1,=, 111 Lml }1,=, 222 Lml  is called the reliability matrix of the 

sequence of tests Φ . Our aim is to investigate the reliability matrix of optimal tests, and the conditions ensuring 
positivity of all its elements. 

For given positive numbers 12,1|12,11,1|1,1 ,..., −− LLLLEE , let us consider the following sets of PDs    

 

},),|()({= 21121 XxxxxVxQVoQ ∈
∆

:

,1,=},)||(:{= 112,1|2,12,12,1
LlEGVoQDVoQR llllllll ≤

∆

,11,= 22 −Ll  
(12a) 

 

,1,=,>)||(:{= 112,1|2,12,12,1
LlEGVoQDVoQR llllllLL

∆

},11,= 22 −Ll  (12b) 

 

and the elements of the reliability matrix *E  of the LAO test:  

 ,=)(=
2,1|2,12,1|2,1

*

2,1|2,1

*

2,1|2,1 llllllllllllllll EEEE
∆

,1,= 11 Ll ,11,= 22 −Ll  (13a) 

  

 ),||(inf=)(=
2,1

2,1
2,1|2,1

*

2,1|2,1

*

2,1|2,1 mm
llRVoQ

llllmmllmmll GVoQDEEE
∈

∆
,1,= 11 Lm  

 ,1,= 22 Lm ),,(=),( 2121 mmll / ,1,= 11 Ll ,11,= 22 −Ll  

(13b) 

  

 )...,,,(= 12,1|12,11,3|1,31,2|1,21,1|1,1
*

2,1|2,1

*

2,1|2,1 −− LLLLmmLLmmLL EEEEEE  

 ),||(inf=
2,1

2,1

mm
LLRVoQ

GVoQD
∈

∆
 ,1,= 11 Lm ,11,= 22 −Lm  

(13c) 

  

 .minmin=)...,,,(= *

2,1|2,1121,=211,=1
12,1|12,11,3|1,31,2|1,21,1|1,1

*

2,1|2,1

*

2,1|2,1 LLll
LlLl

LLLLLLLLLLLL EEEEEEE
−

∆

−−  (13d) 
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For simplicity we can take 1 2( , ) =X X Y, YXX =×  and N
N Yyyyy ∈),...,,(= 21 , where 

1 2= ( , ), = 1,n n ny x x n N , then we will have LLL =21×  new hypotheses for one object  

 

 },,),|()({= 2112

1/2

1

12,1
XxxxxGxGG lllll ∈ 1 1 2 2= 1, , = 1,l L l L , where 11,1 = KG , 

 21,2 = KG , 31,3 = KG   ,..., 
221, = LL KG ,  122,1 = +LKG   ,..., ,=

221)1(2,1 lLlll KG +−

 ,1,= 11 Ll 22 1,= Ll , ,=
221)1(|221)1(2,1|2,1 mLmlLlmmll +−+−αα  ,1,= 11 Ll   22 1,= Ll    

 ,=
221)1(|221)1(2,1|2,1 mLmlLlmmll EE +−+− ,1,= 11 Ll  22 1,= Ll  

 

and thus we have brought  the  original  problem  to the case of one object with 21 LL ×  hypotheses. 

So applying Theorem 1 we can deduce that there exists a LAO sequence of tests *Φ , the reliability matrix of 

which )}({= *
|

* ΦmlEE  is defined in (13)  and all elements of it are positive. 

Using Theorem 2 for this composite object we can deduce that identification reliabilities are connected with the 
following formula  

 ].[1,),||(infmin=)(
|)(::

||= LrKQoVDEE m
rrErKQoVDQoVrmm

rrrmrl ∈
≤≠

≠
||

 (14) 

Now let us consider the more general particular model, when 1X  and 2X  are related statistically, in the 

following way )()(=),( 2

1/2

1

1

21

2,1
xGxGxxG lllll . The probability of vector ),( 21 xx  is defined by the following 

PD 
2,1 llG   

 

),()(=)()(=),( 2

1/2

1

1
1=

21/211212,1 nllnl

N

n

N
ll

N
l

N
ll xGxGxGxGxxG ∏   

where )(=)( 1

1
1=

11 nl

N

n

N
l xGxG ∏  and ).(=)( 2

1/2
1=

21/2 nll

N

n

N
ll xGxG ∏  

 

In this case we can analogously bring the problem to the problem on one object with LLL =21×  hypotheses, 

where },,),()({= 212

1/2

1

12,1
XxxxGxGG lllll ∈ ,1,= 11 Ll ,1,= 22 Ll  and for the sets ,

2,1 llR ,1,= 11 Ll  

22 1,= Ll of  PDs 1 2 1 2={ ( ) ( ), , }QoV Q x V x x x X
∆

∈ : 
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When the objects 1X  and 2X  can have only different distributions from same L  given probability distributions 

(PD) 1G , 2G , 3G , ..., LG  from )(XP , [4], [7] we can reduce the problem to the problem of one object and 

1)( −× LL  hypotheses, where },,),()({= 212

2

1

12,1
XxxxGxGG llll ∈ ,1,=, 21 Lll  21 ll ≠  (see [4], [7]). 

3. An Approach to Multiple Hypotheses Testing for the Second (Dependent) Object 

Let us remark that test NΦ  can be composed of a pair of tests N
1ϕ  and N

2ϕ  for the separate objects: 

),(= 21
NNN ϕϕΦ . For the second object characterized by RV 2X  depending on 1X  the non-randomized test 

),,( 1122 lxxNϕ  based on vectors 21, xx  and on the index of the hypothesis 1l  adopted for 1X , can be given for 

each 1l  and 1x  by division of the sample space NX  on 2L  disjoint subsets 

},=),,(:{=)( 21122211/2
llxxxxA NN

ll ϕ ,1,= 11 Ll 22 1,= Ll . We upper estimate the error probabilities for 

second object proceeding from definition (8) .  

 

)()|)((max)|)(()(=)( 11

11

111/21/2
11

111/21/211

11
2,12,1

xGxxAGxxAGxGAG N
m

N
lAx

N
ll

N
mm

N
lAx

N
ll

N
mm

N
m

N
lAx

N
ll

N
mm ∑∑

∈∈∈

≤  

         

).,(),(),(=)|)((max)(= 21122,1|2,1111/21/2
11

11
mmllxxAGAG NN

mmll
N

ll
N

mmN
lAx

N
lm ≠Φ

∆

∈

β  

(15) 

 

Consequently we can deduce that “reliabilities"  

 

 ),,(),()},(log1{lim=)( 21122,1|2,12,1|2,1
mmll

N
F NN

mmll
N

mmll ≠Φ−Φ
∞→

∆

β  

 ,1,=, 111 Lml ,1,=, 222 Lml  

 

and 

)(min=)(
2,1|2,1)2,1()2,1(2,1|2,1
ΦΦ

≠
mmll

mmll
mmmm FF  (16) 

are lower estimates for ).(
2,1|2,1
ΦmmllE  
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We can also introduce  

 

),|)((max=)( 111/21/2
11

22,1,1|2
xxAG N

ll
N

mm
N
lAx

NN
mmll

∈

∆

ϕβ ,22 ml ≠ ,1,=, 111 Lml  ,1,=, 222 Lml ,= 22 lm /  

 

We define also  

).(=)|)((max=)( 22,1,1|2
2=2

111/21/2
11

22,1,1|2

NN
mmll

ml

N
lm

N
mm

N
lAx

NN
mmlm xxAG ϕβϕβ ∑

/∈

∆
 (17) 

 

The corresponding estimates of the reliabilities of test N
2ϕ , are the following  

 

)},(log1{lim=)( 22,1,1|222,1,1|2

NN
mmll

N
mmll N

F ϕβϕ −
∞→

∆

,1,=, 111 Lml ,1,=, 222 Lml .= 22 lm /  (18) 

 

It is clear from (17) that  

),(min=)( 22,1,1|2
2=2:2

22,1,1|2
ϕϕ mmll

mll
mmlm FF

/
,1,=, 111 Lml .1,=, 222 Lml  (19) 

 

We need some notions and estimates from the method of types [11], [12]. The type of a vector 1x  is a PD  

 

},),|(1=)({= 1
1

11

11
XxxxN

N
xQQ xx ∈   

 

where )|( 11 xxN  is the number of repetitions of the symbol 1x  in vector .1x  The subset of )(XP  consisting 

of the possible types of sequences 1
Nx X∈  is denoted by ).(XPN  The set of all vectors 1x  of the type 

1x
Q  is 

denoted by )( 1
1

XT N

xQ , remark that ∅=)( 1XT N
Q  for ).(XPQ N∈/  The following estimates for the set 

)( 1
1

XT N

xQ  hold  
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)}.({exp|)(|)}({exp1)( 1
1

1
1

1
1

|| XNHXTXNHN
xQ

N

xQxQ
X ≤≤+ −   

For a pair of sequences NN XXxx ×∈),( 21  let ),|,( 21
21 xxxxN  be the number of occurrences of pair 

XXxx ×∈),( 21  in the similar places in the pair of vectors ),( 21 xx . The joint type of the pair ),( 21 xx  is PD 

},),,({= 2121

2,12,1
XxxxxQQ xxxx ∈  defined by  

 

.,),,|,(1=),( 21
21

2121

2,1
XxxxxxxN

N
xxQ xx ∈

∆

  

 

 

The conditional type of 2x  for given 1x  is the conditional distribution 

},),|({= 2112

1,22,1
XxxxxVV xxxx ∈

∆
 defined as follows:  

 

.,,
)|(

),|,(=
)(

),(
=)|( 21

1
1

21
21

1

1

21

2,112

2,1
Xxx

xxN
xxxxN

xQ

xxQ
xxV

x

xx
xx ∈

∆

  

 

The conditional entropy of RV 2X  for given 1X  is:  

 

).|(log)|()(=)|( 12

2,1

12

2,1

1

12,1
12

2,1
,

1
xxVxxVxQXXH xxxxx

xx
xxVxQ ∑−   

 

For some conditional PD },),|({= 2112 XxxxxVV ∈  the conditional divergences of PD 

},),|()({ 21121 XxxxxVxQ ∈  with respect to PD },),|()({ 2112

1/2

1 XxxxxGxQ ll ∈  for all 21, ll  are 

defined as follows  

 

,
)|(

)|(log)|()(=)|||( 12

1/2

12
121

2,11/2 xxG
xxVxxVxQQGVD

llxx
ll ∑

∆
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also  

.
)|(

)|(
log)|()(=)|||( 12

1/2

12

1/212

1/2

1

2,11/21/2 xxG

xxG
xxGxQQGGD

mm

ll
ll

xx
mmll ∑

∆

  

 

The family of vectors 2x  of the conditional type V  for given 1x  of the type 
1x

Q  is denoted by )|( 12,
1

xXT N
VxQ  

and called V -shell of 1x . The set of all possible V -shells for 1x  of type 
1x

Q  is denoted by ).,(
1xN QXV  For 

any conditional type V  and )( 1
1

1 XTx N

xQ∈  it is known that  

2| |
, 2 1 , 2 1 , 2 1

1 1 1
( 1) exp{ ( | )} | ( | ) | exp{ ( | )}.X N

Q V Q V Q Vx x x
N NH X X T X x NH X X−+ ≤ ≤  (20) 

For given positive numbers ,
2,1,1|2 lmllF 11,= 22 −Ll , for )(5.),(5.

1
baRQ l∈  and for each pair   

111 1,=, Lml  let us define the following regions and values: 

 

,11,=},)|||(:{=)( 222,1,1|21/21/2
−≤

∆

LlFQGVDVQR lmllllll  (21a) 

},11,=,>)|||(:{=)( 222,1,1|21/21/2
−

∆

LlFQGVDVQR lmlllllL  (21b) 

),()(=)(
11/211/2 xNllx

N
ll QXVQRQR ∩

  

,11,=,=)(= 222,1,1|22,1,1|2

*

2,1,1|2

*

2,1,1|2
−

∆

LlFFFF lmlllmlllmlllmll  (22a) 

),|||(infinf=)(=
1/2)(

1/21
2,1,1|2

*

2,1,1|2

*

2,1,1|2
QGVDFFF mm

QllRVlRQ
lmllmmllmmll

∈∈

∆
,1,= 22 Lm  ,= 22 lm /

,11,= 22 −Ll  

(22b) 

),...,,(= 12,1,1|12,21,1|2,11,1|1
*

2,1,1|2

*

2,1,1|2 −− LmlLmlmlmmlLmmlL FEFFF

),|||(infinf=
1/2)(

1/21

QGVD mm
QlLRVlRQ ∈∈

∆
,11,= 22 −Lm  (22c) 

.min=),...,,(= *

2,1,1|2121,=2
12,1,1|12,21,1|2,11,1|1

*

2,1,1|2

*

2,1,1|2 Lmll
Ll

LmlLmlmlLmlLLmlL FFFFFF
−

∆

−−  (22d) 
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We denote by )( 2ϕF  the matrix of lower estimates for ).( 2ϕE  

 Theorem 3:  If for fixed 111 1,=, Llm  all conditional PDs 
1/2 llG , 22 1,= Ll , are different in the sense that 

0>)|||(
1/21/2

QGGD mmll  , for all 
1l

RQ∈ , ,= 22 ml / ,1,= 22 Lm  when the numbers 

12,1,1|12,21,1|2,11,1|1 ,...,, −− LmlLmlml FFF  are such that the following inequalities hold  

),|||(infmin<<0
11/1/2

122,=2
,11,1|1 QGGDF mll

lRQLl
ml

∈
 (23a) 

)),(min),|||(infmin(min<<0
2,1,1|2

*

2,1,1|2121,=2
1/21/2

121,2=2
2,1,1|2 lmllmmll

ml
mmll

lRQLml
mmlm FFQGGDF

−∈+

2 2= 2, 1,for m L −  
(23b) 

then there exists a LAO  sequence of tests *
2ϕ , the matrix of lower estimate of which )( *

2ϕF  is defined in 

(22)  with all elements of it strictly positive. 

Inequalities (23)  are necessary for existence of test sequence with matrix of lower estimates )( *
2ϕF  having in 

diagonal given elements ,
2,1,1|2 lmllF 11,= 22 −Ll , and other elements positive. 

 Proof: For NXx ∈1 , )|( 12,
1

2 xXTx N
VxQ∈  the conditional probability )|( 121/2

xxG N
mm  can be presented as 

follows  

 

)|(=)|( 12

1/2
1=

121/2 nnmm

N

n

N
mm xxGxxG ∏  

)1|2()1(
112

1/22,1

)2,1|2,1(12

1/22,1
)|(=)|(=

xxVxxNQ

mm
xx

xxxxN
mm

xx

xxGxxG ∏∏  

)]}|(log)|()(
)|(

)|(log)|()([{exp= 12121

112

1/2

12
121

12,1
xxVxxVxQ

xxG
xxVxxVxQN x

mm
x

xx

+−∑  

)]}.|()|([{exp= 12,
111/2

XXHQGVDN VxQxmm +− ||
 

(24) 

 

We shall prove that the sequence of tests *
2ϕ , defined for each )(= 1

1
11 XTBx N

Q
lRQ

N
l  ∈

∈  by the following 

collection of sets constructed of conditional types  
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,1,=),|(=)( 2212,
1)

1
(

1/2

1
)(

1/2
LlxXTxB N

VxQ

xQN
llRV

N
ll 

∈  
(25) 

 

is optimal with respect to lower estimates of corresponding reliabilities and the lower estimate matrix )( *
2ϕF  is 

defined in (22). First we show that each N -vector 2x  is in one and only one of )( 1
)(

1/2
xB N

ll , that is  

 

,11,=,=)()( 221
)(

1/21
)(

1/2
−∅ LlxBxB N

lm
N
ll 

.=)(,1,= 1
)(

1/2

2

1=2

222
NN

ll

L

l

XxBandLlm


+
 

 

 

Really, (21.b) and (25) show that  

 

,=)()( 1
)(

1/21
)(

1/2
∅xBxB N

lL
N
ll 

.11,= 22 −Ll
 

 

 

For 21,= 22 −Ll , 11,= 222 −+ Llm , for each N
lBx
11 ∈  let us consider arbitrary )( 1

)(

1/22 xBx N
ll∈ . It follows 

from (17.a) and (21) that if )(
1

XPQ Nx ∈  there are ),(
1xN QXVV ∈  such that 

2,1,1|211/2
)|||( lmllxll FQGVD ≤  and )|( 12,

1
2 xXTx N

VxQ∈ . From (21) -- (23) we have 

)|||(<)(<
11/22,1,1|2

*

2,1,1|22,1,1|2 xlmlmllmmllmmlm QGVDFFF . From definition (25) for each 1m  we see that 

)( 1
)(

1/22 xBx N
mm∉ , that is )( 1

)(

1/22 xBx N
lm∉ . 

 

Now for 11,= 22 −Lm , 11 ml ≠  using (17), (20), (21), (23) -- (25) we can upper estimate N
mmlm

*

2,1,1|2
β  as 

follows:  

 














≤

∈∈
112,

1
2,1,1|2

>)
1

|
1/2

||(:
1/2

11
11

)(

1/21/2
11

*

2,1,1|2
|)|(max)|)((max= xxXTGxxBG N

VxQ

mmlmExQmmGVDV

N
mm

N
lBx

N
lm

N
mm

N
lBx

N
mmlm 

β
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)|)|((supmax1)( 112,
11/2

2,1,1|2
>)

1
|

1/2
||(:

11

2|| xxXTGN N
VxQmm

mmlmExQmmGVDVN
lBx

X

∈

+≤
 

 

)}|||({expsupsup1)(
11/2

2,1,1|2
>)

1
|

1/2
||(:

11

2||
xmm

mmlmExQmmGVDVN
lRxQ

X QGVNDN −+≤
∈  

 

(1)]}[{exp(1)]})|||(infinf[{exp
2,1,1|211/2

2,1,1|2
>)

1
|

1/2
||(:

11

NmmlmNxmm
mmlmExQmmGVDVN

lRxQ
oFNoQGVDN −−≤−−≤

∈

 

 

For 22 ml ≠  we estimate by analogy  

 

)|)|((max=)|)((max= 112,
1)

1
(

1/2
:

1/2
11

11
)(

1/21/2
11

*

2,1,1|2
xxXTGxxBG N

VxQ

xQN
llRVV

N
mm

N
lBx

N
ll

N
mm

N
lBx

N
mmll 

∈∈∈

β  

   )|)|((supmax1)( 112,
11/2

)
1

(
1/2

:
11

2|| xxXTGN N
VxQ

N
mm

xQN
llRVVN

lBx

X

∈∈

+≤  

 )}|||({expsupsup1)(
11/2

)
1

(
1/2

:
11

2||
xmm

xQN
llRVVN

lRxQ

X QGVNDN −+≤
∈∈

 

 (1))]}.)|||(infinf[{exp
11/2)

1
(

1/2
:

11

Nxmm
xQN

llRVVN
lRxQ

oQGVDN −−≤
∈∈  

(26) 

Now we want to deduce the lower estimate  

 

* ( )
| , , / / 1 1 / , 2 1 12 1 1 2 2 1 2 1 2 1 1: ( )1 1 /1 1 2 1 1

= ( ( ) | ) = ( ( | ) | )max maxN N N N N
l l m m m m l l m m Q VxN N Nx B x B V V R Ql l l l x

G B x x G T X x xβ
∈ ∈ ∈



 

2| |
/ , 2 1 1 /2 1 2 1 11: ( ) : ( )1 / /1 2 1 1 1 1 2 1 1

( ( | ) | ) ( 1) exp{ ( || | )}.sup sup supmax N X
m l Q V m m xxN N N Nx B V V R Q Q R V V R Ql l l x x l l l x

G T X x x N ND V G Q−

∈ ∈ ∈ ∈

≥ ≥ + −  

(1))]}.)|||(infinf[{exp
11/2)

1
(

1/2
:

11

Nxmm
xQN

llRVVN
lRxQ

oQGVDN +−≥
∈∈  

(27) 

Taking into account (26), (27) and the continuity of the functional )|||(
1/2

QGVD lm  we obtain that 

}log{lim *

2,1,1|2

1 N
mmll

N
N β−

∞→
−  exists and in correspondence with (22.b) equals to *

2,1,1|2 mmllF . Thus 

*

2,1,1|2

*
22,1,1|2

=)( mmllmmll FF ϕ , 22 1,= Lm , 22 1,= Ll . 
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The proof of the first part of the theorem will be accomplished if we show that the sequence of the tests *
2ϕ  for 

given 12,1.1|12,11.1|1 ,..., −− LmlLml FF  and for any sequence of tests **
2ϕ  is such that for all 222 1,=, Llm , 

*

2.1,1|2

**

2,1,1|2 mmllmmll FF ≤ . 

Consider sequence **
2ϕ  of tests, which is defined by the sets ( ) ( )

1/ 1 2/ 11 1
( ), ( ),N N

l lD x D x ..., )( 1
)(

1/2
xD N

lL  such that 

*

2,1,1|2

**

2,1,1|2 mmllmmll FF ≥  for some 22 ,ml . For a large enough N  we can replace this condition by the following 

inequality  

 

.*

2,1,1|2

**

2,1,1|2

N
mmll

N
mmll ββ ≤

 
(28) 

 

Examine the sets )()( 1
)(

1/21
)(

1/2
xBxD N

ll
N

ll 

, 11,= 22 −Ll . This intersection cannot be empty, because in that 

case  

 

( )** ( )
/| , , / 1 1 / / 1 12 12 1 1 2 2 1 2 1 2 1

1 11 1

= ( ( ) | ) ( ( ) | )max max
NN N N N

l ll l m l l l l l l l
N Nx B x Bl l

G D x x G B x xβ
∈ ∈

≥  

   

(1))},({exp)|)|((supmax
2,1,1|2112,

11/2
2,1,1|2

)
1

|
1/||(:

11
Nlmll

N
VxQ

N
ll

lmllFxQllGVDVN
lBx

oFNxxXTG +−≥≥
≤∈

 

 

 

and we have a contradiction with (28).  Let us show that ,11,=,,=)()( 2221
)(

1/21
)(

1/2
−∅ LlmxBxD N

lm
N
ll 

22 = ml / . If there exists V  such that 
2,1,1|21/2

)|||( mmlmlm FQGVD ≤  and )()|( 1
)(

1/212
1

, xDxXT N
ll

N

xQV ∈ , then  

 

(1)]}.[{exp)|)|((max>)|)((max=
2,1,1|2112

1
,1/2

11
11

)(

1/21/2
11

**

2,1,1|2 Nmmlm
N

xQV
N

lm
N
lBx

N
ll

N
lm

N
lBx

N
mmll oFNxxXTGxxDG +−≥

∈∈

β  

When )|(=)|(= 12
1

,12
1

,
)(

1/2
xXTxXTD N

xQV
N

xQV
N

ll //∅


, we also obtain that  
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(1))}.({exp)|)|((max>)|(max=
2,2,1|2112

1
,

)(

1/21/2
11

1
)(

1/21/2
11

**

2,1,1|2 Nmmlm
N

xQV
N
ll

N
lm

N
lBx

N
ll

N
lm

N
lBx

N
mmll OFNxxXTDGxDG +−≥

∈∈


β  

 

Thus we conclude that 
2,1,1|2

**

2,1,1|2
< mmlmmmll FF , which contradicts to (19). Hence we obtain that 

)(=)()( 1
)(

1/21
)(

1/21
)(

1/2
xBxBxD N

ll
N

ll
N

ll 

 for 11,= 22 −Ll .  

 

The following intersection )()( 1
)(

1/21
)(

1/2
xBxD N

lL
N

ll 

 is empty too, because otherwise we arrive to  

 ,*

2,1,1|2

**

2,1,1|2

N
mmlL

N
mmlL ββ ≥  

which contradicts to (28), it means that )(=)( 1
)(

1/21
)(

1/2
xBxD N

ll
N

ll , for all 22 1,= Ll . 

The proof of the second part of the Theorem is simple. If one of the conditions (23) is violated, then from (21), 

(22) and (23) -- (26) it follows that at least one of the elements 
2,1,1|2 mmllF  is equal to 0. For example, let 

),|||(minmin
1/21/2

121,2=2
2,1,1|2

QGGDF mmll
lRQLml

mmlm
∈+

≥  then there is 22
'
2 1, Lml +∈  such that 

).|||(min
1/21/'

2
1

2,1,1|2
QGGDF mmll

lRQ
mmlm

∈
≥  After using (22b) we obtain that 0=*

'
2,1,1|2 llmm

F . From (19) we see 

that )(min
2,1,1|2

*

2,1,1|2121,=2
2,1,1|2 lmllmmll

ml
mmlm FFF

−
≤ . Theorem is proved. 

 

Corollary 2:   If  in contradiction to conditions (23) one, or several diagonal elements 
2,1,1|2 lmllF , 11,= 22 −Ll , 

of the reliability matrix are equal to zero, then the elements of the matrix determined in functions of this 

2,1,1|2 lmllF  are given as in the case of Stein's lemma [11], [12]  

 

,1,=),|||(inf=)( 111/21/2
1

2,1,1|22,1,1|2
LmQGGDFF mmll

lRQ
lmlllmll

∈
,= 11 lm /
 

 

 

and the remaining elements of the matrix )( *
2ϕF  are defined in function of positive 0>

2,1,1|2 lmllF , 11 = ml / , 

11,= 11 −Ll , as follows from Theorem 3. 
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Proof: Really, if 0=
2,1,1|2 lmllF , then N

lmll 2,1,1|2
β  is not exponentially decreasing . Thus using Stein's lemma we 

have  

 

.=),|||(inf=)=)((1loglim 221/21/2
1

2
)(

2,1,1|2

)(

2,1,1|2
mlQGGDc

N mmll
lRQ

N
lmll

N
mmll

N
/−

∈∞→
ϕββ

 
 

 

So the corollary is proved. 

 

4. On Identification of the Probability Distribution of  the  Dependent Object 

 

In this section we will obtain the lower estimates of the reliabilities of LAO identification for dependent object. 
Then we deduce the lower estimates of the reliabilities for LAO identification of two related objects. 

There exist two error probabilities for each 22 1,= Lr : the probability )(
2=2,1,1|22 Nrmmlrl ϕα ≠  to accept 2l  

different from 2r , when 2r  is in reality, and the probability )(
22,1,1|2=2 Nrmmlrl ϕα ≠  to accept 2r , when it is not 

correct. 

 

The upper estimate )( 22=2,1,1|22

N
rmmlrl ϕβ ≠  of )( 22=2,1,1|22

N
rmmlrl ϕα ≠  is already known, it coincides with the 

)( 22,1,1|2

N
rmlr ϕβ  which is equal to )( 22,1,1|2

22:2

N
rmll

rll
ϕβ∑

≠

. The corresponding reliability )( 22=2,1,1|22
ϕrmmlrlF ≠  is 

equal to )( 22,1,1|2
ϕrmlrF  which satisfies the equality (19). 

 

The reliability approach to identification of lower estimates assumes determining the optimal dependence of 
*

22,1,1|2=2 rmmlrlF ≠  upon given *

2,1,1|2

*

2=2,1,1|22
= rmlrrmmlrl FF ≠ , which can be an assigned values satisfying 

conditions (23). 

 

Theorem 4:  In case of distinct PDs 
1|21|21|1 ,...,, lLll GGG , for every 1l  under condition that the upper estimates 

of probabilities of all 2L  hypotheses are strictly positive the ``reliability" 
22,1,1|2=2 rmmlrlF ≠  for given 

2,1,1|22=2,1,1|22
= rmlrrmmlrl FF ≠  is the following:  
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),|(infinfmin=)(
1|2

2,1,1|2
)|

1/2
(:

122:2
2,1,1|222,1,1|2=2

QGVDFF mm
rmlrFQlrGVDVlRQrmm

rmlrrmmlrl ||
|| ≤∈≠

≠ .1,= 22 Lr  

 

Proof: We have 

 

.
)/(

)/(
=

)/=(
),/=,=(=
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2=2

122,1,1|2
2=2:2

122

112222
2=2,1,1|2=2 mmPr

mmPr

mrmPr
mlrlrmPr
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mmlr
rmm

N
N

rmmlrl ∑

∑

/

/

/ /
/

β
β

 
 

 

Consequently, we obtain that  

 

N
rmmlrl

N
rmlrrmmlrl N

FF
2=2,1,1|2=22,1,1|222,1,1|2=2

log1
lim=)( /

∞→

∆

≠ − β

))/(log)/(log(1
lim= 12

2=2

122,1,1|2
2=2:2

mmPrmmPr
N rm

mmlr
rmmN

∑∑
//∞→

−− β  

 

.min=))/(log
max

)/(
loglogmax(1

lim=
2,1,1|2

2=2:2
12

2=22,1,1|2

122,1,1|2

2=2:2
2,1,1|2 mmlr

rmmrmmmlr

mmlr

rmm
mmlr

N
FmmPr

mmPr

N ///∞→
∑∑ −+−

β

β
β  

 

And using )(22.b  we prove the theorem. 

 

5. LAO Hypotheses Testing for Two Stochastically Dependent Objects 

In this section we find the ``reliabilities" 
2,1|2,1 mmllF  for LAO testing which will be lower bounds for corresponding 

2,1|2,1 mmllE . Using (15)  we can prove the following lemma   

Lemma: If the elements )()( 22,1,1|211|1
ϕϕ mmllml FandE  are positive, then  
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),()(=)( 22,1,1|211|12,1|2,1
ϕϕ mmllmlmmll FEF +Φ ,= 11 lm / ,= 22 lm /

 
(29a) 

),(=)( 11|12,1|2,1
ϕmlmmll EF Φ ,= 11 lm / ,= 22 lm

 
(29b) 

),(=)( 22,1,1|22,1|2,1
ϕmmllmmll FF Φ  ,= 11 lm  .= 22 lm /

 
(29c) 

 

Proof: The following relations hold for upper estimates of error probabilities  

 

),()(=)( 22,1,1|211|12,1|2,1

NN
mmll

NN
ml

NN
mmll ϕβϕαβ Φ ,= 11 lm /  ,= 22 lm /

 
(30a) 

)),()(1(=)( 22,1,1|211|12,1|2,1

NN
mmll

NN
ml

NN
mmll ϕβϕαβ −Φ ,= 11 lm / ,= 22 lm

 
(30b) 

),())((1=)( 22,1,1|211|12,1|2,1

NN
mmll

NN
ml

NN
mmll ϕβϕαβ −Φ  ,= 11 lm .= 22 lm /

 
(30c) 

 

Thus, in light of (3)  and (18) , we obtain (29) . The lemma is proved. 

 

Let  us  define   the   following   subsets of )(XP   for given   strictly positive   elements    

 

2,1|2,1 lllLE ,   
2,1|2,1 llLlF , ,11,= 11 −Ll 11,= 22 −Ll : 

},)||(:{=
2,1|2,111 lllLll EGQDQR ≤

∆

,11,= 11 −Ll ,11,= 22 −Ll
 

 

},)|||(:{=)(
2,1|2,11/21/2 llLlllll FQGVDVQR ≤

∆

,11,= 11 −Ll ,11,= 22 −Ll
 

 

,>)||(:{=
2,1|2,111 lllLlL EGQDQR

∆

,11,= 11 −Ll },11,= 22 −Ll
 

 

,>)|||(:{=)(
2,1|2,11/21/2 llLllllL FQGVDVQR

∆

,11,= 11 −Ll }.11,= 22 −Ll
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Assume also 

 

,11,=,=,= 112,1|2,1

*

2,1|2,12,1|2,1

*

2,1|2,1
−

∆∆

LlEEFF lllLlllLllLlllLl  ,11,= 22 −Ll
 

(31a) 

111
1

:

*

2,1|2,1
=),||(inf= lmGQDE m

lRQQ
lmll /

∈

∆

 
(31b) 

221/2)(
1/2

:
1

*

2,1|2,1
=),|||(infinf= lmQGVDF mm

QllRVVlRQ
mlll /

∈∈

∆

 
(31c) 

,=,= *

2,1|2,1

*

2,1|2,1

*

2,1|2,1 iimmmlmmlmmmll lmEFF /+
∆

1,2,=i
 

(31d) 

.min= *

2,1|2,1)2,1(=)2,1(

*

2,1|2,1 mmll
mmll

mmmm FF
/

∆

 
(31e) 

 

Theorem 5:  If all distributions 
1mG , 11 1,= Lm , are different, that is 0>)||(

11 ml GGD , 11 = ml / , 

111 1,=, Lml , and all conditional distributions 
1/2 llG , 22 1,= Ll , are also different for all ,1,= 11 Ll  in the 

sense that 0>)|||(
1/21/2

QGGD lmll , 22 = ml / , then the following statements are valid. 

 

When given elements 
2,1|2,1 lllLE  and 

2,1|2,1 llLlF , ,11,= 11 −Ll 11,= 22 −Ll , meet the following conditions  

 

),||(min<<0 11
12,=1

21,|2,1
GGDE l

Ll
llL

 
(32a) 

),|||(infmin<<0
11/1/2

122,=2
,11|2,1

QGGDF mll
lRQLl

lLl
∈

 
(32b) 

)],||(min,min[min<<0
11

11,1=1

*

2,1|2,1111,=1
2,1|2,1 ml

Lml
lmll

ml
lllL GGDEE

+−
,12,= 11 −Ll

 
(32c) 

)],|||(infmin,min[min<<0
1/21/2

121,2=2

*

2,1|2,1121,=2
2,1|2,1

QGGDFF mmll
lRQLml

mlll
ml

llLl
∈+−

,12,= 22 −Ll
 

(32d) 

then there   exists   a     LAO       test   sequence     *Φ ,     the   lower estimate    matrix    of   which  

)}({=)( *

2,1|2,1

* ΦΦ mmllFF  is defined in (31)  and all elements of it are positive. 
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When even one of the inequalities (32)  is violated, then at least one element of the lower estimate matrix 

)( *ΦF  is equal to 0 .  

 

Proof: It is proved in [7] that ,=
1|11|1 lLll EE  .11,= 11 −Ll By analogy we can deduce that  

 

,=
2,1,1|22,1,1|2 lmlLlmll FF .11,= 22 −Ll

 
(33) 

 

Applying the theorem of Kuhn-Tucker in (22.b) we can show that the elements ,
2,1,1|2 lmllF  11,= 22 −Ll  can be 

determined by elements ,
2,1,1|2 mmllF  ,22 lm ≠ ,1,= 22 Ll  

 

).|||(infinf=)(
1/2

2,1,1|2
)|

1/2
||(:

1
2,1,1|2

*

2,1,1|2
QGVDFF ll

mmllFQlmGVDVlRQ
mmlllmll

≤∈

∆

 
 

 

From (23)  it is clear that 
2,1,1|2 mmlmF  can be equal only to one of ,

2,1,1|2 mmllF  .1,= 222 Lml + Assume that 

(33) is not correct, that is ,=
2,1,1|22,1,1|2 mmllmmlm FF  .11,= 222 −+ Lml   

 

 

From (22.b) it follows that  

)|||(infinf=)(
1/2

2,1,1|2
)|

1/2
||(:

1
2,1,1|2

*

2,1,1|2
QGVDFF ll

mmllFQlmGVDVlRQ
mmlllmll

≤∈
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,=)|||(infinf=
2,1,1|21/2

2,1,1|2
)|

1/2
||(:

1

lmlmll
mmlmFQlmGVDVlRQ

FQGVD
≤∈

,11,=, 222 −Llm  ,< 22 lm
 

 

 

but from conditions (23) it follows that 
2,1,1|22,1,1|2

< lmlmlmll FF  for .11,= 22 −lm  Our assumption is not true, 

thus (33) is valid. 
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Hence we can rewrite the inequalities (7) and (23) as follows:  

 

),||(min<<0 11
12,=1

1|1
GGDE m

Ll
L

 
(34a) 

),|||(mininf<<0
11/1/2

22,=21

,11,1|2
QGGDF llm

LllRQ
mlL

∈
 

(34b) 

)],||(min,min[min<<0
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11,1=1

*

1|1111,=1
1|1 lm

Lll
ml

ll
lL GGDEE

+−
 ,12,= 11 −Ll

 
(34c) 

)],|||(mininf,min[min<<0
1/21/2

21,2=21

*

2,1,1|2121,=2
2,1,1|2

QGGDFF lmll
LlllRQ

mmll
ll

lmlL
+∈−

.12,= 22 −Ll
 

(34d) 

 

According to Theorem 1 and Theorem 2 there exist LAO sequences of tests *
1ϕ  and *

2ϕ , for the first and second 

objects, such that the elements of the matrices )( *
1ϕE  are determined in (6) and the lower estimate matrix 

)( *
2ϕF  is determined in (22). The inequalities (34.a), (34.c) are equivalent to the inequalities (7) and (34.b), 

(34.d) are equivalent to the inequalities (23). Then using Lemma we deduce that the lower estimate matrix 

)( *ΦF  is determined in (31). The proof of the second assertion of the Theorem is obvious. 

 

6 . On Identification of the Probability Distributions of Two Stochastically Dependent Objects 

In this section we study an approach to deducing optimal interdependencies of lower estimates of corresponding 

reliabilities for LAO identification. The LAO test *Φ  is the compound test consisting of the pair of LAO tests *
1ϕ  

and *
2ϕ  for respective separate objects, and for it the equalities (29) take place. The statistician has to answer to 

the question whether the pair of distributions ),( 21 rr  occurred or not. Let us consider two types of error 

probabilities for each pair ),( 21 rr , 2211 1,=,1,= LrLr . We denote by N
rrmmrrll )2,1(=)2,1)|(2,1(=)2,1( /α  the 

probability, that pair ),( 21 rr  is true, but it is rejected. Note that this probability is equal to )(
2,1|2,1

N
rrrr Φα . Let 

N
rrmmrrll )2,1(=)2,1)|(2,1(=)2,1( /α  be the probability that ),( 21 rr  is accepted, when it is not correct. The corresponding 

reliabilities are 
2,1|2,1)2,1(=)2,1)|(2,1(=)2,1( = rrrrrrmmrrll EE /  and )2,1(=)2,1)|(2,1(=)2,1( rrmmrrllE / . Our aim is to determine 

the dependence of )2,1(=)2,1)|(2,1(=)2,1( rrmmrrllE /  on given )(
2,1|2,1

N
rrrrE Φ . 

Now let us suppose that hypotheses 
121 ,...,, LGGG  have a priori positive probabilities Pr )( 1r , 11 1,= Lr  and 
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1|21|21|1 ,...,, lLll GGG  have a priori positive conditional probabilities Pr )|( 12 lr , 22 1,= Lr , and consider the 

probability, which we are interested 

 

),(
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=
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)2,1(=)2,1(:)2,1(

2121

21212121
)2,1(=)2,1(|)2,1(=)2,1( mmPr

mmPr

rrmmPr
rrllrrmmPr

rrmm

mmrr
rrmmmm

N
N

rrmmrrll ∑

∑

/

/

/ /
/

β

β  

 

Consequently, we obtain that  

 

.min=
2,1|2,1)2,1(=)2,1(:)2,1(

)2,1(=)2,1(|)2,1(=)2,1( mmrr
rrmmmm

rrmmrrll FF
/

/

 
(35) 

 

For every LAO test *Φ  from (11), (29) and (35) we obtain that  

 

( ),)(),(min=
2,1,1|22,1,1|21|11|1

2=2,1=1
)2,1(=)2,1(|)2,1(=)2,1( rmlrmmlrrrmr

rmrm
rrmmrrll FFEEF

//
/

 
(36) 

 

where )(),(
2,1,1|22,1,1|21|11|1 rmlrmmlrrrmr FFEE  are determined by (6) and (22) for, correspondingly, the first and 

the second objects. For every LAO test *Φ  from (16) and (29) we deduce that  

 

( ) ( ).,min=,min=
2,1,1|21|12,1,1|21|1

2=2,1=1
2,1|2,1 rmlrrrmmlrmr

rmrm
rrrr FEFEF

//
 

(37) 

and each of 
2,1,1|21|1

, rmlrrr EE  satisfies the following conditions:  

,)||(min),(minmin<<0
11

11,1=1
1|11|1111,=1

1|1 







+

∗

−
rl

Lrl
llml

rl
rr GGDEEE

 
(38a) 

.)|||(mininf),(minmin<<0
1|21|2

21,2=21
2,1,1|22,1,1|2121,=2

2,1,1|2 











+∈

∗

−
QGGDFFF mrll

LrllRQ
lmllmmll

rl
rmlr

 
(38b) 
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From (6.b) and (22.b) we see that the elements 11,=),( 111|11|1
−∗ rlEE llml  and ),(

2,1,1|22,1,1|2 lmllmmll EE∗  

11,= 22 −rl  are determined only by 
1|1 llE  and 

2,1,1|2 lmllF . But we are considering only elements 
1|1 rrE  and 

2,1,1|2 rmlrF . We can use Corollary 1, Corollary 2 and upper estimates (38.a), (38.b) as follows:  

,)||(min),||(minmin<<0
11

11,1=1
11111,=1|1 








+−

rl
Lrl

lr
rl

rr GGDGGDE
 

(39a) 

.)|||(mininf),|||(mininfmin<<0
1|21|2

21,2=21
1|21|2121,=21

2,1,1|2 











+∈−∈
QGGDQGGDF mrll

LrllRQ
llmr

rllRQ
rmlr

 
(39b) 

 

From (37) we have that 
1|12,1|2,1

= rrrrrr EF , when 
2,1,1|21|1 rmlrrr FE ≤ , and when 

2,1,1|22,1|2,1
= rmlrrrrr FF , then 

1|12,1,1|2 rrrmlr EF ≤ . Hence, it can be implied that given strictly positive element 

2,1|2,1 rrrrF  must meet both inequalities (39.a) and (39.b). 

 

Using (37) we can determine reliability )2,1(=)2,1)|(2,1(=)2,1( rrmmrrllF /  in function of 
2,1|2,1 rrrrF  as follows:  

( ) [ ],)(),(min=
2,1|2,12,1,1|22,1|2,11|1

2=2,1=1
2,1|2,1)2,1(=)2,1(|)2,1(=)2,1( rrrrmmlrrrrrmr

rmrm
rrrrrrmmrrll FFFEFF

//
/

 
(40) 

where )(
2,1|2,11|1 rrrrmr FE  and )(

2,1|2,12,1,1|2 rrrrmmlr FF  are determined respectively by (6.b) and by (22.b). Finally 

we obtained 

 

Theorem 6:  If the distributions 
1mG , and 

1|2 mmG  , 11 1,= Lm , 22 1,= Lm  are different and the given strictly 

positive number 
2,1|2,1 rrrrF  satisfies condition (39.a) or (39.b), then the lower estimate )2,1(=)2,1)|(2,1(=)2,1( rrmmrrllF /  

of )2,1(=)2,1)|(2,1(=)2,1( rrmmrrllE /  can be calculated by  (40). 

In the particular case, when 1X  and 2X  are related statistically [8], [9] that is the second object depending on 

PD of the first is characterized by RV 2X  which can have one of 21 LL ×  conditional PDs 

},),({= 22

1/21/2
XxxGG llll ∈ ,1,= 11 Ll  22 1,= Ll , we will have },=),(:{= 212221/2

llxxA NN
ll ϕ  

,1,= 11 Ll  22 1,= Ll , in place of the set )( 11/2
xAN

ll  and in that case from [8] we have  
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The probabilities of the erroneous acceptance of PD 
1/llG  provided that 

1/2 mmG  is true, 111 1,=, Lml , are 

denoted by  

 

),(=)(
1/21/222,1,1|2

N
ll

N
mm

NN
mmll AGϕα .22 ml ≠

 
 

 

The probability to reject 
1/2 mmG , when it is true is denoted as follows  

 

).(=)(=)( 22,1,1|2
2=2

1/21/222,1,1|2

NN
mmll

ml
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N
mm

NN
mmlm AG ϕαϕα ∑

/
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Thus in the conditions and in the results of Theorems 3-6, instead of conditional divergences  

)|||(inf
1/21/2

1

QGGD mmll
lRQ∈

, )|||(inf
1/2

1

QGVD mm
lRQ∈

 we will have just divergences  

/ / /2 1 2 1 2 1
( || ), ( || )l l m m m mD G G D V G  and in place of | , , , | ,2 1 1 2 1 2 1 2

( ), ( ),l l m m l l m mF FΦ Φ  ,1,=, 111 Lml  

222 1,=, Lml , will be | , , , | ,2 1 1 2 1 2 1 2
( ), ( ),l l m m l l m mE EΦ Φ ,1,=, 111 Lml 222 1,=, Lml  .  

 

And in that case regions defined in (21)  will  be changed as follows:  
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In case of two statistically dependent objects the corresponding regions will be  

 

,11,=},)||(:{= 112,1|2,111
−≤

∆

LlEGQDQR lllLll ,11,= 22 −Ll
 

 

,11,=},)||(:{= 112,1|2,11/21/2
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LlEGVDVR llLlllll ,11,= 22 −Ll
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2,1|2,111 lllLlL EGQDQR

∆

,11,= 11 −Ll },11,= 22 −Ll
 

 

,>)||(:{=
2,1|2,11/21/2 llLllllL EGVDVR

∆

,11,= 11 −Ll }.11,= 22 −Ll
 

 

 

So in this case we obtain the optimal interdependencies of reliabilities. The results were shown in [8] and in [9]. 
For this model in next section will present some results of calculations. 

 

7.  Example 

 

. Let us consider the set of two elements {0,1}=X  and the following probability distributions given on X : 

},{0.84;0.16=1G },{0.23;0.77=2G },{0.78;0.22=1/1G },{0.21;0.79=2/1G }{0.59;0.41=1/2G
}.{0.32;0.68=2/2G  In Fig.1 and Fig.2 the results of calculations of functions )( 1,1|2,12,1|1,1 EE  and 

),( 1,1|1,21,1|2,12,1|1,2 EEE  are presented. For these distributions we have 1.3)||( 12 ≈GGD and 

2/1 1/1( || ) 1.06.D G G ≈ We see in Fig.1 that when an analog of the inequality (32.a) of Theorem 5 (for 

statistically dependent objects) is violated then 0=2,1|1,1E  and in Fig.2 we see that when analogs of (32.a) and 

(32.b) equalities are violated then 0=2,1|1,2E . 
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Fig. 1 

 

 

 

Fig. 2 
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8.  Conclusion 

 We studied the more general model of stochastically dependence of two discrete random variables. For this 
model reliability requirements to multiple hypotheses testing and identification are investigated. By the first 

approach optimal interdependencies of elements of reliability matrix of test Φ  can be found when its 121 −LL  

diagonal elements are given. But by this approach we do not have information about the reliabilities of the first 
and the second objects. By the second approach at first we find optimal interdependencies of reliabilities of the 
first object and then interdependencies of lower estimates of reliabilities of the second object. Similarly we also 
solve the identification problem for two objects. Results of the second approach are applied to finding the optimal 

interdependencies of lower estimates of reliabilities of two objects when 121 −LL  non diagonal elements of lower 

estimate matrix are given. If random variables X1 and X2 take values in different sets 1X  and 2X  only the 

notations become more complicated, so we omit this “generalization”. The correspondence with other, less 
general, cases of objects relation is discussed in [5] -- [10]. 
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PROOF COMPLEXITIES OF SOME PROPOSITIONAL FORMULAE CLASSES IN 
DIFFERENT REFUTATION SYSTEMS1

Ashot Abajyan, Anahit Chubaryan 
 

Abstract: In this paper the proof complexities of some classes of quasi-hard determinable (

 

nTsgf ) and hard 

determinable ( nψ ) formulas are investigated in some refutation propositional systems. It is proved that 1) the 

number of proof steps of nTsgf  in )(linR  (Resolution over linear equations) and +'GCNF permutation (cut-

free Gentzen type with permutation) systems are bounded by p( nTsgf2log ) for some polynomial p(), 2) the 

formulas nψ  require exponential size proofs in +'GCNF permutation. 

It is also shown that Frege systems polynomially simulate +'GCNF permutation and any Frege system has 

exponential speed-up over the +'GCNF permutation. 

Keywords: determinative conjunct, hard determinable formula, quasi-hard determinable formula, proof 

complexity, refutation system, polynomial simulation. 

ACM Classification Keywords: F.4.1 Mathematical Logic and Formal Languages, Mathematical Logic, Proof 

theory 

Introduction 

The interest in the complexity of propositional proofs has arisen, in particular, from two fields connected with 
computers: automated theorem proving and computational complexity theory, the most famous open problems of 

which is the NPP =  problem. 

In 1979 Cook and Reckhow studied the relationship between the lengths of propositional proofs and 

computational complexity, and observed that NPcoNP −=  iff there exists a propositional system in which 

proofs are all polynomially bounded [Cook, Reckhow, 1979]. 

Cut-free sequent and resolution systems are the most frequently used proof systems for automated theorem 
proving, but they are “weak” systems. There are some formulas which require exponential proof complexities in 
these systems. 

                                                           

 
1 Supported by grant 11-1b023 of Government of The Republic of Armenia 
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Due to the popularity of these systems it is natural to consider some of their extensions. Resolution over linear 

equations ( )(linR ) [Raz, Tzameret, 2008] and cut-free Gentzen type calculus with permutation ( +'GCNF

permutation) [Arai, 1996] can be considered as such extensions. These systems are stronger than the original 
systems. 

In this paper we investigate the proof complexities of some classes of propositional formulas in )(linR  and 

+'GCNF permutation. In [Abajyan, 2011] and [Aleksanyan, Chubaryan, 2009] the notions of quasi-hard 

determinable and hard determinable formulas are introduced and proof complexities of such formulas are 
investigated in some propositional systems. In particular, it was proved that the complexities of some class of 

quasi-hard determinable formulas nTsgf  in Split Tree (Analytic Tableaux) and resolution systems are by order p(

nTsgf ) for some polynomial p() [Abajyan, 2011] and in [Aleksanyan, Chubaryan, 2009] it was proved that 

complexities of some class of hard determinable formulas nψ  are polynomially bounded in Frege systems. 

Now we show that the minimal steps of nTsgf  proofs in )(linR  and in +'GCNF permutation are bounded by 

p( nTsgf2log ) for some polynomial p() and the formulas nψ  require exponential size proofs in +'GCNF

permutation. We also show that any Frege system −p simulates +'GCNF permutation and has exponential 

speed-up over the last one. 

Note that )(linR  and +'GCNF permutation are refutation systems, that is, these systems intend to prove the 

unsatisfiability of formulas (negations of tautologies), therefore sometimes we shall speak about refutations and 
proofs interchangeably. 

 

2.   Main notions and notations 

2.1   Hard determinable and quasi-hard determinable formulas 

To prove our main results, we recall some notions and notations. We will use the current concept of the unit 

Boolean cube ( nE ), a propositional formula, a tautology, a proof system for Classical Propositional Logic (CPL) 
and proof complexity. 

By ϕ  we denote the size of a formula ϕ , defined as the number of all variable entries. It is obvious that the full 

length of a formula, which is understood to be the number of all symbols and the number of all entries of logical 

signs, is bounded by some linear function in ϕ . 

A tautology ϕ  is called minimal if ϕ  is not an instance of a shorter tautology. 

Following the usual terminology we call the variables and negated variables literals. The conjunct K  can be 
simply represented as a set of literals (no conjunct contains a variable and its negation at the same time). 
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In [Aleksanyan, Chubaryan, 2009] the following notions were introduced. 

We call a replacement-rule each of the following trivial identities for a propositional formula ϕ . 

,0&0 =ψ  ,00& =ψ  ,&1 ψψ =  ,1& ψψ =  ,& ψψψ =  ,0& =ψψ  ,0& =ψψ  

,0 ψψ =∨  ,0 ψψ =∨  ,11 =∨ψ  ,11=∨ψ  ,ψψψ =∨  ,1=∨ψψ  ,1=∨ψψ  

,10 =⊃ψ  ,0 ψψ =⊃  ,1 ψψ =⊃  ,11=⊃ψ  ,1=⊃ψψ  ,ψψψ =⊃  ,ψψψ =⊃  

,10 =  01= , :ψψ =  

Application of a replacement-rule to some word consists of replacing some of its subwords, having the form of the 
left-hand side of one of the above identities by the corresponding right-hand side. 

Let ϕ  be a propositional formula, },,{ 1 nxxX =  be the set of all variables of ϕ  and },,{
1

'
mii xxX =  

( )nm ≤≤1  be some subset of X . 

Definition 1. Given { } m
m E∈= σσσ ,...,1 , the conjunct { }m

miii xxxK σσσσ ,...,, 2

2

1

1
=  is called ϕ -

determinative if assigning jσ  ( )mj ≤≤1  to each 
jix  and successively using replacement-rules we obtain the 

value of ϕ  (0 or 1) independently of the values of the remaining variables. 

Definition 2. We call the minimal possible number of variables in a ϕ -determinative conjunct the determinative 

size of ϕ  and denote it by ( )ϕd . 

Obviously, ( ) ϕϕ <d  for every formula ϕ , and the smaller is the difference between these quantities, the 

“harder” can be considered the formula under study. 

Definition 3. Let nϕ  ( )1≥n  be a sequence of minimal tautologies. If for some 0n , 0nn ≥∀ , 

( ) ( )1+< nn dd ϕϕ  then the formulas ,..., 2,1 000 ++ nnn ϕϕϕ  are called quasi-hard determinable. 

Definition 4. Let nϕ  ( )1≥n  be a sequence of minimal tautologies. If for some 0n  there is a constant c  such 

that 0nn ≥∀ , ( )( ) ( )( ) 1+<≤ c
nn

c
n dd ϕϕϕ  then the formulas ,..., 2,1 000 ++ nnn ϕϕϕ  are called hard 

determinable. 

Example 1. For the well-known tautologies 

( )kjijnjnkiij

n

j

n

in xxxPHP &&
1111

1

1 ≤≤+≤<≤=

+

=
∨∨⊃∨=                     ( )1≥n  

presenting the Pigeonhole Principle, the determinative conjunct is, in particular, },{ 2111 xx , therefore 

( ) 2=nPHPd  for all 1≥n , hence, nPHP  is neither quasi-hard determinable nor hard determinable. 
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Example 2. The following tautologies are considered in [Aleksanyan, Chubaryan, 2009]. 

( )
i

n
n

ij

n

i

m

jEmn xTTM σ

σσ 11,,, &
1 ==∈

∨∨=


, ( )121,1 −≤≤≥ nmn . 

From the structure of mnTTM ,  it follows obviously that every mnTTM , -determinative conjunct contains at least 

m  literals. Let 
12, −

= nnn TTMψ  for all 1≥n . Then the formulas ,,, 543 ψψψ  are hard determinable 

[Aleksanyan, Chubaryan, 2009]. 

The sequence of quasi-hard tautologies can be considered on the base of graphs. 

Let us recall the definition of Tseitin graph formulas [Tseitin, 1968]. Let G  be a connected and finite graph with 

no loops and assume distinct literals are attached to its edges. 

Definition 5. Graph is called marked if each vertex is marked by 0 or 1 and one assigned literal is chosen for 
each edge. 

Let nxx ,,1   be distinct literals, }1,0{∈ε . ε],,[ 1 nxx   denotes a set of disjunctions that consists of literals 

nxx ,,1   and satisfy the following conditions 

1. For each i  ( )ni ≤≤1  either ix  or ix  belongs to the disjunction. 

2. If ε  is odd, then the number of negated literals is even and if ε  is even, the number 

    of negated literals is odd. 

Let G  be a marked graph. Let us construct the set of ε],,[ 1 nxx   disjunctions for each vertex where ε  is the 

value assigned to the given vertex and nxx ,,1   are variables assigned to the incident edges. The set of 

disjunctions constructed for all vertices of graph G  is denoted by )(Gα  and the sum of values assigned to 

vertices of the graph by modulo 2 is denoted by ( )Gσ . In [Tseitin, 1968] it is proved that )(Gα  is unsatisfiable 

iff ( ) 1=Gσ . 

It is obvious that if Tseitin graph formulas are constructed on the base of graphs, minimal degree of which is of 
the same order as the number of vertices, then such formulas are quasi-hard determinable but not hard 
determinable. 

2.2   Proof complexity, polynomial simulation 

In the theory of proof complexity the two main characteristics of the proof are: −t complexity, defined as the 

number of proof steps, and −l  complexity, defined as total number of proof symbols. Let Φ  be a proof system 

and ϕ  be a tautology. We denote by Φ
ϕt  ( Φ

ϕl ) the minimal possible value of −t complexity ( −l complexity) for 

all the proofs of tautologyϕ  in Φ . 
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Let 1Φ  and 2Φ  be two different proof systems. Following [Cook, Reckhow, 1979] we recall 

Definition 6. 2Φ  −− tp simulates ( −− lp simulates) 1Φ  if there exists a polynomial ()p  such that for 

every formula ϕ  derivable both in 1Φ  and in 2Φ   )( 12 ΦΦ ≤ ϕϕ tpt  ( )( 12 ΦΦ ≤ ϕϕ lpl ). 

Definition 7. The systems 1Φ  and 2Φ  are −− tp equivalent ( −− lp equivalent) iff 1Φ  −− tp simulates (

−− lp simulates) 2Φ  and 2Φ  −− tp simulates ( −− lp simulates) 1Φ . 

Definition 8. The system 2Φ  has exponential −t speed-up ( −l speed-up) over the system 1Φ if there exists a 

polynomial ()p  and a sequence of such formulas nϕ  , provable both in 1Φ  and in 2Φ , that ( )2
1 2

Φ

>Φ n

n

tpt ϕ
ϕ  (

( )2
1 2

Φ

>Φ n

n

lpl ϕ
ϕ ). 

 

3.   Main systems 

Let us recall the definitions of some proof systems of CPL which are not well-known. 

3.1   Resolution over linear equations 
Let us describe ( )linR  system following [Raz, Tzameret, 2008]. ( )linR  is an extension of well-known 

resolution which operates with disjunction of linear equations with integer coefficients. A disjunction of linear 
equations is of the following form 

( ) ( ))(
0

)(
1

)(
1

)1(
0

)1(
1

)1(
1 ......... t

n
t

n
t

nn axaxaaxaxa =++∨∨=++  

where 0≥t  and the coefficients )( j
ia  are integers (for all ni ≤≤0  tj ≤≤1 ). We discard duplicate linear 

equations from a disjunction of linear equations. Any CNF  formula can be translated into a collection of 

disjunctions of linear equations directly: every clause jJjiIi
xx ¬∨∨∨

∈∈
 (where I  and J  are sets of indices of 

variables) involved in the CNF  is translated into the disjunction ( ) ( )01 =∨∨=∨
∈∈ jJjiIi

xx . For a clause D  we 

denote by D~  its translation into a disjunction of linear equations. It is easy to verify that any Boolean assignment 

of the variables nxx ,,1   satisfies a clause D  iff it satisfies D~ . 

As we wish to deal with Boolean values, we augment the system with axioms, called Boolean axioms: 

( ) ( )10 =∨= ii xx  for all [ ]ni∈ . 

Axioms are not fixed: for any formula ϕ  we obtain ϕ¬ , then we obtain ( )linR  translation of CNF  of ϕ¬ . 

We also add Boolean axioms for each variable. 

Definition 9 ( )( )linR . Let },...,{ 1 mKKK =  be a collection of disjunctions of linear equations. An ( )linR -
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proof from K  of a disjunction of linear equations D  is a finite sequence ( )lDD ,...,1=π , of disjunctions of 

linear equations such that DDl =  and for every [ ]li∈ , either ji KD =  for some [ ]mj∈ , or iD  is a 

Boolean axiom ( ) ( )10 =∨= hh xx  for some [ ]nh∈ , or iD  was deduced by one of the following ( )linR -

inference rules, using kj DD ,  for some ikj <, . 

Resolution. Let BA,  be two disjunctions of linear equations (possibly the empty disjunctions) and let 21, LL  

be two linear equations. From 1LA∨  and 2LB∨  it is derived ( )21 LLBA +∨∨  or ( )21 LLBA −∨∨ . 

Weakening. From a disjunction of linear equations A  derive LA∨ , where L  is an arbitrary linear equation 

over X . 

Simplification. From ( )kA =∨ 0  derive A , where A  is a disjunction of linear equations and ( )0≠k . 

An ( )linR  refutation of a collection of disjunctions of linear equations K  is a proof of the empty disjunction from 

K . Raz and Tzameret showed that ( )linR  is a sound and complete Cook-Reckhow refutation system for 

unsatisfiable CNF  formulas (translated into unsatisfiable collection of disjunctions of linear equations). 

3.2    GCNF '  system 
Let us describe 'GCNF  system following [Arai, 1996]. 'GCNF  is a variant of cut-free Gentzen system 

introduced by Gallier. It is also a refuting system. Here a clause is a set of literals, separated by commas. For 

example, { }321 ,, ppp  means 321 ppp ∨∨ . A cedent is a finite set of clauses, expressed as a sequence of 

clauses punctuated by commas. The meaning of a cedent is the conjunction of the clauses in the cedent. For 

example, nCCC ,,, 21   means nCCC &&& 21  . We use capital Greek letters Π∆Γ ,,  for cedents. The 

semantics of cedents implies that a cedent nCC ,,1   is false iff the formula ⊃⊥nCC &&1   is valid. 

The axioms are of the following form pp, . And there are two inference rules 

Structural: 
∆Γ
Γ
,

. 

Logical (Log): ( )l
lClC

lCC
k

k

,,,
,,,

1

1





Π∪Γ
ΠΓ , where l  is an arbitrary literal, which is called auxiliary literal of this 

inference rule. 

'GCNF  is a sound and complete system [Arai, 1996]. 

3.3  GCNF ' + permutation system 
+'GCNF permutation system is based on 'GCNF  with one more inference rule [Arai, 1996]. 
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Permutation (Perm): π
ππ ))(,),((

),,(

1

1

m

m

pp
pp





Γ
Γ , where π  is a permutation on { }mpp ,,1   and 

))(,),(( 1 mpp ππ Γ  is the result of replacing every occurrence of ip , mi ≤≤1  in ),,( 1 mpp Γ  by 

)( ipπ . 

 

4.   Main results 

Let us denote by nTsgf  ( )2≥n  the Tseitin graph formulas which are constructed on the base of complete n -

vertices graph, only one of vertices of which is marked with 1. 

Theorem 1: 

1. |)|(log2
)()(

n
linR

Tsgf
linR

Tsgf Tsgfplt
nn
≤≤  for some polynomial ()p . 

2. |)|(log2
'

n
npermutatioGCNF

Tsgf Tsgfpt
n

≤+  for some polynomial ()p  and |)(|'
n

npermutatioGCNF
Tsgf Tsgfl

n
Θ=+ . 

Proof: 1. In order to prove the first part, let us recall two additional lemmas following [Raz, Tzameret, 2008]. 

Lemma 1: Let 1D  be 
[ ]

( )ixxx nni
=+++∨ −−∈ 1211,0

  and 2D  be 
[ ]

( )α+=+++∨
−∈

ixxx nni
211,0

. Then 

there exists an ( )linR  proof of 2D  from 1D  and α=nx  with n  steps. 

Lemma 2: Let 1D  be 
[ ]

( )ixxx nni
=+++∨ −−∈ 1211,0

  and 2D  be 
[ ]

( )ixxx nni
=+++∨

∈
21,0

. Then there 

exists an ( )linR  proof of 2D  from 1D  and ( ) ( )10 =∨= nn xx  with 22 +n  steps. 

Now we can consider complete marked n -vertices graph. For each vertex we have the following ( )linR  formula 

iiii n
xxx ε=+++

−121
 , where iε  is the value assigned to the given vertex and 

jix  

( )






 −

≤≤<≤
2

11,1 nninj  are variables assigned to the incident edges. 

Using Resolution rule to ( )linR  formulas 1−n  times (or, summarizing those formulas), we obtain   

1222
2

)1(21 =+++ −nnxxx 

 
(1) 

On the other hand, for all the variables, we have the following axioms, ( ) ( )10 =∨= ii xx , ( )




 −

∈
2

1,1 nni . 

By Lemma 2, there is an ( )linR  proof of 
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( ) ( ) 







=+++∨ −





 −

∈

ixxx nnnni 2
121

2
1,0



 
(2) 

from the axioms, and the number of proof steps is ( )
( )

4
1667222

2342
1

2

−−+−
=+∑

−

=

nnnni
nn

i
. Using 

Resolution rule ( ) 1
2

1
+

−nn  times, every time taking the next linear equation of (2) as 21 LL = , we obtain  

( ) ( ) 







=+++∨ −





 −

∈

ixxx nnnni
2222

2
121

2
1,0



 
(3) 

Now, let us consider (1) and (3). 

Using Resolution rule ( ) 1
2

1
+

−nn times and Simplification rule ( ) 1
2

1
+

−nn  times (by using Resolution rule, 

we take (1) as 1L  and the next linear equation of (3) as 2L ), we will cut-off all linear equations in (3) and obtain 

the empty clause ( )10 = . 

The number of proof steps is 

( ) ( ) ( )
4

81321
2

11
2

11
2

1
4

166721
234234 nnnnnnnnnnnnnnn −+−

=+
−

++
−

++
−

+
−−+−

+−

.Taking into consideration that ( ) 221 −−= n
n nnTsgf , we obtain |)|(log2

)(
n

linR
Tsgf Tsgfpt

n
≤ . 

The size of the proof of (1) is )( 3nO , the size of the proof of (2) is )( 8nO . The size of the proof of (3) is 

)( 6nO . And, the size of deducing of the empty clause is )( 6nO . So, the size of the proof of the initial formula is 

)( 8nO , hence, )|)|((log 8
2

)(
n

linR
Tsgf TsgfOl

n
= . 

1. In order to prove the point 2, let us at first demonstrate a proof of 4Tsgf  in 

+'GCNF permutation system. The axioms for this case are indicated as (4).  

 

3x  

0 

621 xxx   621 xxx   621 xxx   621 xxx  

431 xxx   431 xxx   431 xxx   431 xxx  

532 xxx   532 xxx   532 xxx   532 xxx  

654 xxx   654 xxx   654 xxx   654 xxx  

6x  
2x  

1x  

4x  

5x  

0 

0 

1 

(4) 
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(5) 

Using 133221 ,, xxxxxx →→→  Permutation rule to (5), we obtain 

133213321212 ,,,,, xxxxxxxxxxxx ∨∨∨∨∨∨
 

(6) 

Using 231231 ,, xxxxxx →→→  Permutation rule to (5), we obtain 

211321132323 ,,,,, xxxxxxxxxxxx ∨∨∨∨∨∨
 

(7) 

Applying Logical inference rule to (5), (6), (7) and respectively to axioms 66 , xx , 44 , xx , 55 , xx , we obtain first 

three lines of (4). The last line of (4) we can deduce as follows: 

 
For nTsgf  we denote by ( )it  the derivation steps of first 1−i  lines (as above) of the axioms corresponding to 

the complete graph with i  vertices. It is not difficult to see that ( ) 43 =t  and 

( ) ( ) ( ) )1(221 −+−+−= nnntnt , hence, ( ) ( ) 232
2

53 nnnnt ≤−
−

= . The last line of the axioms 

consists of such variables that do not exist in the 1−n -vertices complete graph, that is, those variables are 

assigned to the edges which are incident to the newly added vertex. Each clause consists of 1−n  literals and 

( )22 −n  steps are needed to deduce the last line. So, the number of proof steps is 

( ) ( ) ( ) 236
2

13222
2

53 nnnnnn
≤−

−
=−+−

− , then we obtain |)|(log2
'

n
npermutatioGCNF

Tsgf Tsgfpt
n

≤+ . 

There are at most ( ) 221 −− nn  literals in each step of the proof and the number of proof steps is at most 23n , 

44 , xx    55 , xx  

,54 xx ∨  ,54 xx ∨  5x           44 , xx  

,54 xx ∨  ,54 xx ∨  ,54 xx ∨  54 xx ∨           66 , xx  

 

Log 

,654 xxx ∨∨  ,654 xxx ∨∨  ,54 xx ∨  54 xx ∨      6x  

 ,654 xxx ∨∨  ,654 xxx ∨∨  ,654 xxx ∨∨  654 xxx ∨∨  

 

Log 

Log 

Log 

11, xx    33 , xx  

,31 xx ∨    31, xx  

,31 xx ∨ ,, 31 xx ,31 xx ∨ 31, xx           22 , xx  

 

Log 

Perm 

,31 xx ∨ ,31 xx ∨ ,21 xx ∨ ,32 xx ∨ ,, 31 xx 2x  

 ,31 xx ∨ ,31 xx ∨ ,21 xx ∨ ,32 xx ∨ ,21 xx ∨ 32 xx ∨  

 

Log 

Log 
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hence |)(|'
n

npermutatioGCNF
Tsgf TsgfOl

n
=+ . It is obvious that the lower bound is the same by order.  

Theorem 2: 









Ω=+

¬
n

n
npermutatioGCNF n

n
l

2log||
2

ψ

ψ . 

Proof. It is not difficult to see that CNF  of 
( )

i

n

n
n

ij

n

ijE
n x σ

σσ
ψ

1

12

1,,
&&

1 =

−

=∈
∨=¬



 has at least 12 −n

n  conjuncts such 

that neither these conjuncts nor any of their subset can be obtained from each other by Permutation rule (for 

121 ==== nσσσ   and for 021 ==== nσσσ  ), therefore 

nnnnnnpermutatioGCNF nnn

n
nnl 2log)12(21212' 2)12()12(2)1221(2 −−−+

¬ −>−=−+++> ψ . Taking into 

consideration that nnn
n )12(2 −=¬ψ , we obtain the statement of the Theorem.  

Now, let us recall some additional systems. 

1. +'GCNF renaming system is based on 'GCNF  with one more inference rule [Arai,1996]. 

Renaming: qp
qp

→
→Γ
Γ

)(
, where )( qp →Γ  is obtained by replacing every occurrence of p  by q  in Γ . 

2. +'GCNF restricted renaming system is based on 'GCNF  with one more inference 
rule [Arai, 1996]. 

Restricted renaming: qp
qp

⇒
⇒Γ
Γ

)(
, where )( qp ⇒Γ  is obtained by replacing every occurrence of p  

by a variable q  which does not appear in Γ . 

3. We also use the well-known notions of −F Frege, −SF Substitution Frege and −EF  
Extended Frege systems (see, for example, [Pudlak, 1998]). 

Theorem 3: 

1. F  has exponential speed-up over the +'GCNF permutation. 

2. F  −p simulates +'GCNF permutation. 

Proof of point 1 follows from Theorem 2 and main result of [Aleksanyan, Chubaryan, 2009] where it is proved that 

F  proofs of tautology mnTTM ,  are −l polynomially bounded. 

Proof of point 2 follows from some results of [Arai, 1996], [Arai, 2000] and [Cook, Reckhow, 1979], in particular 

a) +'GCNF renaming −− lp simulates +'GCNF restricted renaming (it is obvious). 
b) +'GCNF restricted renaming −− lp simulates +'GCNF permutation (see [Arai, 1996]). 
c) F  −− lp simulates +'GCNF renaming iff F  polynomially simulates EF  (see [Arai, 1996]). 
d) SF  and EF  are −− lp equivalent (see [Pudlak 1998]). 
e) F  and SF  are −− lp equivalent (see [Chubaryan, Nalbandyan, 2010]).  
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