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CONSTRAINT CONVEXITY TOMOGRAPHY AND LAGRANGIAN APPROXIMATIONS

Levon Aslanyan, Artyom Hovsepyan, Hasmik Sahakyan

Abstract: This paper considers one particular problem of general type of discrete tomography problems and
introduces an approximate algorithm for its solution based on Lagrangian relaxation. A software implementation is

given as well.
Keywords: discrete tomography, lagrangian relaxation.

ACM Classification Keywords: F.2.2 Nonnumerical Algorithms and Problems: Computations on discrete

structures.

Introduction

Discrete tomography is a field which deals with problems of reconstructing objects from its projections. Usually in
discrete tomography object 7', represents a set of points in multidimensional lattice. Some measurements are
performed on 7", each of which contains projection, which calculates number of points of 7" along parallel

directions. Given finite number of such measurements it is required to reconstruct object 7", or if it is not possible
to find unique reconstruction, construct an object which satisfies given projections. The object existence problem

even by given 3 non-parallel projections is NP-complete [1].

In recent years discrete tomography draws huge attention because of the variety of mathematical formulations
and applications. Theory of discrete tomography is widely used particularly in the field of medical image
processing, which is based on so called computerized tomography.

Lets consider 2-dimensional lattice and horizontal and vertical projections only. Object 7" can be represented as
amxn (0,1) matrix, where 1s corresponds to points in 7" . Vector of row sums corresponds to horizontal
projection and vector of column sums to vertical projection. So the problem of reconstructing the object by given
horizontal and vertical projections is equivalent to the (0,1) -matrix existence problem with given R and .S row

and column sums. The latter problem was solved independently by Gale and Ryser in 1957. They gave sufficient
and necessary condition for such a matrix existence and also proposed an algorithm for the matrix construction.

Same problem with condition of rows inequality was investigated in [6].
In many cases orthogonal projections does not contain enough information for the objects unique reconstruction.

That's why often we consider different classes of such problems, where we impose additional constraints, for
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instance of geometrical nature. Such constraints narrow the solutions set but at the same time could make the

problem hard to solve. Typical examples of such constraints are convexity and connectivity.

We say that matrix has row (or horizontal) convexity feature if all ones in the row forms a continuous interval.
Same way we define column (or vertical) convexity. Connectivity is the feature of moving between 1s in

neighboring cells. In our case we consider only vertical and horizontal connectivity (not diagonal).

Existence problem for connected matrices is NP-complete [2]. Existence problems for horizontally or vertically

convex, and for both horizontally and vertically convex matrices are also NP-complete [3].

Different authors proved that horizontally and vertically convex and connected matrices reconstruction problem
can be solved in polynomial time. Given description shows how sensitive are this kind of problems to input
conditions. We see that existence problem's complexity changes along with adding new constraints. At the same
time there are a lot of other notations of the problem for those the complexity is not even known. Particularly that

means that they also lacks easy solution algorithms.

So we consider several problems in the field of discrete tomography, propose ways for constructing such
matrices that satisfy constraints (convex or nearly convex, satisfying given parameters or having values near to
given parameters). Further we will formulate the problems as optimization problems and give ways for their
approximation, based on the integer programming relaxation. The question is that integer programming model is
known for being used to reformulate known NP complex optimization problems. This model's (precise or
approximate algorithms construction) investigation is very important and often this model is used to approximate
optimizations problems [4, 6]. Implemented algorithms and software package based on that algorithms give an
ability to make calculations either for tomography problem or for similar problems, such that those calculations

might guide us or give approximate or precise solutions.

In this paper we will consider one problem from the field of discrete tomography, horizontally convex matrix

existence problem.

Horizontally convex matrix existence problem

Since 1's in the horizontally convex matrix are in neighboring position then if we count the number of 1's in the
matrices rows, that number for convex matrices will be maximum for the ones with same parameters. That's why

problems that are often considered are related to number of neighboring 1's, their constraints and optimization.
R=(r,r,), S=(s;,-,5,) , R =(r,---,r,) vectors are given. Is there a mxn

X = {xh j} matrix such that R is row sum vector for that matrix and .S’ is column sums vector, and number

of neighboring 1's in row I is equal to rl.'.
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mm(xl], X 1) =T, rLi=1,m

X, {01}

In other words the problem is following, find the matrix with horizontal convexity in the class of (0,1) matrices
with given row and column sums. This problem is NP-complete, since for the case when
rl.' =7— I,i=1,---,m it's equivalent to the horizontally convex matrix existence problem. Given particular
case just require the matrix to be horizontally convex by neighboring 1s in the rows.

As we already mentioned lot of combinatorial problems are suitable to represent as integer linear optimization

problems. Lets reformulate our problem as integer programming problem.

Lets define Vi € {0,1} variables the way that it provides neighboring 1's in row i.

i, =he(x,; =D& D,i=1m; j=1-,n—1

i j+1

This can be done by satisfying conditions

Vij S X

Vi, < X j+l

VijZX X 01

i,j+1

So we reformulate the problem in the following way.

R=(r, 1), S=(s;,-,5,), R =(r,---,r,) vectors are given: Is there a mxn

X ={x; ;} matrix such that
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(1)le-,j :Sjajzla"'an
i=1

(Z)in,j =r,i=1,m
j=1

Vi SX;
(3) yi,jgxi,j+l izla"'amaj:19°"an_1
1

Vi 2 Xi X g~

n—1 ,
(4)2)}1’] :]/‘I.’i:L...’m
j=1

(5)x; ; {01}, v, ; € {01}

Lagrangean relaxation and variable splitting

So we have horizontal row convex matrix existence problem, which is reformulated as linear integer programming

problem /. We also know that problem I is NP-complete. To solve this problem we will use a method based on

Lagrangian relaxation.

Obviously if we drop some of the constraints we will get problems relaxation. Assume that we can call one or
several constraints hard in the since that by dropping those constraints we can solve resulted integer
programming problem more easily. Constraints dropping could be embedded in more common method which is
called Lagrangian relaxation. We can apply Lagrangian relaxation to given method in various ways. One of the
ways, which we will use here is following, if the problem can be splitted to subproblems, which have common

variables, first split those variables and then relax their equality constraint.

h

So, we take two set of variables X and xl.vj by duplicating x; j variables, and reformulate our problem as
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(I)Z‘ixl.v,j =s;,j=1n
Q) Yx! =ri=l-m
j=1

yi,jgx'h
(3) yi,jgxi,j+1 izla"'amaj:19°"an_1
h 1

h
Vi 2 Xi ;X j—

n—1 ,
(4)Zyi,j =r,i=L1m
j=1

S)x! . x;, 0401}, p, ; € 40,1}
(6)’“2/‘ =X; ;

We split our original problem using variable splitting to two problems, each of which has its own variable set and

which would be independent without constraint (6). From this point of view constraint (6) is the hardest one. We

will relax constraint (6) using Lagrangian relaxation with coefficients il- j

We get following problem VST (1) , and its optimal value is v"> (1).
h v
max(Z),i’j(x. =X )
i ] L] L]

DXx;=s;,j=L-n
i=1

J=1
h
Yij =X
h . .
(3) yi,jgxi,j+1 l=1,---,m,]=1,--°,n—1

h —_—
i,j+1

h
yl.’ijl.’j+x 1

n—1 ,
(4)Zyz,] :riaizla'”am
j=1

S)x! .x}, 0401}, p, ; € 40,1}
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Then using same method we can further split the problems into subproblems for rows and columns, which itself is

reducing to the finding of simple path, with given number of edges and biggest weight on directed graph.
We can approach the problem in other way, by relaxing constraint (3) we would split the problem into two

subproblems with X; and y; j variables. But this paper is limited with first approach.

Obviously problem ¥SI(4) is relaxation of problem I , hence v"*' (1) is upper limit for value of /. Find

best upper limit means to solve Lagrangian dual problem which is

VP = minv™ (1)
A

This is convex non-differential optimization problem: There are different methods for solving this problem. One of

them is subgradient optimization method. Subgradient optimization on each step calculates the value of

VA (A) for given li in this case that equals to solving following 772 independent problems

o)

n
max(.¢;x;)
j=1

yizx;+x;, -1
n-1 .

Zyj =r

j=1

xj N {051}7yj € {051}

We will try to solve these problems using algorithm for finding simple path on acyclic directed graph with biggest

cost and given number of edges.
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Decomposed problem on graph and the solution

We consider directed graph G = (V, E ) which vertex set consists of vertexes for each X j variable plus §

source and O destination. We define edges in following way

(s, xj) with weight C ;
(x;,x;),i<j—1 with weight C
(x;,0) with weight 0

Consider the paths form S to O . Only r variables corresponding to x ; Vertexes, are 1's according to (*) and

among them 7' is neighboring 1's. Hence we are interested only in those paths from ' to O that have only 7

vertexes and there are only 7' with neighboring 1's. We need to find among those paths, the one that has

maximum weight. Now by assigning 1's to variables corresponding to vertexes we will get solution to the problem

().

Now lets give algorithmic description.
Let z(/, p) is weight of the longest path from .S to x ; vertex with P vertexes on it. Lets W(/, p,q) is
weight of the longest path from S to x j which has p vertexes on it and there are ¢ neighboring vertexes with

corresponding variables equal to 1. In this case z( /, p) and W(j, p,q) can be calculated the following

way. First of all consider z( 7, p)
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z(j,1) =¢;
z(j,p) =max(z(u,p-1)+c;)

M<)CJ

And the optimal value we're looking for is z(o,r) = max z(x,, 7).
< ,

This part of the problem is solving in the following way.

For given 1 and 7V ijpz[z array is constructed, where j=1,...,n and for ]

j,p]
p= 0,...,j —1.m reality for fixed 7° its enough to consider P = 1,...,1” layers, but P = 1,-..,71

will satisfy calculations needed for all 7* .

First of all Z, ; value is calculated. That's equal to ¢, . All values of row p = 1 are calculated in the same way

Z;1=¢;. To caleulate z; , by our formula we need to know values for p —1 and for all 1,..., j —1

indexes. But in row p —1 first non-zero value is in j = p — 1 position, which is on diagonal. So calculations

can be done sequentially on p =1,...,7,... rows and in rows in order J = D,...,n. This constructs are

needed for software implementation and these give ability to measure number of operations in calculation. It

doesn't exceed n3 , Which means polynomial complexity.

Maximal weight paths can be stored in a separate array. They can be stored as 0,1 vectors or as indexes of non

zero elements which however won't significantly decrease number of computations.
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Now lets calculate values of W( j, p,q) . First of all lets consider edge values. From w( j, p,q) we have
maximal weight path from S to X; which has P vertexes and there are ¢ pairs with neighboring 1's.

g<p-—1andlets p's are decreased up to ¢ +1. w(j,g+1,g)'s can be non-zero starting from

Jj = q+1.Forbigger ¢'sand smaller j's w( j, p,q)'s are equal to 0.

41
Interestingly ¢ can't be very small. If p > }]T{ then ¢ can't be 0 (at least 2 vertexes must have

neighboring indexes).

+1
Let 7 = |:]T} In that case 7 vertex pairs still might not be neighbors, which gives 27 vertexes. After that

any new vertex addition would add 2 new pairs.
Now lets consider common case. For calculating W( J, p, q) lets consider class where for j p < j and for

J, p pairs ¢ < p—1. This class is larger than needed but in reality it doesn't differ much from the minimal
class which is necessary for calculations. For slight transition of edge values class is zeroed before performing

calculations. Lets investigate value of W( j, p,q). We do chain calculations and on each step consider 2

cases x;_; =1and x;_; =0.So we get following values

w(j—Lp-Lg-1D+c; and max (w(u,p-1,9)+c,)

u<x;-1

We are interested in maximum of these values.
nw(j—-1,p—1,4q —1)+cj all indexes are less than preceding and we assume that this value is already

calculated in previous steps. For calculating max (w(u, p—1,9)+c;) we do next step in chain

u<x;-1

calculation.

wu—-1,p-2,9-1)+c,;
maX(W(V’p _Zaq)+cj)

v<u-I1
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And the needed optimal value is w(o, r,7") = max w(x,,r,»") . This problem practically can be solved in
j
following way.

For given 1, I, 7' we construct the class given above, array W] w. ] , where for

X =[ 7.p.q

j:1,...,n and ] p :1,...,j and for pair ],p q :O,...,p—l_

In reality for fixed 7 it's enough to consider P = 1,-.-,7’ layers and for ¢ all values where ¢ <r-1.

But calculations must be done in such sequence to be executable.

Wipa

First W), , values are calculated, W, ,, = ¢, all values in row p =1 are calculated in the same way

W10 =¢C;. More, g = 0 values were already considered. To calculate w; , 4 based on our formula we

need to know values for p —1 and all 1,..., j —1. But in layer p —1 with current g value is either 0 or
already calculated. Then calculations can be done in layers p = l,...,7,... sequentially and in layers in order

of j = p,...,n. Given constructions are needed for software implementation and give ability to measure

. 4 . . .
number of calculations. Those are not more than 72~ which means polynomial complexity.

Maximal weight paths that we're looking for could be stored in separate array as 0,1 vectors or as array of

indexes with non-zero values, which however won't significantly lower number of calculations.
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Software implementation

Based on given methods a software system with an Ul was implemented, which can be used to solve some

problems from the field of discrete tomography based on Lagrangian relaxation.

There are several fields which are used for data input. Since we are solving problems in the field of discrete
tomography so input data are projections, in our case row sums and column sums. Also we are giving specific
problem description by additional constraints. So we have special fields for that purpose. Then there is special
control which can be used to reformulate given problem as mathematical programming problem. Then we can
choose one or several constraints which we want to relax. Also we can do variable splitting etc. And there is an
output window which is used for displaying results. For example value of Lagrangian Dual or variables difference

as a result of splitting.

& DT 9[(=1/E

Fow sums veckor

Enkter data

| 5,3,6,3,1,4
Reformulate problern

Column sums weckor

| 2,5,4,4,4,1,2

Parameters

Auxillary conskrainkt

Problem bype: |C0nstrained h-corvexity -

e -
o

Clear |
|2,1,4,1,0,3|

Results

In given example as a problem is considered horizontal row convexity existence problem.

Now lets describe one of the main classes in the implementation, ProblemBase abstract class. This class is base
for all problem. Class encapsulates problem data. It also has several virtual functions which are used for problem
solution. For example function which reformulates the problem as mathematical programming problem, chooses
constraints for relaxation. Important function in ProblemBase is Solve method, which invokes the method for
specific problem. Since most of the problems are reducing to relatively easy problems on graphs and methods for

those solutions can be used for different problems we put those methods in a separate library.
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ON HYPERSIMPLE wff-MITOTIC SETS, WHICH ARE NOT /7 -MITOTIC

Arsen H. Mokatsian

Abstract: A T-complete wit-mitotic set is composed, which is not tt-mitotic. A relation is found out between
structure of computably enumerable sets and the density of their unsolvability degrees.
Let us adduce some definitions:
A computably enumerable (c.e.) set is tt - mitotic (wtt - mitotic) set if it is the disjoint union of two c.e.
sets both of the same tt -degree ( wtt -degree) of unsolvability.

Let A be an infinite set. f majorize A if (Vn [f(n) > zn]), where z,,z,,... arethe members of A

in strictly increasing order.

A is hyperimmune (abbreviated h-immune) if A is infinite and (V' recursive f°) [f does not majorize A].

A is hypersimple if Ais c.e. and A is hyperimmune.

A is hyperhyperimmune if A is infinite and —|(E| recursive f ) so that
[(Vu)W,, isfinite & W, N 4= D] &(Vu)\vv)uzv=W,, W, =3]].

A is hyperhypersimple if A is computably enumerable and A is hyperhyperimmune.

We shall denote T-degrees by small bold Latin letters.
A degree a<0'islowif a'=0'(i.e. if the jumpa’ has the lowest degree possible).
Theorem (Martin [6]). a is the degree of a maximal set <> a is the degree of a hypersimple set < [ a
isce anda' =0"].
Theorem (R. Robinson [8]). Let b and ¢ be c.e. degrees such that ¢ <b and ¢ is low. Then there
exist incomparable low c.e. degrees a, and a,, suchthatb=a, Ua, and a, >¢, fori <2.
Griffiths ([3]) proved that there is a low c.e. T-degree u such that if v is a c.e. T-degree and u <v then
v is not completely mitotic.
In this article it is proved the following theorem:
Theorem. There exists a low c.e. T-degree u such that if v is a c.e. T-degree and u < v then v contains
hypersimple wtt -mitotic set, which is not ¢t -mitotic.
From the abovementioned theorems of Martin and R. Robinson follows that it is impossible to replace
hypersimple by hyperhypersimple.

Keywords: computably enumerable (c.e.) set, mitotic, wtt -reducibility, tt -reducibility, hypersimple set, low

degree.

ACM Classification Keywords: F. Theory of Computation, F.1.3 Complexity Measures and Classes.
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Introduction

We shall use notions and terminology introduced in [9], [10].

The definitions of #¢ - and wtt - reducibilities are from [9].

@(x) 4 denotes, that @(x) is defined, and @(x) T denotes, that @(x) is undefined.

Definition. The order pair << x,,---,x,>, a > where <x,,---,x,>isa k -tuple of integers and o isa k -ary

Boolean function (& > 0) is called a truth-table condition (or #¢ -condition) of norm k . The set {x,,--,x, } is

called the associated set of the ¢t -condition.

Definition. The #¢ -condition << x,,---, x, >, a >, is satisfied by A if a(c ,(x,),"-,c,(x,))=1, where ¢, is

characteristic function for A .

Each ¢ -condition is a finite object; clearly an effective coding can be chosen which maps all ¢z -conditions (of

varying norm) onto @, on condition that

(Vx)(max{z| z is the member of associated set of the - condition x } < x).

Assume henceforth that a particular such coding has been chosen. Where we speak of “#¢ -condition x”, we

shall mean the ¢ -condition with the code number x .

Definition. A is truth-table reducible to B (notation: 4 <, B) if there is a computable function f* such that for
al x, [xe A<t -condition f(x) is satisfied by B ]. We also abbreviate “truth-table reducibility” as

“ tt -reducibility”.

Definition. 4 is weak truth-table reducible to B (notation: 4 < = B)if

—wit
(3z)[c, =@’ (I computable f')

(Vx) D (v Contains all integers whose membership in B is used in the computation of goZB ()1

Definition. A c.e. setis ¢ - mitotic ( wtz - mitotic) set if it is the disjoint union of two c.e. sets both of the same

1t -degree (wit -degree) of unsolvability.
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Let A<

—u

B and (Vx)[x e A< tt -condition f(x) is satisfied by B] and ¢, = f . Then we say that

A<, B by @,.

Let us modify denotations defined in [4] with the purpose to adapt them to our theorem.

We say that (A4,,4,,9,,¢,) is tt -mitotic spliing of A if A and 4 are ce, 4 U4 =4,
ANA=D, A<, A by w, and A<, 4, by w, A<, A by y,.

Let /2 be a recursive function from @ onto @*.

Define (Y,,Z,,3,,y,) to be a quadruple (W, ,W,, ¢, ,¢, ), where h(i) = (i,i,iy,05) . If A4 is ce. then
we say that the non-#¢ -mitotic condition of i order is satisfied for A, if it is not the case that (Y;,Z,,9.,y,)is

a tt -mitotic splitting of A .

xlic” s lf‘ wi,s’(n) J”

Denotation. u"(i,n,s) =
0, otherwise

where tt-condition ¢,(n)=<< x{,--,x; > @,>.

We define two computable functions that will be of use later.
1. k(i,n,s)= max{n,{utt(iz,Ys,m,s) :m < n}U {u”(i3,ZS,m,s) :m < n}}

2. L(A,i,s)= ,un[—|(cA (n) =1 < tt-condition § (n) satisfied by Yl) \%
—|(CA (n) =1 < tt - condition i, (n) satisfied by Zl.)],

where h(i) = (iy,i;,1,,13) .

Adduce some information, concerning hypersimple sets.

Definitions.
Let A be an infinite set. f majorizes A if (Vn [f(n) > zn]) , Wwhere z,,z,,... are the members of A in
strictly increasing order.

A'is hyperimmune (abbreviated h-immune) if A is infinite and (¥ recursive /) [f does not majorize A].
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A'is hypersimple if Ais computably enumerable and A is hyperimmune.
A useful characterization of hyperimmune sets is given in the following theorem.

Theorem (Kuznecov, Medvedev, Uspenskii [ 7]). A is hyperimmune <> A is infinite and
— (3 recursive £)[(Yu)[D,,NA4#%D] &(Vu)(¥W)u#v =D, ND,, =21].
Definitions.

A’is hyperhyperrimmune if A is infinite and ﬁ(EI recursive f )

[(Va )W

 1sfinite & W

N A#£D] &(Vu)(Vv)[u zv=>W,, MW, =D
Ais hyperhypersimple if A is computably enumarable and A is hyperhyperimmune.

Adegree a<0'islowif a’ =0’ (i.e. if the jump a’ has the lowest degree possible).

Theorem (Martin [6]). a is the degree of a maximal set <> a is the degree of a hypersimple set <[ a is c.e.
and a'=0"].

Theorem (R. Robinson [8]). Let b and ¢ be c.e. degrees such that ¢ <b and c¢ is low. Then there exist

incomparable low c.e. degrees a, and a,,suchthat b=a, Ua, and a, >¢, fori<2.

Griffiths ([3]) proved that there is a low c.e. T-degree u such thatif vis ac.e. T-degree and u <v thenv is not

completely mitotic.
Let us prove the following theorem.

Theorem. There exists a low c.e. T-degree u such that if v is a c.e. T-degree and u <v then v contains

hypersimple wr¢ -mitotic set, which is not #¢ -mitotic.

From the abovementioned theorems of Martin and R. Robinson follows that it is impossible to replace

hypersimple by hyperhypersimple.

Proof. This statement is proved using a finite injury priority argument. We construct a member U of u in stages
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to witness that each c.e. T-degree in upper cone of u

ecw

s,U=J,_U,. We also construct sets {V,}

contains a wit -mitotic but non-tt-mitotic set.
Denote @’ ={x:(3y) 2y =x)},0' =0\’ .

Construct U , {V,},.,, to satisfy, forall e € @, the requirements:

ecew

N,: {e}Y(e)4 hasalimitin s, the stage.

e

R, ;, - The non-tt-mitotic condition of order i is satisfied for V/, .

P, .: (p, istotalcomputable & (Vu)[D,,, NA# D] &

<e,i>"*

(Vu)(YWu#v=D,,,ND,, =21) = (@)D

9;(z

<V

P: W, = A" for some computable functional A.

We also ensure by permittng that ¥, =, U®W, and ese V'= V' (where
ve=V.Ne" &V =V.No")

If U <, W, then the above ensure that V, =, U @ W, =, W, and V, is not tt-mitotic. Hence, deg(W,) is
not ft-mitotic butis wiz -mitotic, and u = deg(U) is the required degree.

Let ¢ , ) be computable bijective pairing function increasing in both coordinates. At each stage s place markets

A(e,x,s) on elements of Z’S. Values of A will be used both as witnesses to prevent the t-mitoticity of 7,

sets (by corresponding Y, Z,,8,w.)and to ensure that W, is T -reducible to V. Initially

Ae,x,0)=4(e,x)+1)—2) forall e,x € w.

Also define a function &(e,i,s) for all e,i € @ (at each stage s ), £(e,i,0) =i forall e,i e w. We use & to
ensure that only members of sufficiently large magnitude enter U at stage s, so we can satisfy the lowness

requirements NV, .

According to the theorem (Kuznecov, Medvedev, Uspenskii) the satisfaction of P, .. (for all i ) ensure the

hypersimplicity of V, .
Order the requirements in the following priority ranking:

N,,R,,F,,N,,R,,B,N,,R,,P,,...
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The {13@} do not appear in this ranking.

esw

N, requires attention if it is not satisfied and {e}" (e)[s] J.

R, requires attention if itis not satisfied and

(ngy)(gf )l & v (x) i), where y = A(e,&(e,i,5)s) .

(Y,,Z.,3,y,) is threatening A through x at stage s ifitis partially satisfied and all the following hold:
i) i<s,

ii) x < L(4,i,s),

i) Y'NZ =90,

iv) c(m)y=X"UZ")(m) forall m<k(,x,s).

(Note, that actually R

, Is partially satisfied, if R, requires attention (via some y=A(,,s)) and

(e,i (e,i

corresponding ¥y —1, y—2 belongto V,, y—1 belongs to U_,,.See Construction, Part A, a)).

We will build U = USUS and V, = USVM for all e € . Initially all requirements N,, R, are declared

unsatisfied.

Construction

Stage s =0.Let Uy =D, V,, = forall ec w.

Stage s+1.

Part A. Act on the highest priority requirement which requires attention, if such a requirement exists.

a) If N, requires attention then set .f(é,f ,S +1)= f(é,f +s,s) for each (&,i)>e. This action prevents
injury to NV, by lower priority requirements as we assume that s bounds the use of the halting computation.
Define &(, ,s+1) not specified in Part A to be the same as &(, , ).

Declare N, satisfied; declare all lower priority R, N unsatisfied.

If R, require attention via y=2Ae,&(e,i,s+1),s5) then set IZ,M=VE’SU{y—1,y—2} and
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ﬁm =U,U{y—1}. (Note that such (e,7) cannot be >e, so &(e,i,s +1)=E(e,i,s)). Declare R,

partially satisfied.

~

Define V. ..U

e,s+12

«.s+1 ot specified in Part A, a) to be the same as V,,,,U, ., respectively.

b) If (Y,Z,%,y,) is threatening V.

e,s+1

through y at stage s+1 (so R, is partially satisfied via
y= ﬂ“(ea f(e,l',S),S) )! then Set I7e,s+1 = I7e,s+1 U {y} and (73+1 = USH U {y} .

If R, is partially satisfied, via y = Ae,E(e,iys),s), whether (Y, Z,,3,w,) is threatening v,

e,s+1

through

y atstage s+1 ornotdefine 1 (e,&(e,i,s),s+1)= Ale,E(e,i+s,s),s) .

~
~

Define

e’m,ﬁe’m,ﬂf(, ,s+1) not specified in Part A, b) to be the same as IZ,HI,UE’M,A(, ,8)
respectively.

Such definition of A" allow us to satisfy R , requirement (after Part A) whether (Y.,Z.,8,y,) is threatening

(e,i

~

7

e,s+1

through y or not (if don't take into consideration higher priority requirements).

Declare R, ,, satisfied; declare all lower priority R, N unsatisfied.

PartB.If xe W

e,s+1

\ W, then set

yroo= IZ’M U {ﬂ,l (e,x,s + 1)} and

e,s+1
Ale,x+j,s+1)=A(e,E(e,x+ j+1,s+1),s+1)forall je w.

Find all 7 such that A(e, (e, i,s+1),5)> A (e,x,s+1) and declare R, ;, unsatisfied for each such i.

A(, ,s+1) notspecified in Part B to be the same as v A(, ,s+1) respectively.

e,s+1°

Define V.~

e,s+12

Note that for all s, £(e, i, s) is increasing in both e and i.

PartC. Let m,,, = max{{c(e.7,s +1) | forall &7 with (.7)< ()},

(2(6,7,5+1) | forall &7 with (,i)< (e,i)} }.



222 International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

If (3 2) (@’Hl(z)i«), denote z, = uy(y =D, (z)). Then, if z, > m, and P<e,,~> is not satisfied,

set (V) (y=D, )=V, =V, Uy y+ 1 &U,, =U,, U{z,}.

Set A (e,&(e,i,s+1),s+1)=A(e,E(e,i +5,5+1),s+1), foralli >i.

~

U, 1> A( ,s+1) not specified in Part C, to be the same as V;H,(j

e,s+1°

Define V.

e,s+1°

2(,,s+1)
respectively.

Declare P<e,,-> satisfied, declare all lower priority R, N unsatisfied.

Verification

Lemma1. Forall e, i:
1. N,ismet, lim,&(e,i,s) = E(e,i) exists.
2 R, ismet, lim /1(6, f(e,i,s),s) exists.
Proof. By induction on j = <e, i>.

Suppose there exists a stage s, such that for all é,f with <é,f >< J:

1. N, ;, is metand never acts after stage s,, lim, &(é,i,s) = &(&,7) exists and s attained by s, .

2. R .. is metand never acts after stage s5,, lim, /1(@, §(é,f ,5),s) exists and is attained by s, .

@i
1). The proof of point 1 is similar to Lemma 1 of Theorem 2.2.2 [3].

After stage s, the requirements N<éjf>, R@j> (for all é,f with <é,f >< j) do not injury N ; - Positive
requirements P, forall &, with <é,f >< J» caninjury N only finitely. So there is stage s, after which if
N receives attention, then it is met and never injured, so there is a s, > s, after which N, does not receive

attention. (Else set s, =s,). Thus &(e,i,s, +1) =& (e, i), because &(e,i, s, + 1) is not changed after.

2). Now consider point 2. Note, that positive requirements P<e’l.>, E injury each of the requirements

with lower priority only finitely.
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Let the stage s, is such stage, that s, >s, and N . ., R, .

(for all é,f with <é,f > < j)are met and never acts after stage s, .

The following Lemmais used (in [4 ], [ 5]) for building the non- 7" -mitotic set :

Lemma. If (K.,Z. 0.,y ) is threating A through x at stage s,x e A— A and for all m # x such that

0,027 0

m<k(i,x,s) wehave 4, — A (m), then the non- 7" -mitotic condition of order i is satisfied for A .
Similar lemma is thrue for #¢ -reducibility.

Let s, issuchstagethat N_,. , R_,. P, . aremetand never acts after stage s, .

<e,i> "~ <e,

If there isn't such y = A(e,&(e,i,s" +1),s") (where s'>s,), that R, is partially satisfied (via y ), then

R, is met

If there exists such y and (K,Z : 191.,1/11.) never threatens V, through y after stage s', then certainly the

ls

condition is satisfied. On the other hand, if (K,Z 3 1//,.) threatens ¥, through  at time 7 > s’, then put

1,712

y into V, attime 7 +1, and never put any other number <k(i, y,t) into V, after stage 7, s0 R, ,, is met.

Lemma 2. £, , is met.

According to Lemmat (3 s,) [£(8,7,5,) = £(6,7) . forall é,i with (&,1) < (e,i) &
& A6, £8.7,5,).5, )= Ale.£@.0)) Torall &,7 with (6,7) < (ei)].
Denote m, = max {{£(&,7)|forall (&,7) < (e.i)}. {A(e.£(6.7)) forall &7 with (6,7) < (e.i)} |.
Thenif (g, is total computable & (Vu)[D,,, N4 # @] &
Vu)(YW[u#v=D,, ND,,, =2N=(Gs.. )32) (0, )V & {01,...m}ND, ., =2)

P:(2) —

Thus, according to constraction £, ,, is met, because D, enters V/,.
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Lemma3. V, <, UDW,.

Proof. By permitting: in the construction a number & enters ¥, only if a number less than or equal to & enters

U orenters W, .

Lemma4. Forall e, }N’e is satisfied, thatis W, = Ae.

Proof. To determine whether z € I, we need to find a stage such that A(e,z,s) has attained its limit. V/,
computably determines A(e,0),...,A(e,z) (note that A(e,y,s) changes only if a number < A(e, y,s)

enters V).
Find a stage s, such that V, ' 7. +1=V, " y_+1, where y. =max{A(e,0),...,A(e,z)} . Then

zel, iff zeW,, .

Lemmab5. V, is wet -mitotic.

Proof. 1) Prove V) <, V! (and hence V, <, V).

e

To determine whether x €V’ find such stage s, that V' "x+2=¥'"x+2.Then xe V' < x eV’

e,s !

because

i) if —3i,5, such that (Y,,Z,,3,,) is threatening ¥/

e,s+1

through x at stage s, then x e Ve0 ,only if a
number less than or equal to x +1 enters,
ii) otherwise, then find a stage s’ (this stage s’ obligatory is < s)suchthat x—1e V. Ifafter the stage s’

such changes happen in Vis 'x+2, which lead to displacement of marker A(e,x,s") and we have

xeV) then xeV, . Thus xeV' < xeV’ .

e,s !

2)Prove V) <, V).

—wit " e

The proof is similar to abovementioned in item 1), only without point ii).
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A NEW ALGORITM FOR THE LONGEST COMMON SUBSEQUENCE PROBLEM

Vahagn Minasyan

Abstract: This paper discusses the problem of determining the longest common subsequence (LCS) of two
sequences. Here we view this problem in the background of the well known algorithm for the longest increasing

subsequence (LIS). This new approach leads us to a new online algorithm which runs in 0 (d log n) time and in

0(n) space where n is the length of the input sequences and d is the number of minimal matches between

them. Using an advanced technique of van Emde Boas trees the time complexity bound can be reduced to

0(d log log n) preserving the space bound of O (n).
Keywords: longest common subsequence, longest increasing subsequence, online algorithm.

ACM Classification Keywords:G.2.1 Discrete mathematics: Combinatorics

Introduction

letA=a,-a; - anand B = by -+ bj - by, 1 < m < n, be two sequences over some alphabet £ of size

s,s = 1.Asequence C =c; - ¢+ ¢;, 1 < [, over Eis called a subsequence of A, if C can be obtained from
A by deleting some of its elements, that is if exists a set of indices{iy, ..., i, ..., {;} such that 1 < i; < --- <
iy < <ip<mandc =aq; for1 <k <. Cis said to be a common subsequence of Aand B, if it is a
subsequence of both sequences A and B;C is said to be a longest common subsequence (LCS) of A and B, if it
has the maximum length among all common subsequences of A and B; that length is called the LCS length of A

and B. In general the longest common subsequence is not unique.

The Longest Common Subsequence Problem (LCS Problem) is to determine a LCS of Aand B. Oftenthe
problem of determining theLCS length is also referred to as LCS Problem. This is due to the fact that most of
algorithms intended to find the LCS length can easily be modified to determine a LCS [Bergroth, 2000]. In this
paper we will concentrate on determining the LCS length rather thandetermining an actual LCS.The first known
solution of the LCS Problem is based on dynamic programming [Cormen, 2009].For1 <i<mand1<j<n

denote by [; ; the LCS length of sequences a, -+~ a;and by -+ b; thus L,,, , is the LCS length of A and B. Note

that thefollowing recursion holds for [; ;:
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Oifi =0o0rj=0

li,j li—l,j—l + 1if a; = b] (1)

max{li_l,j, li,j—l}if a; * b]

Based on this relation it is easy to construct an algorithm which fills an array of size m x n, where (i, j)-th cell
contains the value of [; ;. As it follows form (1) such algorithm has to fill the rest of array before obtaining the
value of (m, n)-th cell, so it will determine the LCS length of sequences A and Bin ®@(mn) time and © (mn)
space (0(1) time for filling each cell and ©(1) space for holding each cell).A simple trick can be used to make
this algorithm require only ® (m + n) space to obtain the value of the (m, n)-th cell [Cormen, 2009]. Here we
give some definitions which will be used later in the paper. For 1 <i <mand 1 <j < n the pair (i,)) is
called matching between sequences A and B if a; = by; it is called minimal (or dominant) matching if for every
other matching (i',j") such that l; ; = I;s ;s it holds i" > i andj" < jori’ < iandj’ > j.Note that if m' and
n' are two integers such that m < m’and n < n’, then theLCS Problem for two sequences of size m and n is
asymptotically not harder than the LCS Problem for two sequences of size m' and n’. Indeed, given two
sequences of size m and n and an algorithm which solves the LCS Problem for two sequences of size m' and
n', we can lengthen the given sequences (by appending to themsymbols which don’'t occur in the initial
sequences) up to size m' and n' respectively and pass the resulting two sequences to the given algorithm. It is
easy to see that such algorithm will solve the LCS Problem for two sequences of size m and n in asymptotically
the same time and space bounds as the given algorithm solves the LCS Problem for two sequences of size m’
and n'. This means that each lower bound for the LCS Problem for two sequences of size m andeachupper
bound for the LCS Problem for two sequences of size n are respectively lower and upper bounds for the LCS
Problem for two sequences of size m and n (recall that m < n). At [Aho, 1976] the LCS Problem is examined
using the decision tree model of computation where the decision tree vertices represent “equal-unequal’
comparisons. There it is shown that each algorithm solving the LCS Problem and fitting this model has time
complexity lower bound of Q(ms), where s is the number of distinct symbols occurring in the sequences (i.e. the
alphabet size). This means that the LCS Problem with unrestricted size of the alphabet has time complexity lower
bound of Q(mn), as such LCS Problem can be viewed as an LCS Problem with restricted alphabet of size
(m + n).In practice the underlying encoding scheme for the symbols of the alphabet implies a topological order
between them. Algorithms which take into account this fact don't fit the decision tree model with “equal-unequal”
comparisons examined at [Aho, 1976]. At [Masek, 1980] it is presented an algorithm which applies the “Four
Russians” trick to the dynamic programming approach, thusit doesn't fit the model examined at [Aho, 1976] and
has time complexitybound of0 (imn /log m).This bound isasymptotically the best known for general case LCS
Problem[Cormen, 2009].
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Previous Results

Lot of algorithms have been developed for the LCS Problem that, although not improving the time complexity

bound O (mn), exhibit much better performance for some classes of sequences A and B [Bergroth, 2000].

Consider the special case when the alphabet I consists of first n integers, i.e. £ = {1, ...,J, ..., n}, and the

sequences A and B are two permutations of Z. It is easy to check that this case can be reduced to the case
where B is the identical permutation (by replacing b; by j for 1 < j < n in both sequences A and B we will get
two sequences which are equivalent to the initial ones with respect to the LCS Problem). In this case each LCS of
A and B is an increasing sequence of some of first n integers and each such sequence is a LCS of Aand B.
Thusin the case when A and Bare permutations the LCS Problem is reduced to the problem of determining a
longest increasing subsequence of permutation B. The Longest Increasing Subsequence (LIS) Problem is to
determine a non decreasing subsequence of maximum length in the given sequence of integers. The LIS
Problemcan be solved in O (n logn)time [Fredman, 1975], and using advanced data structures like van Emde
Boas trees [Cormen, 2009]thistime bound can be reduced to O (nloglogn). Thus these bounds apply to the
LCS Problem in the case of permutations.Also there are many algorithms for the general case LCS Problem
which exceptm and nare also sensitive for other parameters like the LCS length, the alphabet size, the number
of matches and the number of minimal matches. A survey on such algorithms is given at [Bergroth, 2000].The
table below gives a brief remark of some of known algorithms for the LCS Problem. There I denotes the LCS
length, s denotes the alphabet size,  denotes the number of all matches and d denotes the number of minimal
matches. It is known [Baeza-Yates, 1999] that for two random sequences of length n the expected LCS length is
0(n) and the expected number of minimal matches is O (n?) [Tronicek, 2002]. This means that (except the 5%)
none of the algorithms mentioned in the table hastime complexity upper bound less thanO (imn)not only in the

worst case but also in the average case.

All these algorithms are developed in the background of building the m X n array mentioned in the dynamic
programming approach, and they purport to perform fewer operations in order to obtain the (m, n)-th cell of that
array. In this paper we view the LCS Problem inanother background, namely the background of the classical
algorithm for the LIS Problem described at [Fredman, 1975]. For sure each term we deal with in this background
has its direct analogue in the background of the m X n array; however our approach can be justified by the fact
that it leadsus to simpler constructions and an O (d logn) algorithm for the LCS Problem which can be reduced
to 0(d loglogn) if using van Emde Boas trees (details are in the next section). Initially algorithms from 10t to
16" require O (ns) space, but at [Apostolico, 1987] a trick is introduced which can be used to reduce the space
complexity to O(n), however in this case the time complexity bounds increase by a multiplicative factor of
0O (log s). The 9t algorithm requires O (ns) space but that trick cannot be used to reduce this space complexity
bound[Apostolico, 1987]. Recall that d is the number of minimal matches. It can be checked thatd < I(m — [)
[Rick, 1994] and it is known that in average it holds d = ©@(mn) [Tronicek, 2002]. This means the 9,10 and
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14h algorithms mentioned in the table above have better time complexity bounds than the others mentioned
there. The algorithm we present here has better time complexity bound than 10t and 14" in case when s =
w(logn) (or s = w(loglogn) if the van Emde Boas trees are used), and it has better space complexity bound
than 9t in cases when s = w(1) (see [Cormen, 2009] for the w-notation). Roughly speaking the algorithm we

present here has better time and space complexity bounds than the ones mention in the table above when the

alphabet size if relevantly larger. We present the algorithm in the next section.

No. | Year Authors Time Complexity Ref.

1 1974 Wagpner, Fischer 0(mn) [Cormen, 2009]

2 1977 Hunt, Szymansky O(m +rlogl) [Hunt, 1977]

3 1977 Hirschberg o(ln) [Hirschberg, 1977]
4 1977 Hirschberg O(l(m — 1) logn) [Hirschberg, 1977]
5 1980 Masek, Paterson O(mn/logm) [Masek, 1980]

6 | 1982 Nakatsu et al. 0(n(m-1) [Nakatsu, 1982]

7 1984 Hsu, Du O(lmlog(n/1)) [Hsu, 1984]

8 | 1986 Myers o(n(n-10) [Myers, 1980]

9 1987 Apostolico, Guerra O(mlogn + dlog(2mn/d)) [Apostolico, 1987]
10 | 1987 Apostolico, Guerra O(lmlog(2n/m)) [Apostolico, 1987]
11 {1990 Chin, Poon O(ns + min{lm, ds}) [Chin, 1990]

12| 1990 Wu, Manber, Myers 0(n(m-1) [Wu, 1990]

13 | 1992 Apostolico et al. 0(n(m-1) [Apostolico, 1992]
14 | 1994 Rick O(ns + min{im,l(n — 1)}) [Rick, 1994]

15 | 1994 Rick 0 (ns + min{lm, ds}) [Rick, 1994]

16 | 2002 Goeman, Clausen 0(ns + min{im,l(n — D}) [Goeman, 2002]
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The New Algorithm

First we will discuss the algorithm for the LIS Problem presented at [Fredman, 1975]. That algorithm is an online
algorithm meaning that it sequentially handles the elements of the input sequence and determines the LIS length
of the sequence handled so far.Online algorithms have advantage that they can run on dynamically changing
input data. For instanceunlike the Selection Sort, the Insertion Sort algorithm can maintain the sorted list upon the
appendingof the next element to the input list [Cormen, 2009]. Thus such algorithms are defined as update
procedures which are to be performed upon the appending of the next element. Now back to the LIS Problem.Let
A =a,-a;a,be asequence of integers and let x be an integer which is being appended to A. We will
describe an online algorithm which determines the LIS length of A" which is A appended by x. Denote by [ the
LIS length of A and by I’ the LIS lengthof A’. Note that I’ = lor 1’ =1 + 1. For 1 < k < [ there are increasing

subsequences of length kin A. Let x; be the minimumof their last elements. It is easy to check that

X << x << x (2)

We denote by x; the analogue of x,inA": for 1 < k < I’ let x;, denote the minimum of the last elements of
increasing subsequences of length k of A’. In order to obtain an online algorithm for the LIS Problem we will
describe how to determine values (x,’{)}(;l based on values (x;)k-. Firstly note that I’ = [ + 1 if and only if
x; < x, and if so then x;,; = x. Itis easy to check that this claim can be generalized forany 1 < k < I: letr
denote [ + 1 if x; < x and otherwise let r be the least index such that x < x... It is easy to check that for k = r
it holds x;, = xand otherwise x;, = x.. Thus we have described a way how to obtain values (x,’()fc;l based on
values (xx)%—. Next the online algorithm for the LIS Problem is described. The algorithm maintains the values
(x)k=, in an array endpoints. Upon the appending of the next element x to sequence A the algorithm just

searches for the index r mentioned above and updates the value at that index.

LIS-update

Input: the next element x of sequence A

Output:the LIS length of the sequencesA handled so far
Method:

if (x has no upper bound in endpoints) then do
append ( endpoints, x)

done else do

endpoints[upper_bound ( endpoints, x)| = x
done

output size ( endpoints )

DR wh =
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Note that each call of this procedure requires © (log ) time where [ is the LIS length of the sequence handled so
far. Thus we have described an online algorithm for the LIS Problem which runs in ®(m log () time and in ©(1)
space where m is the length of the sequence handled so far and [ is the LIS length of that sequence. Next we
will present an online algorithm for the LCS Problem which determines the LCS length of two sequences of length
mand n, m < n, in 0(d logn) time where d is the number of minimal matches between the input sequences.
As for the LCS Problem there are two input sequences some clarification is needed regarding the notion of online
algorithms.By an online algorithm for the LCS Problem we mean an algorithm which can accept the next element

of either of the two input sequences and provide the LCS length of the two sequences handled so far. Let

A=aya; - ayand B = by - b; -+ by, be two sequences over some alphabet Iofsizesandlety € X be
a symbol being appendedto B. We will describe an online algorithm which determines the LCS length of Aand
B', where B' is Bappended by y. Denote by [ the LCS length of A and B and by I’ the LCS length of Aand B’.
Note that I’ = lor I’ = 1 + 1. For 1 < k < [ there are subsequences of length kcommon to Aand B. Let i}, be
the minimum index such that there is a subsequence of length kcommon toA and B ending at ijin A.lt is easy to
check that

i << << (4)

Similarly for 1 < k < [ we define jj, as the minimum index such that there is a subsequence of length k

common to A and B ending at j,in B, and we get

Ji1 < <Jpg<-<ji (5)

We will call the indices at (4) thresh indices or thresh values of sequenceAwith respect to B and the indices at (5)
thresh indices or thresh values of sequence B with respect to A. Let for 1 < k < l'i, be the thresh values of

sequenceAwith respect to B” and ji, be the thresh values of B’ with respect to A. In order to obtain an online

algorithm for the LCS Problem we will describe how to determine indices (i,’c)}(;l and (jl,c);c;l based on indices
(ix)k=1and (jx)L=,. Firstly note that I’ = I + 1 if and only if there is some index r, I < r < m, such that
x, =y, and if so then i;, , is the minimum of such r-s. It is easy to check that this claim can be generalized for
any 1 < k < l: if ris the first occurrence of y in A after ij,_; and r < i), then i;, = r and otherwise i}, = i,

(see Figure 1).
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lk—1 /\ik lg+1 mik+2

Figure 1

Thus we have described a way how to obtain sequences A and B’ and their thresh indices based on sequences
A and B and their thresh indices.So during this some thresh values are updated and the others are not.A trivial
approach would be to handle all thresh values and update them if they has to be updated, however better would
be to handle only those thresh values which has to be updated.Let r be the first occurrence of y in A
aftersomei,. Note that the least thresh value exceeding i;, which has to be updated is the first occurrence of

thresh value after . This means that while searching for the first occurrence of y (after some thresh value) the

thresh values can be ignored.Also note that the thresh values of B’ with respect to 4, i.e. the (j,’{)fc;l, can be
obtained easily:there is a new thresh value there if and only if I’ = I + 1 and if so then j;,; = n + 1. It can be
checked that each update of a thresh value corresponds to a minimal match.Next the algorithm is presented. It
consists of two update procedures: one for calling upon the appending the next element to sequence A and
another upon the appending the next element tosequence B. We will restrict only on the second one as the first
one can be obtained just by swapping symbols “A” and “B” in the text of the procedure. The algorithm maintains

the sequencesA and B in arrays sequenceAand sequenceB respectively and for each symbolz of alphabet
E it maintains the set of occurrences ofz in A and B in binary search trees layersA[z] and layersB|z]

respectively. The algorithm also maintains the thresh indices (iy)k—, and (jx)k—, in binary search trees
threshA and threshB respectively. Following is the update procedure which is to be called upon the
appending the next element to sequence B.The procedure uses two temporary variables p and qwhich

correspondto the next and previous values of updating thresh indices.

Note that each iteration of the while loop at lines 3-12 updates a thresh value (p < q at the end of each iteration)
and the operations carried out during each iteration require ®@(logn) time as they are performed on binary
search trees. Recall that each update of the thresh value corresponds to a minimal match, so we have described
an online algorithm for the LCS Problem which runs in ©(d log n) time and in ®(m + n) space wherem and n
are the lengths of the sequences handled so far and d is the number of minimal matches between that
sequences. These bounds can be improved if using van Emde Boas trees [Cormen, 2009] instead of binary
search trees.van Emde Boas tree is a data structure that for some a priory fixed integerw can store some of first
2% integers,itsupports operations of insertion deletion and search for the upper bound with worst case time
complexity bound of ®@(loglogn)and it requires ®(2") space regardless the number of integers stored in it. At

[Cormen, 2009] it is shown how this data structure can be modified to require only ©®(n) space where n is the
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number of stored elements (there the modified data structure is called y-fast trie). In this case the operations of
insertion and deletion do not have worst case time complexity bound of ®@ (log log n) but this bound holds for the
amortized time complexity. This fits with our needs as we perform @(d) insertions and deletions, thus we
conclude that if using these modified van Emde Boas trees then the algorithm presented in this paper will run in

0(d loglogn) time and in ®(n) space.

LCS-updateB
Input: the next element y of sequenceB

Output:the LCS length of the sequencesA and Bhandled so far

Method:
1. p=0
2. q=0
3.  while (true) do
4. if ( q has no upper bound in layersA[y]) then break
5. p = upper_bound (layersAly], q)
6. erase (layersA[sequenceA[p]], p)
7. if (p has no upper bound in threshA) then break
8. q = upper_bound (threshA, p)

9. insert (layersA[sequenceA[q]], q)

10. erase (threshA, p)

11. insert (threshA, q)

12. done

13. if (p has no upper bound in threshA) then do
14. insert (threshA, p)

15. insert ( threshB, size ( sequenceB))
16. done else do

17. insert (layersB[y], size (sequenceB))
18. done

19. append ( sequenceB, y)

20. outputsize (threshA)
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INTERFERENCE MINIMIZATION IN PHYSICAL MODEL OF WIRELESS NETWORKS

Hakob Aslanyan

Abstract: Interference minimization problem in wireless sensor and ad-hoc networks is considered. That is to
assign a transmission power to each node of a network such that the network is connected and at the same time
the maximum of accumulated signal straight on network nodes is minimum. Previous works on interference

minimization in wireless networks mainly consider the disk graph model of network. For disk graph model two
approximation algorithms with O(n) and O((optInn)*) upper bounds of maximum interference are known,
where n is the number of nodes and opt is the minimal interference of a given network. In current work we

consider more general interference model, the physical interference model, where sender nodes' signal straight
on a given node is a function of a sender/receiver node pair and sender nodes' transmission power. For this

model we give a polynomial time approximation algorithm which finds a connected network with at most
O((optInn)*/pB) interference, where p>1 is the minimum signal straight necessary on receiver node for

successfully receiving a message.
Keywords: interference, wireless networks, graph connectivity, set cover, randomized rounding.

ACM Classification Keywords: C.2.1 Network Architecture and Design - Network topology, G.2.2 Graph Theory

- Network problems.

Introduction

We consider interference minimization problem in energy limited wireless networks (wireless sensor and ad-hoc
networks) where recharging or changing the energy sources of nodes is not feasible and sometimes due to
environmental conditions not possible. In such networks it is important to consider the minimization of energy
consumption of algorithms running on network nodes. By decreasing energy consumption we increase nodes
operability time and as a result networks' lifetime. In different wireless sensor network (WSN) applications
definition of networks' lifetime may be different (till all the nodes are alive, network is connected, given area is
monitored by alive nodes, etc). In current work we tend to decrease energy consumption of nodes by decreasing
the maximum interference of network algorithmically. Wireless communication of two nodes which is experiencing
the third one is called interference. High interference on a receiver node (high value of accumulated signal

straights on a node) makes difficulty to determine and accept the signals dedicated to it, this makes necessity for
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sender node to retransmit the signal until it is successfully accepted by receiver node, which is extra energy

consumption and should be avoided.

Interference Minimization in Disk Graph Model of Wireless Networks

Consider a set of spatially distributed nodes, where each node equipped with radio transmitter/receiver and the
power of nodes' transmitter is adjustable between zero and nodes' maximum transmission level. In disk graph
model of network assumed that by fixing a transmission power for a node we define a transmission radius/disk of
a node, i.e. the transmitted signal is reachable and uniform in any point of transmission disk of node and is zero
outside of it. In this model two nodes considered connected if they are covered by each others transmission disks
and interference on a given node defined as the number of transmission disks including that node. The overall
interference of network is the maximum interference among all the nodes forming the network. The main

weakness of disk graph model is the assumption that the radio coverage area is a perfect circle.

Assigning a transmission powers to a given set of spatially distributed nodes such that nodes form a connected
network with assigned transmission powers while the interference of network is minimal called interference

minimization problem in wireless networks.

One particular case of interference minimization problem described above is studied in [Rickenbach, 2005].
Authors considered the problem in one dimensional network, where all the nodes are distributed along the
straight line, and named it a highway-model. For this model they showed that intuitive algorithm, which connects
each node with its closest left and right nodes, can give a bad performance. An example of network where

intuitive algorithm has worst performance is the exponential node chain, where distance between two consecutive
nodes grows exponentially (2°,2',...,2"" ). They also gave two algorithms for one dimensional case of
interference minimization problem. The first algorithm, for a given set of distributed nodes, finds a connected
network with at most O(\/Z) interference where A is interference of uniform radius network under consideration
and is O(n) in some network instances. The second one is an approximation algorithm with O(‘{/X)
approximation ratio. By applying computational geometry and ¢ -net theory to ideas given in [Rickenbach, 2005],

[Halldorsson, 2006] proposes a algorithm which gives O(/A) interference bound for maximum interference in
two and O(y/AlogA) for any constant dimensional network. Authors of [Aslanyan, 2010] give iterative algorithm

based on linear program relaxation techniques which guaranties O((optInn)*) interference bound for networks
of » nodes, opt here is the optimal interference value for given instance of network. Logarithmic lower bound for

interference minimization problem in disk graph model of networks under the general distance function is proven

in [Bilo, 2006] by reducing minimum set cover to minimum interference problem.
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Interference Minimization in Physical Model of Wireless Networks

Again, consider a set of spatially distributed wireless nodes, where each node has a radio transmitter/receiver
with adjustable power level. In physical model of wireless networks we refuse the assumption that the signal
coverage of a node is a perfect circle and assume that the signal straight on any given point (node) of network is
a function of sender node, the node in question and the level of transmitted signal. In this model we are also

given a constant B which is a signal acceptance threshold, i.e. it assumed that receiver node accepts the signal
if it's straight is at least 4. By this mean two nodes considered connected if their signals' straights are at least
on each other. Interference on a given node defined as a sum of signal straights on that node and interference of
networks is the maximum interference among all the nodes forming the network.

The disk graph model can be deduced from physical model if we consider a signal straight function which for
every node and its transmission level draws a disk and outputs a positive constant for every node within that disk
and zero for the rest. Another example of signal straight function is £ (u,v,&) = &/d(u,v)* where » and » are
sender and receiver nodes respectively, £ is the transmission power of ., « <[2,6] is the path lost exponent

and d(u,v) is the distance between nodes « and v [Pahlavan, 1995].

Interference minimization problem defined in a same way as for disk graph model.

Assign a transmission powers to a given set of spatially distributed wireless nodes such that nodes form a
connected network with assigned transmission powers and the interference of network is minimal.

Our result is a deterministic polynomial time algorithm for interference minimization problem in wireless networks
under the physical model of wireless networks in consideration, which for given network of » wireless nodes finds

a connected network with at most O((optInn)*/g) interference.

Formal Definitions

Consider a set v of » wireless nodes spatially distributed over a given area where nodes have adjustable

transmission power and it can be fixed between zero and nodes' maximum transmission power. For any node
ueV denote the range of feasible transmission powers by R, =[0,£"*], where &' is the maximum
transmission power for node », and define a signal straight function ¢, :¥ xR, — R* where ¢,(v,¢&) is the
signal straight of node » on node v when « uses the transmission power ¢. We assume that the signal straight
function satisfies to following conditions

1. forany &,,&, e R, , from & > ¢&, itfollows that ¢, (v,&) >4, (v,&,)

u)

2. forgiven ne R* itiseasytofinda & e R, (if exists) such that ¢, (v,&) =7

Suppose that for any node . the suitable transmission power &, is fixed, then any two nodes » and v
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considered connected if ¢,(v,&,)> 8 and ¢, (u,&,)> B where g>1 is the signal acceptance threshold of
network. Interference on a given node  is the accumulated signal straight of all the nodes forming the network
I(u)zzveV\M@(u,Q) and I(V)=max,_, I(V) is the overall network interference. At this point interference
minimization problem can be formulated as follows:

Given a spatially distributed set of wireless nodes, assign a suitable transmission power to each node such that

the network is connected and the interference of network is minimal.

This is the formulation of interference minimization problem by transmission power assignment.

Consider a network graph G = (V,E) where E = {(u,v)|u,veV,d,(v,E") > B, 4, (u, &) > B} i.e. in graph
G two vertexes/nodes are incident if their maximum transmission powers are enough for communicating with
each other. By this mean interference minimization problem is formulated as follows.

For a given network graph G = (V,E) find a connected spanning subgraph H = (V,E') such that the
interference of network computed by the selected set of edges is minimal.

Formally, having the subgraph H = (V, E") itis correct to further extract transmission power for any node » as a

minimum power such that » can communicate with all of its neighbors in &

&, =minA& | ¢,(v,&) > B forallv that (u,v) € E'} , which avoids unnecessary interference.

Set Covering and Interference Minimization

In the classical set cover problem a set s and a collection ¢ of subsets of s are given, it is required to find a
minimum size sub collection C' of ¢ such that the union of sets of ' is 5. In a decision version of set cover
problem a positive integer & is given and the question is if it is possible to choose at most k subsets from
collection ¢ such that the union of chosen sets is 5. It is well known that decision version of set cover problem is
NP-complete and in polynomial time the optimal solution can not be approximated closer than with a logarithmic
factor [Johnson, 1974]. Several variants of set cover problem have been studied [Kuhn, 2005; Garg, 2006;
Demaine, 2006; Guo, 2006; Mecke, 2004; Ruf, 2004; Aslanyan, 2003].

Being motivated by interference minimization problem in cellular networks the minimum membership set cover
(MMSC) problem has been investigated in [Kuhn, 2005]. In MMSC a set s and a collection ¢ of subsets of s
are given, it is required to find a subset C’ of ¢ such that the union of sets in C’ is s and the maximum
covered element of s is covered by as few as possible subsets from C’. In a decision version of MMSC problem
a positive integer  is given and the question is if it is possible to choose a sub collection of ¢ such that the
union of chosen sets is s and each element of s is covered by at most £ different subsets. [Kuhn, 2005]

Contains the proofs of NP-completeness of decision version of MMSC problem and non-approximability of MMSC

optimization problem by factor closer than O(Inn) unless NP < TIME(n°"¢°¢") . Also, by using the linear
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program relaxation and randomized rounding techniques, [Kuhn, 2005] gives a polynomial time algorithm, which

approximates the optimal solution of MMSC with logarithmic factor O(Inn).

Minimum partial membership partial set cover (MPMPSC) problem has been proposed in [Aslanyan, 2010] and
used for developing interference minimization algorithm for wireless networks (disk graph model under
consideration). In MPMPSC a set S =S, U S, , consisting of two disjoint sets S, and S, , along with collection ¢
of subsets of s are given, it is required to find a sub collection C" of ¢ such that the union of sets in C’
contains all the elements of S, and the maximum covered element of S, is covered by as few as possible
subsets from C’. In a decision version of MPMPSC problem a positive integer & is given and the question is if it
is possible to choose a sub collection of ¢ such that the union of chosen sets contains all the elements of S, and
each element of S, is covered by at most k different subsets. It is known that the decision version of MPMPSC
problem is NP-Complete and that the deterministic polynomial time algorithm exists which approximates the
optimal solution of optimization version of MPMPSC by logarithmic factor O(log(max{| S, |,| S, |})) Which
asymptotically matches the lower bound [Aslanyan, 2010]. The approximation algorithm for MPMPSC is achieved

by applying the same techniques which has been applied in [Kuhn, 2005] for solving the MMSC.

Being motivated by interference minimization problem in physical model of wireless networks we consider a
weighted minimum partial membership partial set cover (WMPMPSC) problem which is a generalization of
MPMPSC. In WMPMPSC a set S =S, US,, consisting of two disjoint sets S, and S, , along with collection ¢
of subsets of s are given. In each subset from ¢ the elements of S, have weights in [0,1]. The same element
of S, may have a different weights in different sets of ¢ . It is required to find a sub collection C’ of ¢ such that
the union of sets in C’ contains all the elements of S, and the accumulated, among the subsets of C’, weight of
a node which has the maximum accumulated weight, is as small as possible. In a decision version of WMPMPSC
problem a positive number & is given and the question is if it is possible to choose a sub collection of ¢ such
that the union of chosen sets contains all the elements of S, and the accumulated, among the chosen sets,
weight of each node is at most . It is easy to see that in WMPMPSC we get a instance of MPMPSC when each
node has a weight 1 in all the sets of ¢ . This last statement proves the NP-Completeness of the decision version

of WMPMPSC and the logarithmic lower bound for optimization version of the problem.

LP Formulations

Let C’" denote a subset of the collection ¢. To each subset C, e C we assign a variable x;  {0,1} such that
x; =1 C; eC'. For C' tobe a set cover for s, itis required that for each element » < 5 at least one set C,

with u e C; isin C". Therefore, C" is a set cover for s if and only if for all x e 5 it holds that 3" = x >1. Let

z is the maximum membership over all the elements caused by the sets in C’. Then for all » s it follows that
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> . .x; <z.Thenthe integer linear program /P, . of MMSC problem can be formulated as:

minimize z

subjectto > x, >1, ueS (1)
Cjau ‘
>x, <z, ues (2)
stu ‘
x, €{0,1}, C eC (3)

Integer linear program IP,,,,,»s Of MPMPSC would be:

minimize Z

subjectto Y x, > 1, ues, (4)
C .5u
Zx/. <z, ue Sz (5)
Cjau
x, €{0,1}, C eC (6)

After introducing the weight function w:CxS, —[0,1], where w(C,,u) is the weight of « in subset C;, the

integer linear program 1P, s of WMPMPSC can be formulated as:

minimize z
subjectto  x, >1, ues, (7)
C .su
J
ijw(Cj,u)Sz, uels, (8)
C >u
J
x; €{0,1}, C,eC 9)

By applying randomized rounding technique to 7P, with relaxation of constraints (3), [Kuhn, 2005] gives a

deterministic polynomial time approximation algorithm with (1+O(1/\/;))(ln(n)+1) approximation ratio for
MMSC problem, where 2" is the optimal solution for 7P, relaxation. Later on [Aslanyan, 2010] states that by

applying the same randomized rounding technique to IP,,, ... With relaxation of constraints (6) gives a

deterministic  polynomial time approximation algorithm  with (1+O(1/\/?))(ln(max{|Sl LIS, ) +1)

approximation ratio for MPMPSC problem, where 2’ is the optimal solution for 7P, relaxation. In current
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work we state that the same randomized rounding technique can be applied to 7P, With relaxation of

constraints (9) to achieve a deterministic polynomial time approximation algorithm  with

(1+O(1/\/7 ))(In(max{| S, |,| S, |}) +1) approximation ratio for WMPMPSC problem, where :' is the optimal
solution for 1P,,,.,.»sc relaxation. The proof of the last statement is presented in the Appendix of this work. To

sum up, we have the following theorem.

Theorem 1. For WMPMPSC problem, there exists a deterministic polynomial-time approximation algorithm with

an approximation ratio of O(log(max{| S, |,/ S, [}))

Approximation Algorithm for Interference Minimization in Physical Model of Wireless Networks

Algorithm takes a network graph G =(V,E) with » vertices as an input and after logarithmic number of
k € O(logn) iterations returns connected subgraph G, < G where interference of network corresponding to the
graph G, is bounded by O((opt-Inn)*/B), where n=|v| is the number of network nodes and op: is the

interference of minimum interference connected network.

Algorithm starts the work with the graph G, = (V,E,) where E, =@ . On the [ iteration, />1, algorithm

chooses a subset 7, c E\E,_, of new edges and adds them to already chosen edge set £, , =U!Z|F,. As a
consequence of such enlargement of edge set, interference on graph vertices may increase in some value
depending on F,. Algorithm finishes the work if the graph G, = (V, E,) is connected otherwise goes for the next
iteration. Below we present how algorithm chooses the set of edges F, c E\E, , on the /" iteration. Algorithms'
quality, i.e the final maximal interference on nodes (its upper estimate) is bounded by the accumulated through
the iterations interferences which we try to keep minimal. Let G, , = (V',E, ) is the graph obtained after the
(I-1)" iteration, and has the set of connected components C(G,,)= {C,‘fl,...,ijfl . Denote by

H, , c E\E,, the set of all edges which have their endpoints in different connected components of G, ;. On

the 1" stage of algorithm a subset of H,, is selected to further reduce the number of connected components

which finally brings us to a connected subgraph. In this way we build the collection 7(C(G, ,),H, ;) of special

sets as follows. Starting with 77, , we add to the set 7(C(G, ,),H, ,) of I" stage specific weighted subsets

'See the Appendix 4 for the proof.
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T'(u,v)={C",,C;,yuV defined by all (u,v)e H, ,, where » belongs to connected component C;, and v
belongs to C;, . By selection of » and v we have that C}, and C;, are different. By definition of connectivity
nodes » and » can communicate with each other if their signal transmission powers &, and &, satisfy to
$,(v,& )= p and ¢, (u,&,,)> B, where S is the signal acceptance threshold. To avoid unnecessary energy

consumption and to reduce interference it would be right to adjust transmission powers &, and &, such that

uv

¢, (v,&.)=p and ¢,(u,&,,)= B, this is possible to do because of the second property of the signal straight

function ¢ . Then the noise of the link (u,v) on any node : can be calculated as

w((u,v),t) = ¢,(t,E,.)+8,(t,£,,) which would be the weight w(T'(,v),7) of node  in the subset 7' (u,v) . And
so T'(u,v) is a composite set which includes two labels for components C, and C;’, and all the vertices in
along with the weights, which are the interference increase on nodes if the edge (u,v) is selected as a
communication link. In terms of WMPMPSC the labels of connected components will compose the set S, and

weighted 1 will be the set S, .

Figure 1 demonstrates connected components that are input to the stage /, and the set H, , of all cross

component edges.

Figure 1: Connected components that are input to the /-th stage of the algorithm
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After constructing T(C(G, ,),H, ;) we normalize the weights of elements by dividing all the weights by the

maximum  weight w,,. = max. e, , W((@,v),) and solve the WMPMPSC on the set C(G,_)u¥ and

collection of subsets 7(C(G, ,),H, ), where condition for elements of C(G, ) is to be covered and for

elements of y is to have minimum accumulated weight. Finally, based on the solution
W(C(G, ,),H, ) cT(C(G,,),H, ) of WMPMPSC we build the set F, of network graph edges, selected at the

1" iteration of algorithm by adding to F, all the edges (u,v) e H,_, such that 7' (u,v) e W(C(G, _,),H, ) and

multiply all the weights by w,__ to receive the real interference increase.

Algorithm performance

Theorem 2. On each iteration of algorithm the number of connected components is being reduced at least by

factor of two, which bounds the total number of iterations by O(logn).

Proof. For each connected component C;', € C(G,,) of graph G, , the solution W(C(G,,),H, ) of
WMPMPSC solved at /" iteration contains at least one set 7' (u,v) e W(C(G,_,),H,_,) suchthat C', e T'(u,v)
(as W(C(G, ,),H, ) is a cover for the set C(G,,)). And as each set T'(u,v) e W(C(G, ,),H, ) contains
exactly two connected components, then by adding the edge (u,v) to our solution, we merge those two
connected components into one (connecting by the edge (u,v) ). So every connected component merges with at

least one other component, which reduces the number of connected components at least by factor of 2.

Lemma 1. Network corresponding to the graph G' = (V,F,), where F, is the edge set obtained on the 1"
iteration of algorithm, has interference in O((opt” -Inn)/f) .

Proof. Consider the set of connected components C(G, ,)={C.,,...,C,-'} of I" iterative step of algorithm. Let

E,, is the set of the edges of some interference optimal connected network for our problem (edges of connected

network with optimal interference opt ). Then there is a subset E! < E

opt = “opt

which spans connected components

C(G,_,) and the network of the graph G' = (V,E! ) has interference not exceeding the opr .

opt opt

!
opt

Fact 1. The maximal vertex interference due to the spanner E, , of C(G, ,) is at most opt .

(C(Gy), Epy) = AT (w,)/(u,v) € E,, -

opt opt

Now let us build the set collection T

opt

Fact 2. T

opt

(C(G,.,)),E! ) is a sub collection of T(C(G,_,),H,_,) built on the I" iteration of algorithm and is a

opt

cover for C(G,,), ie. T,,(C(G,)),E,,) is a solution for the WMPMPSC problem, with some value z", solved
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on the " iteration of algorithm, not necessary optimal. Now consider the matrix P!, representing the

opt

transmission signals on some node + caused by communication links of £, .

w w w w
uuy ity u wu,
w w w W
Uiy unliy Uit ; U,
w , , ,

P = w w w w
opt Pu.u Pu.u Pu.u . Pu.u
il i2 i i'n

w w w w

Pu u Pu u Pu u . Pu u
n'l n2 nj n'n

where

u
rJ

woo_ 0’ ifi= jOI’(ui,l/lj) & E,ﬁp,
¢, (w,&,, ), otherwise

is the signal straight of node », on node w when u, uses the transmission power ¢

u.u
i

~ (communicates with node
J

u;).
Fact 3. and the sum of the matrix elements will give the interference increase we count (the real interference

increase is the sum of the maximal elements from each row) on node w by edge set E' . Due to the Fact 1 and

opt *

signal acceptance threshold p for any vertex u, the number of sets T'(u,,v)eT,,(C(G,.,),E,,,w) will not
exceed the Lapt/ﬂj, in other words the number of non zero elements on each row of matrix F,,, is bounded by
|_opt/,b’J.

Fact 4. The interference increase on node w by the edge set Ejpt can be calculated as " max, P, and

w
u.u .
rJ

due to the Fact 1 it doesn't exceed the opt .

From facts 3 and 4 it follows that the sum of the matrix elements is bounded by opt*/f , which means that the
optimal value of WMPMPSC problem solved on the [ iteration of algorithm is bounded by opt*/3 and therefor

by Theorem 1 the interference increase by the edge set F, is bounded by O(opt® -Inn/p).

Theorem 3. The network built by WMPMPSC relaxation algorithm has at most O((opt* -1n>n)/f3) interference.

Proof. The proof is in combination of Theorem 2 and Lemma 1.
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Conclusion and Future Work

In current work we considered the interference minimization problem in physical model of wireless networks and
proposed a polynomial time approximation algorithm which for a given set of wireless nodes creates a connected
network with at most O((opt - Inn)* /) interference. In some WSN applications network considered as functional
while it is connected, therefore in future works on interference minimization the & -connectivity of network should

be considered. Also considering the problem in Euclidean spaces, which is a realistic case for WSNs, may give a

better approximation ratio.
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Appendix A

Here we show how randomized rounding technique used in [Kuhn, 2005] for solving the [P, can be used for

solving 1P, uesc - This section mostly presents the work of [Kuhn, 2005].

Consider a instance (S =S, US,,C,w) of IP,,,..»s and the solution vector x' and z' of LB, relaxation

of IB,,muesc - Consider the following randomized rounding scheme, where an integer solution xe€0,1" is

computed by setting

1, with probability p, := min{l,ox/}
X. =
o, otherwise

independently for each i e {1,...,n} . Let 4, be the “bad” event that the i" element is not covered.

Lemma A1. The probability that the i" element remains uncovered is

P4)=[](1-p)<e”

Cjaul.
Proof. The proof is in Lemma 1 of [Kuhn, 2005].

Let B, be the “bad” event that the weight of the i" element is more than a3’ for some S >1.

Lemma A2. The probability that the weight of the i" element is more than o' is

P(B) <

1 w(jid) aa
1A+ -np) < Ve

ﬂ ap C j u;

Proof. We use a Chernoff-type argument. For ¢t =1n 8 > 0, we have
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C ou,

=pPle 7 >et4aﬁz'

C ou.
Joi

t Z xjw(j,i)
P(B) = P[ > xw(j,i)> aﬂz’}

E |:e[‘z"/ oy ¥ } |
— . tw(j,i) _ ]
< era[}z' et-aﬁz' H [p]e +1 p‘f

C .ou,
i

1 (i
- T2 -np J<
Cjasl.

1 p (8
. J
af! H €
ﬂ Cjas.

1

N B-H\%
< 1 . Henj(ﬁ—ww(/,z) _ 1 / .em Dy P 0D <l
ﬂaﬂz ﬂaﬂz ﬂ[f
Cj.)si

The inequality and equality in the second line results by application of the Markov inequality and because of the

independence of the x;. The equality and inequality in the third line hold because 7 =1n 4 and 1+x<e". For

the inequalities in the last line we apply g* —1< (s —-1)x for =1, x €[0,1] and > pwi<az

Denote the probability upper bounds given by Lemmas 41 and 42 by 4; and B:

— — 1 w(j,i
A= T10-p) and Bi=—_— [] 1+ ~1)p)).

Cj 3s; ﬂ Cj du;

In order to bound the probability for any “bad” event to occur, we define a function p as follows

P(pyssp,) = 2—]%[(1—1)—1%[(1—3).

Lemma A3. The probability that any element is not covered or has a weight more than afz' is upper-bounded

by P(p,,....p,):

P(UAi UUB[j <P(p--s P)-
i=1 i=1

Proof. The proof is in Lemma 3 of [Kuhn, 2005].

The following shows that if « and B are chosen appropriately, P(p,,..., p,,) is always less than 1.

Lemma A4. When setting o=In(max{|S,|,|S,|})+1 , then for B=1+max{~3/z,3/z} , we have
P(p,,...,p, ) <4/5.

Proof. The proof is in Lemma 4 of [Kuhn, 2005].
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Lemmas A1-A4 lead to the following randomized algorithm for the WMPMPSC problem. As a first step, the

linear program LP,,,..-sc has to be solved. Then, all x/ are rounded to integer values x, € {0,1} using the
described randomized rounding scheme with & = In(max{| S, |,| S, |})+1. The rounding is repeated until the
solution is feasible (all elements are covered) and the weight of the integer solution deviates from the fractional
weight z' by at most a factor o for B =1+max{+/3/z',3/z"}. Each time, the probability to be successful is at

least 1/5 and therefore, the probability of not being successful decreases exponentially in the number of trials.

We will now show that P(p,,...,p,,) is a pessimistic estimator and that therefore, the algorithm described above

can be derandomized. That is, P is an upper bound on the probability of obtaining a “bad” solution, P <1 (P isa

probabilistic proof that a “good” solution exists), and the p, can be set to 0 or 1 without increasing p. The first

two properties follow by Lemmas A3 and A4, the third property is shown by the following lemma.

Lemma A5.

For all i, either setting p, to 0 or setting p, to 1 does not increase p:

P(pyye.os pyy) 2 in{P(., pi 1,0, Do s Pl Do Ly Diog o))
Proof. The proof is in Lemma 5 of [Kuhn, 2005].

Lemmas A3, A4 and A5 lead to an efficient deterministic approximation algorithm for the WMPMPSC problem.

First, the linear program LP,,,,,»sc has to be solved. The probabilities p, are determined as described above.
For o and g as in Lemma A4, P(p,,...,p,)<4/5. The probabilites p, are now set to 0 or 1 such that
P(p,,...,p,) remains smaller than 4/5. This is possible by Lemma A5. When all p, € {0,1}, we have an
integer solution for 1B,,,,,»s - The probability that not all elements are covered or that the weight is larger than
opfz' is smaller than P < 4/5. Because all p, are o or 1, this probability must be 0. Hence, the computed

IPy, mpsc -Solution is an a3 -approximation for WMPMPSC.
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ON MEASURABLE MODELS OF PROMOTION OF
NEGENTROPIC STRATEGIES BY COGNITION

Pogossian Edward

Abstract: Could models of mind be independent from living realities but be classified as mind if the mind uses the
same criteria to form the class mind? In the paper a constructive view on the models of mind, cognizers, is

presented and the measurable criteria and schemes of experiments on mentality of cognizers are discussed.
Keywords: modeling, cognition, measures, negentropic, Strategies.

ACM Classification Keywords: A.0 General Literature.

1. Introduction

Due mind forms models of any realities including itself raises the question whether models of mind can be mental

not being living realties (LR), assembled from LR or developed from the springs of LR?

In other words, whether are models of mind which do not depend from LR but are classified as mind possible if

mind uses the same criteria when forms the class mind?

To answer the question constructive models of mind and criteria of measuring their mentality as well as the

exhaustive experiments on revealing the truth are needed.

In what follows a measurable approach to the models of mind, cognizers, is presented and the criteria and

experiments of testing of mentality of cognizers are questioned.

This approach to refining of cogs continues the approach started in [Pogossian,1983] and continued in
[Pogossian,2005,2007] on interpretation of the recognized views on mind [Flavell,1962,Neuman,1966,
Botvinnik,1984, Atkinson1993, Pylyshin,2004, Roy,2005, Winograd, 986,Mendler,2004,] by models having

unanimous communalized meanings followed by experiments on validity of those models.

The paper describes the author’s view on mental behavior and traditionally we should address to the readers by

using words "our view" ,"we think», etc.

On the other hand, mental behavior, we assume, is identified with ourselves and we plan to discuss
personalized and communalized constituents in communications.

That explains why we find possible in the paper to use the pronoun "I" for the mind along with "we" and "our"

when they seem to be appropriate
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2. A View on Mind

2.1. 1 am a mind and | am able to interpret, or model the realities | perceive, including myself, evaluate the quality,

or validity of models and use those models to promote my utilities.

The models are composed from cause-effect relationships between realities, particularly between realities and

utilities, and any composition of those relationships comprise the meanings of the realities.

The basic, or nucleus utilities and meanings are inborn while mind incrementally enriches them by assimilating
and accommodating by Piaget [Flavel,1962, Mandler, 2004] cause-effect relationships between realities and

already known utilities and meanings solving corresponding tasks and problems .

By Piaget “Mind neither starts with cognition of itself nor with cognition of the meanings of realities but cognizes
their interactions and expanding to those two poles of interactions mind organizes itself organizing the world”
[Flavell,1962].

As much coincide ontology, or communalized (vs. personalized) meanings of realities with meanings of their
models and as much those meanings are operational, i.e. allow to reproduce realities having equal with the

models meanings, so better is the validity of the models.

In what follows a personalized model of mind, a view W, and a communalized version of W , cognizers, are

presented with discussion of the validity of cognizers and schemas to meet the requirements.

2.2.1. Minds are algorithms for promoting by certain effectors the utilities of living realities (LR) in their games

against or with other players of those games.

The players can be LR, assembles of LR like communities of humans or populations of animals as well as can
be some realities that become players because not voluntarily but they affect LR inducing games with
environments or the units like programs or devices that have to be tested and response to the actions of
engineers . To compare and discuss some hypothetic mental realities like Cosmic Mind by Buddhists and Solaris
by Stanislaw Lem are considered as players as well. Note, that descriptions of religious spiritual creatures

resemble algorithm ones.

2.2.2. A variety of economic, military, etc. games can be processed by players. But all LR in different ways play

the main negentropic games against overall increase of the entropy in the universe [Shrodinger,1956].

In those negentropic games with the environments LR and their populations realize some versified reproduction

and on-the-job selection strategy elaboration algorithms (r SEA).

The parent rSEA periodically generates springs of LR where each child of the springs realizes some particular
strategy of survival of those children in on going environments. LR with successful survival strategies get the
chance to give a new spring and continue the survival games realizing some versions of strategies of their

parents while unsuccessful LR die.
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2.2.3. The utilities of LR and their assembles initially are determined by their nucleus, basic interests in the games
but can be expanded by new mental constructions promoting already known utilities. For example, the nucleus
utilities of LR, in general, include the codes (genetic) of rSEA and algorithms for reconstructing rSEA using their

genetic codes.

2.2.4. The periods of reproduction, the power of the springs and other characteristics of rSEA are kinds of means
to enhance survival abilities of LR and vary for different LR depending, particularly, from the resources of energy

available to LR and the velocity of changes of the environments of LR.

2.2.5. Minds can be interpreted as one of means to enhance the survival of LR. In fact, minds realize SEA but in
contrast to on-the-job performance rSEA the strategies elaborated by minds are auxiliary relatively to rSEA and

are selected by a priory modeling.

Correspondingly, the nucleus of mental LR in addition to rSEA codes include codes of mind developing

algorithms like the adaptation algorithms by Piaget [Flavel,1962, Mandler, 2004].

2.3. Thus, modeling SEA, or mSEA, do, particularly, the following:

- form the models of games and their constituents

- classify models to form classes and other mental constructions

- use mental constructions for a priori selection the most prospective strategies for the players
- elaborate instructions for the effectors of players using the prospective strategies.

The effectors transform the instructions into external and internal actions and apply to the environments of mSEA
and mSEA themselves, correspondingly, for developing the environments and mSEA and enhancing the success

of the players.

2.4. Whether are the models of mind which are not dependent from LR but are classified as mind possible if mind

uses the same criteria when forms the class mind?

To answer to the question constructive models of mind and criteria of measuring their mentality as well as the

exhaustive experiments on revealing the truth are needed.

2.5. Let's name cognizers the models of mind not depending from LR while the models of mental constructions

name mentals.

Apparently, this ongoing view W on mind is a kind of cognizers, say, for certainty, 1-cognizers, 1cogs or cogs in

this paper.

In what follows a constructive approach to cogs, the criteria and experiments of testing of mentality of cogs are

presented.
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3. Basic Approaches and Assumptions

3.1. Further refining of cogs extends the approach described above on interpretation of the recognized views on
mind by models having unanimous communalized meanings followed by experiments on validity of those models

to mind.

3.2.1. Later on it is assumed that cogs are object-oriented programs, say in Java.
All programs in Java are either classes or sets of classes.

Therefore, it is worth to accept that cogs and their constituents, mentals, are either Java classes or their

compositions as well.

3.3. Accepting the above stated assumption the experiments on quality of cogs were run for SSRGT games.

Particularly, because chess represents the class and by variety of reasons is recognized as a regular
environment to estimate models of mind [Botvinnik,1984, Pogossian,1983,2007, Atkinson,1993, Furnkranz, 2001]
in what follows the constructions of mentals and experiments on mentality of cogs are accompanied, as a rule, by

interpretations in chess.

3.4. Following to the view W cogs elaborate instructions for the effectors of players to promote their utilities. The
effectors in turn transform instructions into actions applied to the players and their environments. They can be

parts of the players or be constructed by cogs in their work.

It is assumed that certain nucleus mentals of cogs as well as the players and their effectors are predetermined

and process in discrete time intervals while mentals of cogs can evolve in time.

The fundamental question on the origin of nucleus mentals and other structures needs further profound

examination.

4. Refining Constituents of Cognizers

4.1.1. In general, percepts are the inputs of cogs and have the structure of bundles of instances of the classes of

cogs composed in discrete time intervals.
The realities of cogs are refined as the causes of their percepts.
The environments and the universe of cogs are the sets and the totality of all realities of cogs, correspondingly.

More in details, the bundles of instances of attributes of a class X of cogs at time t are named X percepts at t and

the causes of X/t percepts are named X/t realities.

It is worth to consider t percepts and percepts as the elements of the unions of X/t percepts and t percepts,

correspondingly, and assume that there may be multiple causes for the same percept.
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Analogically, t realities and X/t realities are defined.

In case percepts are bundles of instances of attributes of certain classes of cogs the realities causing them are

the classes represented by those attributes.

Otherwise, cogs learn about the realities by means of the percepts corresponded to realities and by means of the

responses of those percepts when cogs arrange actions by effectors.

Due cogs are continuously developed they start with percepts formed by nucleus classes followed by percepts

formed by the union of new constructed and nucleus classes.

4.1.2. Cogs promote utilities by using links between utilities and percepts. They continuously memorize percepts,
by certain criteria unite them in classes as concepts and distinguish realities to operate with them using matching

methods associated with the concepts.

In addition some concepts are nominated by communicators to communicate about the realities of the domains of

the concepts with other cogs or minds and enhance the effectiveness of operations of cogs in the environments.

4.2.1. The base criteria to unite percepts in concepts are cause-effect relationships (cers) between percepts,

particularly, between percepts and utilities.
For revealing cers cogs form and solve tasks and problems.

Tasks are requirements to link given percepts (or realities) by certain cers and represent those cers in frame of

certain classes.

4.2.2. The basic tasks are the utility tasks requiring for given percepts to find utilities that by some cers can be
achieved from the percepts. In chess utility tasks require to search strategies for enhancing the chances to win

from given positions.

The generalization, or classification tasks unite percepts (as well as some classes) with similar values into more
advanced by some criteria classes and associate corresponding matching procedures with those classes to

distinguish the percepts of the classes and causing them realities.

The acquisition tasks create new classes of cogs by transferring ready to use classes from other cogs or minds
while the inference tasks infer by some general rules new classes as consequences of already known to cogs
classes.

The question tasks can be considered as a kind of formation tasks inference tasks which induce new tasks

applying syntax rules of question tags to the solutions of already solved tasks.

The modeling tasks require revealing or constructing realities having certain similarities in meanings with the

given ones.



254 International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010

Before refining meanings of realities let's note that to help to solve the original tasks some approximating them

model tasks can be corresponded.

4.2.3. Problems are compositions of homogeneous tasks and solutions of problems are procedures composing
the solutions of constituent tasks.

The problems can be with given spaces of possible solutions (GSS) or without GSS, or the discovery ones.

Tasks formation and tasks solving procedures form and solve tasks types.

4.3.1. To refine the meanings of realities and mentals it is convenient to interpret the percepts, uniting them
concepts, nucleus classes and the constituents of those mentals as the nodes of the graph of mentals (GM)
while the edges of GM are determined by utility, cers, attributive, part of and other relationships between those

nodes.

Then the meaning of a percept C can be defined as the union of the totality of realities causing C and the

connectivity sub graph of GM with root in C.

The meaning of a concept X is defined as the union of the meanings of the nodes of the connectivity sub graph of
GM with the root in X.

The meaning of realities R causing the percept C is the union of the meanings of the nodes of the connectivity

sub graph of GM with the root in the percept C.

4.3.2. Later on it is assumed that the knowledge of cogs unites, particularly, the cogs, GM and their constituents.

4.4.1. Processing of percepts and concepts is going either consciously or unconsciously. While unconsciousness,
usually, addresses to the intuition and needs the long way of research efforts for its explanation, the
consciousness is associated with the named concepts and percepts in languages and their usage for
communications. Particularly, the vocabularies of languages provide names of variety of concepts and realities

causing those percepts.

Mind operates with percepts, concepts and other mentals while names realities causing those mentals when it

should communicate.

Particularly, this ongoing description of cogs follows to the rules for named realities while internally refers to

corresponding mentals.

4.4.2. When mind operates internally with the representations of realities it is always able to address to their

meanings or fo ground those representations [8].
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For external communications mind uses representations of realities, communicators, which can be separated
from the original carriers of the meanings of those realities, i.e. from the percepts of those realities, and become

ungrounded.

The role of communicators is to trigger [12] the desired meanings in the partners of communications. Therefore, if
partners are deprived of appropriate grounding of the communicators special arrangements are needed like the
ones provided by ontologies. If the communicators are not sufficiently grounded well known difficulties like the

ones in human-computer communications can rise.

Note, that if the model R" is a grounded reality the meaning of R’ can induce new unknown aspects of the

meaning of the original ones.

4.5. Realities R™ represent realities R, or R™ is a model of R, if meanings of R" and R intersect.

Model R’ is equal to R if R” and R have the same meanings. The more is the intersection of the meanings of R
and R’ relative to the meaning of R the greater is the validity of R*. For measuring the validity of models a variety
of aspects of the meanings of original realities can be emphasized. Particularly, descriptive or behavioral aspects
of the meanings can be considered, or be questioned whether the meanings are views only of the common use or

they are specifications.

5. Questioning Validity of Mind

5.1. Modeling problems require constructing realities having certain similarities in meanings with the original ones.

When those realities are problems as well cogs correspond model problems to the original ones, run them to find

model solutions and interpret them back to solve the original ones.

Apparently, solutions of problems are the most valid models of those problems but, unfortunately, not always can

be found in frame of available search resources.

Valid models trade off between the approximations of the meanings of solutions of problems and between

available resources to choose the best available approximations.
Due of that inevitable trade off the models are forced to focus on only the particular aspects of those solutions.

If communication aspects are emphasized the descriptive models and criteria of validity can be in use require the

realities-models be equal only by communicative means of the communities.

On-the-job or behavioral criteria evaluate validity of models by comparing the performances of corresponding

procedures.

The records of computer programs provide examples of descriptive models while when  processed programs
become the subject of behavioral validity. Sorts of behavioral validity provide functional testing and question-

answer ones like Turing test.
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Productive behavioral validity criteria compare the results of affection of the outputs of realities and their models
on the environment. Fun Newman requirement on self-reproducibility of automata [Neuman, 1966] provides an
example of productive validity. In its interpretation as reflexive reproducibility (RR) validity that criterion requires to

construct 1-models of realities able to produce 2-models equal to the 1-models and able to chain the process.

5.2. To formulate criteria of validity of cogs it is worth to summarize the refined to this end views on mind as the

following:
mind is an algorithm to solve problems on promotion of utilities of LR in their negentropic games

mind is composed from certain constituent algorithms for forming and solving tasks of certain classes including

the utility, classification, modeling, questioning classes

mind uses solutions of problems to elaborate instructions for certain effectors to make the strategies of LR more

effective and the environments of LR more favorable to enhance the success of LR in negentropic games.

5.3. Criteria of validity of cogs to mind have to answer whether cogs have meanings that minds have about

themselves.

On the long way in approaching to valid cogs a chain of inductive inferences is expected aimed to converge

eventually to target validity.

Inductive inferences unite science with arts and, unfortunately, the term of their stabilization can not be
determined algorithmically. Nevertheless, what can be done is to arrange those inferences with the trend to

converge to the target stabilization in limit [19].

To approach to valid cogs it is worth to order the requirements to the validity of cogs and try to achieve them

incrementally, step by step.
The requirements v1- v4 to validity of cogs condition them to meet the following:
v1. be well positioned relatively to known psychological models of mind

v2. be able to form and solve the utility, classification, modeling and question tasks with acceptable

quality of the solutions
v.3. be able to use the solutions of tasks and enhance the success of the players
v4. be able to form acceptable models of themselves, or be able to self modeling

The requirements v2 - v4 follow the basic views on mind while v1 requires positioning cogs relatively, at least, to

the recognized psychological models of mind to compare and discuss their strengths and weaknesses.

Note, that parent minds of LR reproduce themselves in the children minds in indirect ways using certain forms of

cloning, heritage and learning procedures.
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Some constituents of reproduction of LR can already be processed artificially, i.e. by regular for the human

community procedures.

The requirement v4 is questioning, in fact, whether completely artificial minds, cogs, can reproduce new cogs

equal themselves and to the biological ones.

5.4. What are the validity criteria to make cogs equal by meaning to mind and whether cogs valid by those criteria

can be constructed?

It is a long way journey to answer to these questions and elaborate some approaches to implement.

6. Conclusion

Valid cogs, if constructed, confirm the assertion that mind is a modeling based problem formation and solving
procedure able to use knowledge gained from the solutions to promote the utilities of LR in their negentropic

games.

Synchronously, mental cogs provide a constructive model of mind as the ultimate instrument for cognition.
Knowledge on the nature of instruments for revealing new knowledge gives a new look on the knowledge already

gained or expected and raise new consequent questions.

Therefore, revealing by cogs the new knowledge on the instruments of cognition it is worth to question the new

aspects of relationships between mind and the overall knowledge mind creates and uses.

Ongoing experiments on study of cogs are based on the technique of evaluating adaptive programs and their
parts by local tournaments and use the game solving package with its kernel Personalized Planning and
Integrated Testing (PPIT) and Strategy Evaluation units [Pogossian,1983,2005,2007].
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ON RELIABILITY APPROACH TO MULTIPLE HYPOTHESES TESTING AND TO
IDENTIFICATION OF PROBABILITY DISTRIBUTIONS OF TWO STOCHASTICALLY
RELATED OBJECTS

Evgueni Haroutunian, Aram Yessayan, Parandzem Hakobyan

Abstract. This paper is devoted to study of characteristics of logarithmically asymptotically optimal (LAQO)

hypotheses testing and identification for a model consisting of two related objects. In general case it is supposed

that L, possible probability distributions of states constitute the family of possible hypotheses for the first object

and the second object is distributed according to one of L, x L, given conditional distributions depending on the

distribution index and the current observed state of the first object. For the first testing procedure the matrix of
interdependencies of all possible pairs of the error probability exponents (reliabilities) in asymptotically optimal

tests of distributions of both objects is studied. The identification of the distributions of two objects gives an
answer to the question whether r, -th and r, -th distributions occurred or not on the first and the second objects,

correspondingly. Reliabilities for the LAO identification are determined for each pair of double hypotheses. By the
second approach the optimal interdependencies of lower estimates of all possible pairs of corresponding
reliabilities are found and lower estimates of reliabilities for the LAO identification are studied for each pair of
hypotheses. The more complete results are presented for model of statistically dependent objects, when
distributions of the objects are dependent, but its current states are independent. For an example of two
statistically dependent objects optimal interdependencies of pairs of reliabilities are calculated and graphically

presented.

Keywords: Multiple hypotheses testing, Identification of distribution, Inference of many objects, Error probability

exponents, Reliabilities.

1. Introduction

As a development of the results on two and on multiple hypotheses logarithmically asymptotically optimal (LAO)
testing of probability distributions of one object [1] -- [3], in paper [4] Ahlswede and Haroutunian formulated a
number of problems with respect to multiple hypotheses testing and identification for many objects. Haroutunian
and Hakobyan solved in [5] the problem of many hypotheses testing for two independent objects and in [6] the

problem of the identification of distributions being based on samples of independent observations. In
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prepublications [7] -- [10] Haroutunian and Yessayan studied many hypotheses LAO testing for two objects under

different kinds of relation.

LAO tests of its distributions for two hypotheses were analyzed first by Hoeffding [1], later by Csiszar and Longo
[2] and by other authors. Here we investigate characteristics of procedures of LAO testing and identification of

probability distributions of two stochastically dependent objects.
Let X, and X, be random variables (RVs) taking values in the same finite set of states X and P(.X) be the

space of all possible distributions on X . There are given L, probability distributions (PDs)
G, ={G, (x),x'eX}, [ = E from P(X) . The first object is characterized by RV X, which has one

of these L, possible PDs and the second object is dependent on the first and is characterized by RV X, which

can have one of L, x L, conditional PDs G, , ={G, , (x* |x"),x',x* e X}, I, =1,L;, [, =1,L, . Joint

2

PDs  are G, oG, , ={G, x',x),x, x> e X} L=1,L,,=1,L, ,  where
G, (', x") =G, ()G, (x| x'). Let (x;,x,) = ((x},x7),(x3,X3),...(x}, Xy )) be a sequence of results of
N independent observations of the pair of objects. The probability Gflv, L (x,,x,) of vector (x;,x,) is the

following product:

N
Glll\ilz (x),x,) = G/]lv (xl)Gljzv/ll (xy |x)= HGzl (95,11)(;/2/11 (xj | x,lq ),
n=1

N N
with Glllv (%)= HGII (x,) and Gl];//ll (x, | %)= HG12/11 (x, | x,).
n=1

n=1

For the object characterized by X, the non-randomized test ¢1N (x,) can be determined by partition of the

sample space X" on L, disjoint subsets A/IV ={x 9" (x)=10},1,=1,L,, ie. the set Aflv consists of
vectors x, for which the PD G,1 is adopted. The probability alllv\ml (@) of the erroneous acceptance of PD

G,1 provided that Gm1 is true, /,,m, =E, m, # [, is defined by the probability G,;VI of the set A,iv :

A
all, (9)=GL (4)). (1)
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We define the probability to reject Gml , when it is true, as follows
A JRE—
N Ny N NN _ N N
aml\ml ((pl )_[ ; all\ml (¢1 ) - Gm1 ("élm1 ) (2)
117

Denote by ¢, the infinite sequences of tests for the first object. Corresponding error probability exponents, which

we call reliabilities Em, (¢,) fortest ¢, are defined as

A— 1]
Ell\m1 (o, )Z}Iiilolo{_ﬁl()g alﬁml (¢IN)}5 m,l, =1,L,. (3)

It follows from (2) and (3) that

min E,,, (@), hom =1L, L #m,. (4)

Eml \ml ((01) =
llzll#ml
We shall reformulate now the Theorem from [3] for the case of one object with L, hypotheses. This requires

some additional notions and notations. For some PD O ={Q(x'),x' € X'} the entropy H,(X,) and the

informational divergence D(Q || G,1 ), I, = E, are defined as follows:

H (X)) =~ 300 log 0+

x eX

D(QO|IGy)= ¥.00)log g((’; 3)-

x eX 1

E

L-l|L-1"

For given positive numbers E, let us consider the following sets of PDs Q = {O(x'),x' € X} :

ERRED)

A -
R, ={Q:DQ||G,) < Eyy b, =T,L, 1, (52)

A
R, =0:DQ||G,)> Eyy =1L, ~1, (5b)
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and the elements of the reliability matrix £ ((/’1* ) of the LAO test (01* :

A
Ell\ll = Ell\z1 (Ezlvl ):Ezlvl , L =1L —1, (6a)
A - -
Ell\m] - El]\m] (Ezlul ):QiilRfl‘ D] Gml ) my =1L, m#l, I, =1,L -1, (6b)
|
. A
ELl\m1 =E, \ml (E1\15E2|2a aELl_uLl_]):QiEI}f DOl Gm1 ), m =1,L —1, (6¢)
Ly
* * A *
ELI\LI :EL1|L1 (El|l’E2\29"'9EL1—1|L1—1): miinEll\Ll‘ (6d)

}=1,L-1

Theorem 1 [3]: If all distributions Gl, [, =1,L,, are different in the sense that D(G,1 I Gml) >0, [, #m,,

and the positive numbers E,,E,,....,E,_,, , are such that the following inequalities hold

Elu < min D(Gll || Gl)a
=21

ml\m mln( mln D(G || G ) mln El |m1 (Ell\l] )) ml - 2’Ll _1’

[1 ml+1 Ll 1—1m—

then there exists a L4O sequence of tests ¢, , the reliability matrix of which E(¢,) = LE (@)} is defined

in (6) and all elements of it are positive.Inequalities (7) are necessary for existence of tests sequence with

reliability matrix having in diagonal given elements EZIV1 , [, =1,L,—1, and all other elements positive .

Corollary 1 [3]: If, in contradiction to condition of strict positivity, one, or several diagonal elements E

mylmy?
1 L, —1, of the reliability matrix are equal to zero, then the elements of the matrix determined in functions

of this £

m \ml

will be given as in the case of Stein's lemma [11], [12]

)=D(G, |G, ), m #1,

E‘ll\m1 ( ml\m

and the remaining elements of the matrix E(¢;) will be defined by E, >0, L #m, =1L -1, as

follows from Theorem 1.
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Now we formulate the concept of LAO approach to the identification problem for one object, which was introduced

in [4]. We have one object, and there are known L, >2 possible PDs. Identification is the answer to the

question whether r, -th distribution is correct, or not. As in the testing problem, the answer must be given on the

base of a sample x with the help of an appropriate test.

There are two error probabilities for each 7, € [I,Ll]: the probability LT (py) to accept /-th PD

different from #,, when PD 7, is correct, and the probability T (¢y) that 7, is accepted, when it is not
correct.

The probability C7— (¢y) coincides with the probability [ (@, ) which is equal to Z e, (oy)-

llzllvtrl

The corresponding reliability El1 (@) is equal to Erl‘r1 (@) which satisfies equality (4).

¢r‘1|m1=r1

The reliability approach to identification assumes determining the optimal dependence of E;; upon given

:rl\m1¢1‘1

*

= Efm , Which can be an assigned value satisfying conditions (7). The solution of this problem

ll¢rl\ml=r1
assumes knowledge of some a priori PDs of the hypotheses.

The result from paper [4] is valid for the first object.

Theorem 2 [4]: In case of distinct hypothetical PDs G,,G,,..., GL1 , under condition that the probabilities of all

:E:

L, hypotheses are strictly positive for given E, | is the following:

/1¢r1\m1:r1

, the reliability E,

L=nlmy#n

* *

El1:’1\m1¢r1 (E’l\rl ) = min inf D(Q H G’"l )’ = I’LI‘
myimy ¢r1 Q:D(Q||Gr1 )SErl‘rl

In Section 2 we consider two related objects as one complex object and we obtain corresponding reliabilities for
LAO testing and identification. In Section 3 we will obtain the lower estimates of the reliabilities for LAO testing
and in Section 4 for identification for the dependent object. These estimates serve for deducing of lower estimates
of the reliabilities for LAO testing (in Section 5) and identification (in Section 6) of distributions of two related

objects. Resullts of certain calculations for an example will be graphically presented in Section 7.
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2. LAO Testing and Identification of the Probability Distributions for Two Stochastically Coupled
Objects

We expose the direct approach for LAO testing and identification of PDs for two related objects. It consists in
considering the pair of objects as one composite object [10]. The test, which we denote by ®" | is a procedure of

making decision about unknown indices of PDs on the base of results of N observations (x;,x,) . For the

objects characterized by X, X, the non-randomized test ®" (x,,x,) can be determined by partition of the

sample space (X x X)" on L, x L, disjoint subsets Alfflz ={(x,,%,): PV (x,x,) = (1, 1,)}, [ =1,L,

,,=1,L,, ie. the set 4", consists of vectors (x;,x,) for which the PD G, , must be adopted. The
-2 172

probability ajlvy - (d") of the erroneous acceptance of PD G, ,, provided that G, , s true,

l,m=1,L, I,,m,=1,L,, (m,m,)#(l,l,)is defined by the set A,iVJZ

alllv,lz\ml iy (CD ) (;ml m2( 111\/,12 ) (8)

We define the probability to reject G when it is true, as follows

mm’

A P
N Ny _
aml,mz\ml NS ((I) )_ Z all lz\ml N5 ((I) ) Gm1 My (Aml My ) (9)

(l1 7l2 )#(m1 ,mz)

Our intention is to study the reliabilities of the infinite sequence of tests ®

(@)= llm{— 108 (OO Ly =1Ly, Ly my =1L, (10)

ll lz\ml iy lz\ml my

From (9) and (10) we deduce that

E‘ml,mzlml,m2 (®) = min E‘ll,lz\ml,m2 ((D)’ ll’ml = I’LI’ l29m2 = 19L2' (11)

(ll ,12 )#(’”1 My )
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The matrix E(®)={E (@), 1,,m, =1,L,, l,,m,=1,L,} is called the reliabilty matrix of the

ll,lz\ml,m2
sequence of tests @ . Our aim is to investigate the reliability matrix of optimal tests, and the conditions ensuring

positivity of all its elements.

For given positive numbers £, | ""’ELpLz-”LpLz—l , let us consider the following sets of PDs

QoVi{Q(xl)V(x2 | xl),xl,x2 eX}:

(12a)
A
Rll,lz ={QoV : D(QoV || Gll,lz )< Ell’lzvl’lz L L=10, L =1L, -1,
A
RLI‘L2 ={QoV : D(QoV || Glplz )> Elp’zllplz I, =1L,1,=1L,-1}, (12b)
and the elements of the reliability matrix £~ of the LAO test:
* * A
Ell,lz\ll,lz - Ezl Lty 1, (Ell,lz\ll,lz ):Ell,lz\ll,lz h=LL, L =1,1,~1, (13a)
A
Ell,lz\ml,mz = Ell,lz\ml,mz (Ezl,zzul,zz ):Q Iinlf D(QoV || Gml,mz ), m =1,L,,
ov e [1,12 (13b)
m,=1,L,, (I,,1,)#(m,,m,), I, =1,L,, I, =1,L, -1,
Zl Lylmymy Ezl,Lz\ml,mz (BB ?E1,3|1,3"'>ELl,szl\Ll,Lz—l)
A (13c)

= lnf D(QOV H (;ml,m2 )7 ml = laLl’ m2 = 17L2 _1’

QoVeR
L,L,

A
* *

.
LiLyllyLy EL1 Ly|Ly Ly (El,m,l ’El,Z\l,Z 9E1,3|l,3""ELI,Lz—I\Ll,Lz—l )_ min min El1 dylLy oLy * (13d)
=1Ly =1Ly -1
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For simplicity we can take (X, X,)=Y, XxX =Y and y=(y,,,...,Vy) € Y", where

v, =(x},x}),n=1,N,then we willhave L, x L, = L new hypotheses for one object

G,l,,2 = {G,1 (xl)Glz/,1 (x*|x"),x",x*eXx}, [,=1,L,1,=1,L,, where G,=K,,

G,=K,, G;=K; .., GI,L2 = KLZ’ G,, = KL2+1 1 Gll,lz = K(ll—l)L2+12=
L=1L,L=1L,, Apyimymy — Fl-1) Lyl [(m ) Ly +my 2 L=LL, =1L,
Ell,zz\ml,m2 = E(ll—l)L2+12\(m1—1)L2+m2  L=LL, =1L,

and thus we have brought the original problem to the case of one object with L, x L, hypotheses.

So applying Theorem 1 we can deduce that there exists a LAO sequence of tests @, the reliability matrix of

which E” ={E,, (®")} is definedin (13) and all elements of it are positive.

Using Theorem 2 for this composite object we can deduce that identification reliabilities are connected with the

following formula

Eper(E,,) = min inf D(QoV || K,,), re[1,L]. (14)

m:m#r QoV:D(Qo V||Kr )SErlr

Now let us consider the more general particular model, when X, and X, are related statistically, in the

following way G, (x',x*)= G, (xl)G,2 " (x*) . The probability of vector (x,,x,) is defined by the following
PG,
N N N X 1 2
Gll 1 (x,%,) = G/1 (961)G/2/1l (x,)= l_IG/1 ()%)G/z//1 (x,),
n=1

(x,)-

2

N N
where G, (x,) = l_IG]1 (x,) and G (x,) = [
n=1 n=l

In this case we can analogously bring the problem to the problem on one object with L, x L, = L hypotheses,

where G, | =1{G, (x")G,, (x*).x',x* e X}, [, =1L, [,=1,L,, and for the sets R, , , [, =1,L,,

A

I, =1,L, of PDs QoV ={Q(x" WV (x*),x",x* € X}:
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When the objects X, and X, can have only different distributions from same L given probability distributions

(PD) G,, G,, G, .., G, from P(X), [4], [7] we can reduce the problem to the problem of one object and

Lx(L~1) hypotheses, where G, , ={G, (x')G, (x*),x',x* € X}, [,,1, =1,L, I, #1, (see [4][7))

3. An Approach to Multiple Hypotheses Testing for the Second (Dependent) Object

Let us remark that test @ can be composed of a pair of tests golN and gozN for the separate objects:
M= (], p)). For the second object characterized by RV X, depending on X, the non-randomized test
@2 (x,,x,,1,) based on vectors x,,x, and on the index of the hypothesis /, adopted for X, , can be given for

each [/ and x, by division of the sample space X" on L, disjoint subsets

AN ()=, 1900 (xy,x,0) =1}, [, =1,Ly, 1, =1, L, . We upper estimate the error probabilities for

second object proceeding from definition (8) .

m1 my ( l1 ) = Z GN (‘xl)(;mz/m1 (Alz/l (xl) | xl) < max sz/ml (A l (xl) | xl) Z GN ('xl

X eA
xleAl 1 11 XIEAI

(15)
=G, (A ) max GN/m1 (A 1, (x)[x)= /811 o lmy (@), (1,, 1)) # (m,m,).
xleAl
Consequently we can deduce that “reliabilities"
A T 1 N N

F}l,lz\ml,mz ((D) = }[IEO{_WIOgﬂll’lz‘ml”"Z (CD )} > (lz 91]) * (ml 1, )’

ly,m, :Eo l,,my,=1,L,,
and

le’m2|m1’m2 (CD) = min F}l,lz\nzl,znz ((D) (16)

([l ,12 ):t(m1 ,mz)

are lower estimates for Ly b imm,y (D).
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We can also introduce

A -
ﬁl;v\ll,ml,mz ((021v):ma>]§GN (A/]zv/z1 (x| x), L #my, L,m =1,L, I,,m,=1,L,, m, #1,,

Y EAII mz/m1
We define also
A -
N NN N N _ N N
ﬁmZVI’ml My (¢2 )_ ma)}\s sz/ml (Iélmz/l1 (xl) | xl) - Z ﬂlzlll,ml,mz (¢2 ) (1 7)
My ly#my

The corresponding estimates of the reliabilities of test gozN , are the following

A ] - -
Flzul,ml,m2 (@2):]£glgo{_ﬁlogﬂ1;zl,ml,m2 (§02N)}a l,m =1L, 1,,m=1,L,, m, #1,. (18)

Itis clear from (17) that

sz\ll,ml,mz ()= lmin Flz\/],ml,m2 (@), ,m =1,L,, I,,m, =1,L,. (19)

2:lz#:m2

We need some notions and estimates from the method of types [11], [12]. The type of a vector x, isa PD
0, =10, () == N(' | x).x' € X}
x| x| N 1/> s

where N(x'|x") is the number of repetitions of the symbol x' in vector x,. The subset of P(X') consisting

of the possible types of sequences x, € X is denoted by P, (X). The set of all vectors x; of the type Qx1 is

denoted by TQN (X,), remark that TQN (X,))=9 for Q¢ P,(X). The following estimates for the set
|

7.’ (X,) hold
1
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(N +1)™ exp{NH,, (X,)}<I T} (X,)|<exp{NH, (X,)}.

For a pair of sequences (x,,x,)e X" x X" let N(x',x” | x,,x,) be the number of occurrences of pair
(x',x*) € X x X in the similar places in the pair of vectors (x;,x,) . The joint type of the pair (x,,x,) is PD

0, ., =10, ., (x'.x*).x',x* e X} defined by

A ]
Qxl,x2 (xl,xz)zﬁN(xl,x2 | x,,X,), xxteX.

The conditional type of x, for given x; is the conditional distribution

S

o (x? | x"),x',x* € X} defined as follows:

Xp5Xy

2 0, (x',x%) X
(x| x') =2 : =N(x,xl|x1,x2)
0. NG'|x)

1 2
e , X,x eX.

The conditional entropy of RV X, for given X is:

X177 Xy,
|

HQ V 2(X2 |X1):_122Qx1 ('X’-I)Vxl,x2 (‘x2 |xl)10ng1,x2 (‘x2 |‘xl)'

For some condiional PD V¥ ={V(x*|x'),x',x* € X} the conditional divergences of PD
(O W (x* | x'),x',x* € X} with respect to PD {0(xNG,, (x* |x1),x', x> e X} for all 1,1, are

defined as follows

Vi(x® | x")

A
DV |G = W (x? | x)log———"—,
4l I/l |0) x%:ZQ( W(x"|x)log Gzz/zl (x2 |x1)
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also

2 1
Gzz/z1 (x"|x)

A
- 1 2 1
D(Glz/z1 I sz/m1 |Q)_Y1§x2Q(x )G12/11 (x"|x)log sz/m] (xz | xl)'

The family of vectors x, of the conditional type 7~ for given x, of the type Qx1 is denoted by T, (X, | x,)
xl’

and called V" -shell of x,. The set of all possible }” -shells for x, of type Q, s denoted by V' (X, 0, ). For

any conditional type V' and x, e 7, (X,) itis known that
!
)
(N+1) H eXp{NHQx1 ,V(Xz | X)) <l TQil ,V(Xz |x) 1< eXp{NHQxl ,V(Xz | X))} (20

For given positive numbers F}z L,=1,L,-1, for QeR,l(S.a),(S.b) and for each pair

Wy mydy >

l,,m = E let us define the following regions and values:

A -
R, (@)= :DW |Gy Q)< F,y 3o =1L, 1, (21a)

2lfsmysly

A
RLz”l O)= DV || Glz/’l |0)> Flz‘ll iyl 2 l,=1,L, -1}, (21b)

lezv/z1 (Qx1 )= Rlz/ll @)V (X, Qxl )

A

* *
Flzvl,m1 Iy Fzz\zl,ml,zz (Fzz\zl mydy ) Fzzul,m1 1y lz 1,L, -1, (22a)

A
* *

]:;2|11,ml,m2 = Ezvl,ml,mz (F}Zul,ml,zz): inf inf D || sz/m1 |0), my=1,L,, m, #1,,

R, VeR
Qe ]1 < IZ/II(Q) (22b)
l,=1,L, -1,
Lyltymymy — Lyt mymy (E\ll,ml,l’E2\ll,m1,2""’FLZ—I\ll,ml,Lz—l)
A (22¢)

=inf inf DWIG,,, |Q) m=1L,~1,

QeR; VeR (0)
4 Lyl

A
* * *

=F F F. v I = min F .
Lyllymy.Ly L2|11,m1,L2( 0o L2 g 290005 L2—1\ll,mI,L2—l) 1212‘11#1;_1 Lyl Ly (22d)
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We denote by F'(¢,) the matrix of lower estimates for E(¢,).

Theorem 3: [f for fixed m,,l, = E all conditional PDs G,2 Iy l,=1,L,, are different in the sense that

DG, |1G, , 1©)>0 , for al QeR, , l,#m,, m,=1,L,, when the numbers

le m 1>F2|zl my 2 ,FL2 iy 1yt ATE such that the following inequalities hold
0< F11V my,1 < mln inf D(Gl >/ ” Gl/ml |Q) (233)
2 2L2 QeRl
0<F by my <min( min _inf D(G, oA G mylm, |0), min Flzul,ml,m2 (Flz\z1 A ))s
12 m2+1 L2 QERI 12 1n12 -1
(23b)

for m,=2,L,—1,

then there exists a LAO sequence of tests gaz , the matrix of lower estimate of which F’ ((0; ) is defined in

(22) with all elements of it strictly positive.

Inequalities (23) are necessary for existence of test sequence with matrix of lower estimates /' (¢, ) having in

diagonal given elements £, [, =1,L, —1,and other elements positive.

ol mysly

Proof: For x, e X", x, e TN (X, | x,) the conditional probability G, , (x,|x,) can be presented as

ny /m

follows

m/m (%, [x)= HGm /ml(x |x)

NO, e

N(x X \x X))
H n12/m1 (x | e ]1‘_‘|;(;,m2/m1 (xz |xl)
XX (24)
Vx"|x
~expiN 310, (¢ [lo VL)

xl,x2 mz/ml (x |x )

+0, (X (x* [x)logh (x* [ x)]}

=exp{—N[D(V || sz/m1 |Qx1)+HQx1,V(X2 | X1}

We shall prove that the sequence of tests ¢, , defined for each x, e B = UQ . Ty (X,) by the following
€ ll

collection of sets constructed of conditional types
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B )= U TQZI,V(Xz!xl)Jﬁl,Lz,

N
VeR (0,)
12/11 X

(25)

is optimal with respect to lower estimates of corresponding reliabilities and the lower estimate matrix F’ ((p;) is

defined in (22). First we show that each NV -vector x, is in one and only one of BI(J/V,) (x,), thatis

B ) B, (x)=D,1, =1,L, =1, my =1, +1,L,, and UB,“/Vf(xl) XV

h=

Really, (21.b) and (25) show that
Bz(;/vzl)( )ﬂBS\Q (x)=9, L, =1L, -1

For 1, =1,L, -2, my=1,+1,L, -1, for each x, € B, let us consider arbitrary x, € B} (x;) . It follows
from (17.2) and (21) that if QX1 eP,(X) there are VelV,(X, Qxl) such  that

DG, 10,)< and x,eT,) ,(X,|x) . From (21) - (23) we have
Xl’

12\1 .y

*

)< D || G, |Qx1)' From definition (25) for each m, we see that

<
mz\ll,ml Jmy F}2|ll Sy (F}z\ll,ml,lz

x, & BY) 1(x1) ,thatis x, ¢ B,(,fzv/)ll () -

mz/m

Now for m, = 1L, —1 ,L,—1, I, #m, using (17), (20), (21), (23) -- (25) we can upper estimate 3 " Sy 8
follows:
ﬂ;ﬁll,ml,mz max sz/m1 ( r(n[:/)ll ('xl) | xl) < maX Gm /m U TQ]Z N4 (X2 | xl) | xl

eBV xeB V:D(V|G 0. >E
X € / 1 l mZ/ml X mz\ll,ml,m2
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2
<(N+1DH max sup sz/ml (TQNX v (X 1x)[x)
eBll VD(VHGm /m \Q ) m2|ll,m1,m2 1
2
<S(N+D™ sup sup exp{-ND(V' || G,, ,,, 10, )}

N V:D(V|G 0. >E
Qxl eRl] m2/m] x| mz\ll,ml,m2

<exp{-N[ inf inf DV (|G, 10,) =0y (D]} <exp{=NF, , ., 0, (D]}

Nv:D(V|G >E
QXIERII l n12/rrtI ‘Qxl) mz\ll,ml,m2

For /, # m, we estimate by analogy

N N
'Bz"l mymy — MAX sz/m1 (B 1(2/11) (x,)]x,) = max sz/m1 ( U TQX1 v (X, [x)1x)
B X eB . N
By 157 VVeR n )
2
<(N+ l)m ma% sup )112/m1 ( V(Xz | x,) | x))
X8y V:Vele;,/ll ©) 2
X2
<+ sup  sup  exp-ND(V |G, |0,
Qx1 eRl/IV V:Vele;’/ll (Qxl)
<expl-NLinf inf  D(V[|G,, 10,) =0y (D]}
0, eRlN VVeRl 7y ©x,)
Now we want to deduce the lower estimate
ﬂz‘ﬁ sy my maxGN Im (Bl(]\//l) (x)[x)= maxG;V m ( U TQN v (X, lx)[x)
N 1 21 N 2" X
N By N <By vwerl, © )
h/h =y
2
Zmay s Gl (T, ,C0I0)IR)ZVD)" sup s epi-NDI (G [0 (g
xleBll V:VeRI[;//ll ©, 1) Qxl eR,’IV V:VeRl/;//ll (Qxl)

>exp(-N[ inf_inf DG, 10.)+0, (D]}

N N
Q_ €R;' VVeR (Q.)
X l1 12/11 X

Taking into account (26), (27) and the continuity of the functional D(V||sz/11 |Q) we obtain that

Jim {-N""' logﬁzzv oy 3 exists and in correspondence with (22.b) equals to F

Nesoo \l mymy

. Thus

F}le my. m2(¢2)_ 12‘11 mymy 2 =1,L,,,=1,L,.
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The proof of the first part of the theorem will be accomplished if we show that the sequence of the tests (D; for

. %,
given Fuy o voees FL a1y and for any sequence of tests ¢, is such that for all m,,l, =1,L,

sk *

<F .
12|ll,ml,m2 lz\ll,m1 my

Consider sequence ¢, of tests, which is defined by the sets D{)\’(x;), DI}’ (x;), . Di) (x,) such that

sk *

Litymmy = Ejim m, for some /,,m, . For a large enough N we can replace this condition by the following

inequality
Aok \T
ﬁ/z\ll gy ﬂz‘ll S,y (28)
Examine the sets D)) (x)( B (x). L, = 1,L, 1. This intersection cannot be empty, because in that
case
o N (N)
:Blz\ll oyl maXG1 1 (D12”1 (xl) | xl) 2 maX /2//1 (Blz//1 (‘xl) | xl)
xleBlN xleBl
1 1
N N
2 max sup Gzz/z1 Ty p (X, [x)[x) 2 eXp{_N(Flzul ity TON ()},
3B VDG 10, )<F, K
195, Uty e = 1y my 1

and we have a contradiction with (28). Let us show that D)’ (x))(\BLY) (x,) =D, m,,1, =1,L, 1,

L/l my

I, # m,.Ifthere exists V suchthat D(V' || G, , |Q)<F, and 7," Vo, (X, |x) € D) (x,), then

|ll Sy iy

ﬂzz\z .y ma)jéG 5/l (Dzz/z1 ()] x)> max Gm I ( (X | %) x,) 2 exp{-N[F, mllymy +oy (D]}
By, "1631

When &+ D) (1, Vo, (X, |x)# T Q (X, | x,), we also obtain that
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N _ N (N) N (N) N
ﬂzzvl,m1 my — MAX sz/ll (D12/11 | x,)> ma%/( sz/z1 (D12/11 ro, (X, |x)|x)Zexp{-N(F,

X € x,€B
1 l1 1 l1

+0y (1)}

2\1] My My

Thus we conclude that F™

<F , Which contradicts to (19). Hence we obtain that
12 \ll RN ny \ll Jmy iy

Dy (e)(BL) (x) = B (x,) for [, =1,L, —1.

The following intersection D’} (x, )ﬂBE’Z\’/ﬁl (x,) is empty too, because otherwise we arrive to

Lz\ll,m1 my = 142\11,ml,m2 b

which contradicts to (28), it means that D,‘ZZ/V,: (x,)= B,(zf/v,f (x,),forall [, =1,L, .

The proof of the second part of the Theorem is simple. If one of the conditions (23) is violated, then from (21),

(22) and (23) -- (26) it follows that at least one of the elements Flz\lpml""z is equal to 0. For example, let

Fomm = min_minD(G,, |G, ,, 10), then there is I,em,+1,L, such that

_ 2
12—m2+1 ,L2 QeRl1

> 5“%“ D(Gl.z/l1 |G | O). After using (22b) we obtain that F* . =0.From (19) we see

F
ma|ly ,mq ,m
2117172 mz\ml ,l] ,12

mz/m1

. * .
< min F,zvl,ml’mz(F,zul,mlh).Theorem is proved.
12=l,m2—1

that F

my |/l Jmy iy

Corollary 2: If in contradiction to conditions (23) one, or several diagonal elements Emay L=1,L,-1,

of the reliability matrix are equal to zero, then the elements of the matrix determined in functions of this

Ezlll’ml 1, are given as in the case of Stein's lemma [11], [12]

Flzul iy Ly (Ezul iyl )= Qian D(Glz/ll I sz/ml 10), m =1,L,, m # L,
(S
h

and the remaining elements of the matrix £'(¢,) are defined in function of positive F}z‘ll’ml’lz >0, Fm,,

I, =1,L,—1, as follows from Theorem 3.
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Proof: Really, if Flzvl,mIJZ =0, then :lezvul,ml,zz is not exponentially decreasing . Thus using Stein's lemma we

have

. I .
tim 108~ B oy (Bl 1, (92) =) == inf D(Gy, 1[Gy 10,15 # s

lzlll,m1 ,12 R
h

So the corollary is proved.

4. On Identification of the Probability Distribution of the Dependent Object

In this section we will obtain the lower estimates of the reliabilities of LAO identification for dependent object.

Then we deduce the lower estimates of the reliabilities for LAO identification of two related objects.

There exist two error probabilities for each », =1, L, : the probability A (¢y) to accept /,

S Sy =T

different from r,, when r, is in reality, and the probability i, (@, ) to accept r,, when it is not

my ,my #ry

correct.

The upper estimate 3, (@) OF @ ., =, (@) I8 already known, it coincides with the

rz\ll Sy 1y =Ty

B,

L EURY)

(@2 which is equal to Z ﬂlz“p"’l’rz (@) . The corresponding reliability F}2¢’2|[1”"1””2:"2 (p,) is

12 :12;tr2

equal to 1’12”1,,”17,2 (¢, ) which satisfies the equality (19).

The reliability approach to identification of lower estimates assumes determining the optimal dependence of

* *

upon given F,Z =F which can be an assigned values satisfying

12:1‘2\11,m1,m2¢r2 ¢r2\ll,ml,m2:r2 }’2|ll,ml,r2 )

conditions (23).

Theorem 4: In case of distinct PDs GW1 ’Gle yeees GLZV1 , for every [, under condition that the upper estimates

of probabilities of all L, hypotheses are strictly positive the “reliability" Fzz:;

ol gy 7y for given

=F

ol my 1y Is the following:

‘F}zvtrz\ll Sy iy =1y
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(F

nollysmy.ry

)= min inf inf DG, |9) 1, =1,L,.

F}ZZrZVI’ml’m2¢Q ! )
My my #1y QeRl1 V'D(VllGr2/11 \Q)SFrzvl

EO D)

Proof: We have

Z ﬂrz\ll,ml,mz Pr(mZ/ml)

N
_ Pr (m2 * Vz,lz = rz/ll,ml) myimy#r,

Pr(m, #r,/m,) Z Pr(m,/m,)

mzsér2

ﬂN
12 :rz\ll my ,mzsér2

Consequently, we obtain that

. N
F, _ F = ——1lo _
lz—rz\l1 Sy My Ty ( rz\l1 Jmy ) llllzfolo N g ﬁlzfrz\ll,ml ,mz?ﬁr2

— 1
- hm _N(log z ﬂrz\ll,ml,mz Pr(mZ/ml)_log z Pr(mZ/ml))

N—w . .
m24m2#)2 my #rz

o 1 ﬂr‘ |1y my Pr(mZ/ml)
= lim —N(logmaxﬂrz‘,l’mlm2 +log )

N—oow . .
My :my #12 max ﬁrz\ll Sy iy

—log Z Pr(my/m;))= " min E~2V],ml,m2‘

"’z*"z my :mz#r2

And using (22.b) we prove the theorem.

5. LAO Hypotheses Testing for Two Stochastically Dependent Objects

In this section we find the “reliabilities" EL by my for LAO testing which will be lower bounds for corresponding
E,y 1 jmmy - USING (15) we can prove the following lemma

Lemma: If the elements E,1 - (p,) and F, , (@, ) are positive, then

2l my.m
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F}l,lz\ml,n12 (@)= Ezl\ml (p)+ Fzz\zl,m1 s (@), m F1,, my #1,, (29a)
le,zz\ml,mz (®)= Ezl\ml (@), my #1,, my =1, (29b)
Fll,zz\rnl,m2 (D)= Flzul,;nl,m2 (@), m =1, m,#1,. (29¢)
Proof: The following relations hold for upper estimates of error probabilities
ﬂlf{lz\ml My (q)N) = alﬁml (¢IN )ﬂlgl\ll Sy Ly (¢2N )9 ml 7& Zl H m2 7& 12 b (303)
IBli\flz\ml,mz ((DN) = al];\/ml (¢IN )(1 - ﬂl;\/\ll Ly ((DZN ))7 ml 7& l] H m2 = 12 H (30b)
ﬂ/i\jlz\ml o (@")=(1- a/]:\’ml (¢ ))ﬂllzvvl ey (@), my=1ly, my #1,. (30c)

Thus, in light of (3) and (18), we obtain (29) . The lemma is proved.

Let us define the following subsets of P(X) forgiven strictly positive elements

EL1,12|11,12 , F}l,szl,lz =1L -11,=1L,-1:

A
Rll :{Q:D(QHGll)SELl L, L=LL-1,1,=1L—1],

dlly by

A
R12/11 O)={V:D(V || Gzz/zl |0) < El,Lz\ll,lz}’ L=1L-110=1L, -1,

A
RLl ={0:D(Q]| G11)>EL1,12\11,123 L=1L-11,=1L,-1},

A
RLz/ll Q)= DV || Gzz//1 | Q) > le,Lzul,zz L =1LL-1 1, =1L -1}



International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010 279

Assume also

A A
. Lylly :El,Lz\ll,lz > ELl,lz\ll,lz :ELl,lz\ll,lz JL=1LL-1 ,=1,L, -1, (31a)
X A
1yl by ZQjeregl DI G, ), m #1, (31b)
|
" A
Fypym =inf inf DG, |0), my+1, (31c)

QeR/1 V:VeRlz/ll (%))

A

* * * .
F}l,lz\ml,mz _le,lz\ml,mz + Ell,mz\ml,mz s mi :/: li > 1= 1’2’ (31d)
. A
an»mz\mp"’z =  min (31e)

Ao |my msy
(ol Y #(mymy) 1722

Iﬂ

Theorem 5: If all distributions Gm1 , my=1,L, , are different, that is D(G,1 |G, )>0, [ +m,,
l,m = E and all conditional distributions GZZU1 , 1, =1,L,, are also different for all [, = E, in the

sense that D(G, , || G, , 19)>0, [, # m,, then the following statements are valid.

When given elements ELplelJz and F}pLleJz’ l,=1,L, -1, 1,=1,L, —1, meet the following conditions

0< ELl,zzu,l2 < ;E%D(Gll 1G)), (32a)
0< F’l Aolh1 = n,’lzule ngzef; D(Gl h I Gl/m 10), (32)

O<EL1 AT <min[ min_ E/l Lylmy 1> I D(Gz G, )] L, =21, —1, (32c)

l1 lml l1 m1+1 Ll

0<F

1

L, <Min[ min_Fy min__inf D(G,, |G, ., 1O, 1, =2,L, -1, (324)

AL m
12 lm2—l 1l 2 l n12+l L2 QeRl

then there exists a LAQO  test sequence ®", the lowerestimate matrix of which

F(®")= L imgm, (@)} isdefinedin (31) and all elements of it are positive.
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When even one of the inequalities (32) is violated, then at least one element of the lower estimate matrix

F(®") isequalto 0.

Proof: Itis proved in [7] that E,IV1 =F [, =1, L, —1.By analogy we can deduce that

Lyl

Flz\zl mdy FLzlll .y l,=1,L,-L (33)
Applying the theorem of Kuhn-Tucker in (22.b) we can show that the elements 15}2‘,1%12 , I,=1,L,—1 canbe
determined by elements £ , . . M, # L, I,=1,L,,
A

*

nf inf D(V || Gzz/l1 | Q)

F}Z‘ll Jmy ,12 (Ez\ll Sy iy ) =1
QeRll V:D(VHsz/ll \Q)SFlzlll my s

From (23) it is clear that F, can be equal only to one of F, [, =m,+1,L,.Assume that

mz\l1 Jmy smy 2|11 Sy sy 2

(33) is not correct, thatis F|

mz\ll,m1 My = Ez\ll,nzl,nzz s 12 = m2 + I’LZ - 1

From (22.b) it follows that

A
*

Fz2\zl iyl (Ez\l] my.myy )= inf inf DV || Gzz/z] 10)

QeR, V:D(V|IG, , |Q)<F,
2 myll; Lyl my

= Inf inf DV || Gzz/z1 |Q)=F, my, L, =1,L,—1, m, <l,,

Ity my Ly
QeRll V:D(VHsz/ll I0)<F,, 27712

2llysmyomy

but from conditions (23) it follows that E ity < Eotyom 1y for m, =1,1, —1. Our assumption is not true,

thus (33) is valid.



International Journal “Information Theories and Applications”, Vol. 17, Number 3, 2010 281

Hence we can rewrite the inequalities (7) and (23) as follows:

0< ELl\l < ITB%D(GmI || Gl ), (343)
0< FLz\ll,ml,l < ngRfll IZIE%D(G’"Z/II I G1/11 | 0), (34b)

/ =l,11—1 ll=l +l,Ll

: . * .
0< ELIV1 <min[ min Ell""l > min
1 |

D(Gml [ Gzl )N, L =2,L 1, (34c)

*

0<F

Lyl my 1y

nf n’liLD(Gzz/z1 | sz/z1 D). L =2,L, -1 (34d)

< mln[ min Ezvl’ml’m2’ 1
51 Q<R hy=ly+1L,

12 =1,l,—

According to Theorem 1 and Theorem 2 there exist LAO sequences of tests ¢; and ¢, , for the first and second
objects, such that the elements of the matrices E(gol* ) are determined in (6) and the lower estimate matrix

F ((p; ) is determined in (22). The inequalities (34.a), (34.c) are equivalent to the inequalities (7) and (34.b),
(34.d) are equivalent to the inequalities (23). Then using Lemma we deduce that the lower estimate matrix

F (CD*) is determined in (31). The proof of the second assertion of the Theorem is obvious.

6 . On Identification of the Probability Distributions of Two Stochastically Dependent Objects

In this section we study an approach to deducing optimal interdependencies of lower estimates of corresponding

reliabilities for LAO identification. The LAO test " is the compound test consisting of the pair of LAO tests gol*
and (p; for respective separate objects, and for it the equalities (29) take place. The statistician has to answer to

the question whether the pair of distributions (7;,7,) occurred or not. Let us consider two types of error

probabilities for each pair (r;,7,), 5 =1,L,,=1,L, . We denote by a(flvl Ly YECyry Vo =Gy 8
probability, that pair (7;,7,) is true, but it is rejected. Note that this probability is equal to Ay (@"). Let

N

Ot 1=y Vo, my (1 ) be the probability that (;,7,) is accepted, when it is not correct. The corresponding

reliabilities are E(,l,,2)#,”2)‘(,"1,mz):(rl,rz) = Erwz\"prz and EUlJz>:("1»rz>l<ml""2>*<ﬁJz>' Our aim is to determine
H N
the dependence of EUlJz):(rprz>l<m1,m2> o OnGVEN E (D).

Now let us suppose that hypotheses G,,G,...., GL1 have a priori positive probabilities Pr (7)), 7, = ﬁ and
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Gy, Gy 5+ Gy, have @ priori positive conditional probabilities Pr (r, 11, r,=1,L,,and consider the

probability, which we are interested

N ﬂ(rl,rz)\(ml,mz)Pr((m17m2 ))
B ‘ = Pr((my,my) # (1,,1,), (4, 15) = (1,13)) g my )7y 1y )
(Bl )=Cryy NGy ooy ) (ry oy )
re R Pr((m;,my) #(1,,1,)) >, Pr(m,m,)
(ml,mz)#(rl,rz)
Consequently, we obtain that

Ell ,12 )=(r1,r2)\(m],mz )%—(r],rz) = (ml’mz):(gll’l’?z )#(rl’rz)F‘r1 ,rz\ml iy (35)

For every LAO test @ from (11), (29) and (35) we obtain that
Ell by =151 My smy (1515 ) = min (Er]\ml (E'rl|r1 )’F:fz\l1 Sy 51y (F'rz\l1 Sy 1y )l (36)

m #rl iy #rz

where Erl‘m1 (Erl‘r1 ),I*“,,zlll,,w2 (F ) are determined by (6) and (22) for, correspondingly, the first and

&) \11 Sy STy

the second objects. For every LAO test @ from (16) and (29) we deduce that

F’l by, ml#rrlll,}nr;#rz (E’l"”l ’F’2|’1 L) ) B mm(E"l'ﬁ ’ Ferl My ) (37)
and each of Erl‘r1 , Erzv1 - satisfies the following conditions:
1 I R E A ! 1

i G Q)]- (380)

. . * . .
O < Fr2|ll,m1,r2 < min min F}2|ll,m1,m2 (F}2|ll,m1 ,12 )7 lnf mD(G
12=1,r2—1 QeRl1 12=r2+1,L2
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From (6.b) and (22.b) we see that the elements £, (E,, ),/ = 1,;,—1 and E;

/ \l Jmy m2( 12\11 g, 12)

[, =1,r,—1 are determined only by Ellv1 and 1’7,2‘,1,,”1712 . But we are considering only elements Erl‘r1 and

Ferl s . We can use Corollary 1, Corollary 2 and upper estimates (38.a), (38.b) as follows:
0< E’l < 1’11111|: min D(G H G ) min _ D(G H G )j| (398)
1= L1 l1 n+LL

0< Fr2|ll,ml,r2 < mm[ inf min D(G, o lmy 1G, I |0), inf min D(G, I | Grz\ml Q)} (39b)

QO<R; 1y =1, Q<R 1h=ry+.L,

From (37) we have that Eoiin, = En , when £ i Sy , and when
. =F,, , then F_, <E . . Hence, it can be implied that given strictly positive element
UEPLIRG rollymyry mlhmyry i
E‘Mz"‘wz must meet both inequalities (39.a) and (39.b).

Using (37) we can determine reliability E 4 )=y om, oy ) in function of By i, 8 follows:
F(ll Ay )=(ry 1 N(my sy YE(ry ,rz)(F;‘l,r2|rl,r2 )_ mﬁfrflrlnl'zl#r2 lE nlmy Fl,rz\rl,rz ), Fr2\ll,m1,m2 (Frl Tl )l (40)
where E, iy (Fr1 ”2‘r1”2) and Frz\llamlm( ool ) are determined respectively by (6.b) and by (22.b). Finally

we obtained

Theorem 6: If the distributions Gml’ and G m, =1,L,, m, =1, L, are different and the given strictly

mzlml ’

positive number E satisfies condition (39.a) or (39.b), then the lower estimate F,

Tl (Il )=y sy l(my ey Y (171 )

of E ., can be calculated by (40).

(ll »12 ):(Vl i) )|(m1 Sy )#(’1 :”2)

In the particular case, when X, and X, are related statistically [8], [9] that is the second object depending on

PD of the first is characterized by RV X', which can have one of L, x L, conditional PDs

12/1l =1{G, /1y (xz),xz eX}, =1L, [,=1,L,,wewil have AIN/I ={x, :¢év(x2911)zlz}a

l,=1,L,, l,=1,L,,inplace of the set Afzv/,l (x,) and in that case from [8] we have
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GnI:; My (14111\[,12 ) = z ('xl )sz/m (x2 z GN (xl) Z Gm2/m1

N
(x,x,)eA4 X; <—:A X, EA
12757 12 1 ll 2 12/11

- Gril\;/ml (1412/11 )Gml (AN) (ll’lz) * (mla mz)-

The probabilities of the erroneous acceptance of PD G,/l1 provided that G is true, /,,m,

my/my
denoted by
\11 Jmy,my (¢2 ) sz/m] (Al /ll) lZ # m2'
The probability to reject sz/ml , when it is true is denoted as follows
— A
N Ny _ AN _ N N
amz\ll Sy Sy ((02 ) - (;mz/ml (AmZ/ll) Z a12|ll,ml,m2 ((02 )

12 %mz

Thus in the conditions and in the results of Theorems 3-6, instead of conditional divergences

me D(G, i I sz/ml [0), Qian DV || sz/ml | Q) we will have just divergences
R € ll

D(Glz/l] || sz/m] )’ D(V || (;m2/m1 ) and In place Of F;z\ll,ml,m2 ((D) F;] ,lz\ml,m2 ((D)’ ll ’ml = l’Ll H

Lymy=1,L, wilbe £, .\ (D), E, . (P) homy =1,L, L,m, =1,L,

And in that case regions defined in (21) will be changed as follows:

A
R12/11 =V :DV | Gzz/z1 )< E

12‘11”"1”2}’ lz =1,L, -1,

A
RLZ//1 ={V:DV | Gzz/l1 |O)>E

Ll omy sy 2

l,=1,L, -1},

Rl];//z1 Rl2/1l NPy (X).
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=1,L,, are
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In case of two statistically dependent objects the corresponding regions will be

A
R11 ={0:DQ|| Gll)s ELl,zz\zl,lz}all =1LL, -1 =1L

5 2_19

A
R12/1l ={V:DV || G12/1l )< Ell,L2|11,12 yL.L=1,L-1,1L=1,L,-1,

A
RL1 =H0:DO|| G11)>EL1,12\11,123 L=1L-11=1L,—1},

A
Ry, =V :DW |G y)>E, s h =1L =1, L =1,L,~1}.
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So in this case we obtain the optimal interdependencies of reliabilities. The results were shown in [8] and in [9].

For this model in next section will present some results of calculations.

7. Example

. Let us consider the set of two elements X = {0,1} and the following probability distributions given on X :

G, ={0.84;0.16}, G, ={0.23;0.77}, G, ={0.78;0.22}, G,, =1{0.21;0.79}, G,, ={0.59;0.41}
G,, =10.32;0.68}. In Fig.1 and Fig.2 the results of calculations of functions E, . (E,, ) and

E o (Eyyy-Eyyyy) are presented. For these distributions we have D(G, | G)~1.3 and

D(G,, ||G,,)=1.06. We see in Fig.1 that when an analog of the inequality (32.a) of Theorem 5 (for

statistically dependent objects) is violated then £, ,,, = 0 and in Fig.2 we see that when analogs of (32.a) and

(32.b) equalities are violated then £ ,,, =0.
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8. Conclusion

We studied the more general model of stochastically dependence of two discrete random variables. For this

model reliability requirements to multiple hypotheses testing and identification are investigated. By the first
approach optimal interdependencies of elements of reliability matrix of test @ can be found when its L,L, —1

diagonal elements are given. But by this approach we do not have information about the reliabilities of the first
and the second objects. By the second approach at first we find optimal interdependencies of reliabilities of the
first object and then interdependencies of lower estimates of reliabilities of the second object. Similarly we also

solve the identification problem for two objects. Results of the second approach are applied to finding the optimal

interdependencies of lower estimates of reliabilities of two objects when L, L, —1 non diagonal elements of lower

estimate matrix are given. If random variables X1 and X, take values in different sets X', and X, only the

notations become more complicated, so we omit this “generalization”. The correspondence with other, less

general, cases of objects relation is discussed in [5] -- [10].
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PROOF COMPLEXITIES OF SOME PROPOSITIONAL FORMULAE CLASSES IN
DIFFERENT REFUTATION SYSTEMS'

Ashot Abajyan, Anahit Chubaryan

Abstract: In this paper the proof complexities of some classes of quasi-hard determinable (Tsgf,) and hard
determinable (y, ) formulas are investigated in some refutation propositional systems. It is proved that 1) the
number of proof steps of Tsgf, in R(lin) (Resolution over linear equations) and GCNF '+ permutation (cut-

free Gentzen type with permutation) systems are bounded by p( 10g2|ngfn

) for some polynomial p(), 2) the
formulas v, require exponential size proofs in GCNF''+ permutation.

It is also shown that Frege systems polynomially simulate GCNF '+ permutation and any Frege system has
exponential speed-up over the GCNF '+ permutation.

Keywords: determinative conjunct, hard determinable formula, quasi-hard determinable formula, proof

complexity, refutation system, polynomial simulation.

ACM Classification Keywords: F.4.1 Mathematical Logic and Formal Languages, Mathematical Logic, Proof
theory

Introduction

The interest in the complexity of propositional proofs has arisen, in particular, from two fields connected with
computers: automated theorem proving and computational complexity theory, the most famous open problems of
which is the P = NP problem.

In 1979 Cook and Reckhow studied the relationship between the lengths of propositional proofs and
computational complexity, and observed that NP = co — NP fiff there exists a propositional system in which
proofs are all polynomially bounded [Cook, Reckhow, 1979].

Cut-free sequent and resolution systems are the most frequently used proof systems for automated theorem

proving, but they are “weak” systems. There are some formulas which require exponential proof complexities in

these systems.

! Supported by grant 11-1b023 of Government of The Republic of Armenia
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Due to the popularity of these systems it is natural to consider some of their extensions. Resolution over linear

equations ( R(/in)) [Raz, Tzameret, 2008] and cut-free Gentzen type calculus with permutation (GCNF'+
permutation) [Arai, 1996] can be considered as such extensions. These systems are stronger than the original
systems.

In this paper we investigate the proof complexities of some classes of propositional formulas in R(/in) and

GCNF'+ permutation. In [Abajyan, 2011] and [Aleksanyan, Chubaryan, 2009] the notions of quasi-hard
determinable and hard determinable formulas are introduced and proof complexities of such formulas are

investigated in some propositional systems. In particular, it was proved that the complexities of some class of

quasi-hard determinable formulas 7sgf,, in Split Tree (Analytic Tableaux) and resolution systems are by order p(

|T sgf,

complexities of some class of hard determinable formulas , are polynomially bounded in Frege systems.

) for some polynomial p() [Abajyan, 2011] and in [Aleksanyan, Chubaryan, 2009] it was proved that

Now we show that the minimal steps of Tisgf, proofs in R(/in) and in GCNF '+ permutation are bounded by
p( log2|ngfn|) for some polynomial p() and the formulas y, require exponential size proofs in GCNF '+

permutation. We also show that any Frege system p — simulates GCNF''+ permutation and has exponential

speed-up over the last one.

Note that R(/in) and GCNF '+ permutation are refutation systems, that is, these systems intend to prove the

unsatisfiability of formulas (negations of tautologies), therefore sometimes we shall speak about refutations and

proofs interchangeably.

2. Main notions and notations

2.1 Hard determinable and quasi-hard determinable formulas
To prove our main results, we recall some notions and notations. We will use the current concept of the unit

Boolean cube ( E" ), a propositional formula, a tautology, a proof system for Classical Propositional Logic (CPL)

and proof complexity.

By |(p| we denote the size of a formula ¢, defined as the number of all variable entries. It is obvious that the full

length of a formula, which is understood to be the number of all symbols and the number of all entries of logical

signs, is bounded by some linear function in |¢].
A tautology ¢ is called minimal if ¢ is not an instance of a shorter tautology.

Following the usual terminology we call the variables and negated variables literals. The conjunct K can be

simply represented as a set of literals (no conjunct contains a variable and its negation at the same time).
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In [Aleksanyan, Chubaryan, 2009] the following notions were introduced.

We call a replacement-rule each of the following trivial identities for a propositional formula ¢ .
0&y =0, y &0=0, 1&y =y, y &l=y, y &y =y, y &y =0, y &y =0,
Ovy =y, yvO=y, lvy =L yvi=L ywvy=y, wvz/_/zl, vazl,

0oy =1, yo0=y, Ioy=y,yol=Lyoy=Lyoy=y, yoy=y,

0=1,1=0, v=y:

Application of a replacement-rule to some word consists of replacing some of its subwords, having the form of the

left-hand side of one of the above identities by the corresponding right-hand side.
Let ¢ be a propositional formula, X = {x,,...,x,} be the set of all variables of @ and X = {x,0x, )

(1< m <n) be some subset of X .

Definition 1. Given o ={o,,..,0,}c E" , the conjunct K° = {xil”‘ X7 ,...,xim”’”} is called ¢ -
determinative if assigning o, (1 <j< m) to each X and successively using replacement-rules we obtain the
value of ¢ (0 or 1) independently of the values of the remaining variables.

Definition 2. We call the minimal possible number of variables in a ¢ -determinative conjunct the determinative

size of ¢ and denote it by d((p).

Obviously, d(¢)<|¢>| for every formula ¢, and the smaller is the difference between these quantities, the
“harder” can be considered the formula under study.

Definition 3. Let ¢, (n>1) be a sequence of minimal tautologies. If for some n,, Vn>n, ,

d (gon ) <d (gom) then the formulas ¢, , @, ., @, .,,... are called quasi-hard determinable.

Definition 4. Let ¢, (n > 1) be a sequence of minimal tautologies. If for some 7, there is a constant ¢ such

that Vn>n, , (d(p,)) <

,|<(d(p,))" then the formulas @, ,@, ., @, ... are called hard
determinable.
Example 1. For the well-known tautologies

n+l n

PHP =& vx, D> Vv v (xij&xkj) (n>1)

i=l j=1 I<i<k<n+11<j<n

presenting the Pigeonhole Principle, the determinative conjunct is, in particular, {x,,,x,,} , therefore

d (PHPn ) =2 forall n =1, hence, PHP, is neither quasi-hard determinable nor hard determinable.
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Example 2. The following tautologies are considered in [Aleksanyan, Chubaryan, 2009].

™, = v &vx, (nxll<m<2"-1)

O1n0, JE" j=li=1
From the structure of 77M , ,, it follows obviously that every TTM , , -determinative conjunct contains at least
m literals. Let v, :TTMML1 for all »>1. Then the formulas v,y ,,w,,... are hard determinable
[Aleksanyan, Chubaryan, 2009].
The sequence of quasi-hard tautologies can be considered on the base of graphs.

Let us recall the definition of Tseitin graph formulas [Tseitin, 1968]. Let G be a connected and finite graph with

no loops and assume distinct literals are attached to its edges.

Definition 5. Graph is called marked if each vertex is marked by 0 or 1 and one assigned literal is chosen for

each edge.
Let x,,...,x, be distinct literals, & € {0,1}. [x,,...,x,]° denotes a set of disjunctions that consists of literals

X;,...,x, and satisfy the following conditions

1. Foreach i (1 <i< n) either x; or x; belongs to the disjunction.

2. If £ is odd, then the number of negated literals is even and if & is even, the number
of negated literals is odd.

Let G be a marked graph. Let us construct the set of [x,,...,x,]° disjunctions for each vertex where & is the
value assigned to the given vertex and x,,...,x, are variables assigned to the incident edges. The set of
disjunctions constructed for all vertices of graph G is denoted by «(G) and the sum of values assigned to
vertices of the graph by modulo 2 is denoted by (T(G). In [Tseitin, 1968] it is proved that ar(G) is unsatisfiable
iff 7(G)=1.

It is obvious that if Tseitin graph formulas are constructed on the base of graphs, minimal degree of which is of

the same order as the number of vertices, then such formulas are quasi-hard determinable but not hard

determinable.
2.2 Proof complexity, polynomial simulation

In the theory of proof complexity the two main characteristics of the proof are: ¢ —complexity, defined as the

number of proof steps, and / — complexity, defined as total number of proof symbols. Let @ be a proof system
and ¢ be a tautology. We denote by #; (/) the minimal possible value of # —complexity (/ —complexity) for

all the proofs of tautology ¢ in @ .
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Let @, and d, be two different proof systems. Following [Cook, Reckhow, 1979] we recall

Definition 6. ®, p—¢—simulates ( p — — simulates) @, if there exists a polynomial p() such that for

every formula ¢ derivable bothin @, andin @, 77 < p(¢") (1,* < p(I3")).

Definition 7. The systems @, and @, are p —¢ —equivalent ( p —/ — equivalent) iff ®, p —¢ —simulates (

p—1—simulates) @, and ®, p —¢—simulates ( p —/ — simulates) D, .

Definition 8. The system @, has exponential # —speed-up (/ —speed-up) over the system @, if there exists a

(i22) (

polynomial p() and a sequence of such formulas ¢, , provable both in @, and in @, that t(‘:‘ >2°

@ Arle2)
l(/,”1 >0

).

3. Main systems

Let us recall the definitions of some proof systems of CPL which are not well-known.

3.1 Resolution over linear equations
Let us describe R(lin) system following [Raz, Tzameret, 2008]. R(Zin) is an extension of well-known

resolution which operates with disjunction of linear equations with integer coefficients. A disjunction of linear

equations is of the following form

M

6] _ .M () ()
(al X +..+a, 'x,=aqa, )v...v(a1 X +..+a,

X, = aom)

where ¢ >0 and the coefficients ai(" ' are integers (for all 0<i<n 1< j <t). We discard duplicate linear

equations from a disjunction of linear equations. Any CNF' formula can be translated into a collection of

disjunctions of linear equations directly: every clause v x, v v —x; (where I and J are sets of indices of
iel jeJ ‘

variables) involved in the CNF' is translated into the disjunction v (xi = l)v _\/J(x ;= 0). For a clause D we
ie Jje !

denote by D its translation into a disjunction of linear equations. It is easy to verify that any Boolean assignment
of the variables x,,...,x, satisfies a clause D iff it satisfies D .

As we wish to deal with Boolean values, we augment the system with axioms, called Boolean axioms:
(x, =0)v (x, =1) forall i € [n].

Axioms are not fixed: for any formula ¢ we obtain —¢, then we obtain R(lin) translation of CNF' of —¢.
We also add Boolean axioms for each variable.

Definition 9 (R(lin)). Let K = {K,,..., K, } be a collection of disjunctions of linear equations. An R(/in)-
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proof from K of a disjunction of linear equations D is a finite sequence 7 = (D, ,...,D,), of disjunctions of
linear equations such that D, = D and for every i /], either D, =K, for some j e [m], or D, is a
Boolean axiom (x,l = O)v(xh = 1) for some 4 e [n] or D, was deduced by one of the following R(lin)-

inference rules, using D, D, for some j,k <i.

Resolution. Let A, B be two disjunctions of linear equations (possibly the empty disjunctions) and let L,, L,
be two linear equations. From Av L, and Bv L, itis derived 4Av Bv (L1 + L2) or AvBv (L] -L, )

Weakening. From a disjunction of linear equations 4 derive 4v L, where L is an arbitrary linear equation

over X .

Simplification. From A v (0 = k) derive 4, where A is a disjunction of linear equations and (k # O).

An R(lin) refutation of a collection of disjunctions of linear equations K is a proof of the empty disjunction from
K . Raz and Tzameret showed that R(/in) is a sound and complete Cook-Reckhow refutation system for

unsatisfiable CNF' formulas (translated into unsatisfiable collection of disjunctions of linear equations).

3.2 GCNF system
Let us describe GCNF"' system following [Arai, 1996]. GCNF" is a variant of cut-free Gentzen system

introduced by Gallier. It is also a refuting system. Here a clause is a set of literals, separated by commas. For
example, {pl ,;2, p3} means p, v ;2 Vv p,. A cedent is a finite set of clauses, expressed as a sequence of

clauses punctuated by commas. The meaning of a cedent is the conjunction of the clauses in the cedent. For

example, C|,C,,...,C, means C, & C, &...& C, . We use capital Greek letters I", A, IT for cedents. The

semantics of cedents implies that a cedent C,,...,C, is false iff the formula C; & ... & C, oL is valid.

The axioms are of the following form p,; . And there are two inference rules

Structural: L
r,c,...C,IL,1 (l)
vlILCl,...,Cl

Logical (Log): T , Where [ is an arbitrary literal, which is called auxiliary literal of this

inference rule.
GCNF" is a sound and complete system [Arai, 1996].

3.3 GCNF '+ permutation system
GCNF '+ permutation system is based on GCNF" with one more inference rule [Arai, 1996].
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L(py,--sP)
L(z(p),....7(p,))

I'(z(p,),....7(p,,)) is the result of replacing every occurrence of p,, 1<i<m in I'(p,,...,p,) by

Permutation (Perm): 7 , where 7z is a permutation on {pl,..., pm} and

(p;).

4. Main results

Let us denote by Tsgf, (n > 2) the Tseitin graph formulas which are constructed on the base of complete 7 -
vertices graph, only one of vertices of which is marked with 1.

Theorem 1:

1. 12U < IR < p(log, | Tsgf, |) for some polynomial p() .

Tsgf, Tsgf,
2. tTGS?F permuation < p(log, | Tsgf, |) for some polynomial p() and ZTGS?'F permutation — @(| Tsgf., |) -

Proof: 1. In order to prove the first part, let us recall two additional lemmas following [Raz, Tzameret, 2008].

Lemma 1: Let D, be v 1](x1 +X, X, :i) and D, be

€|0,n—

v ](xl +x, +-+x, =i+a). Then
-1

elo,n
there exists an R(Zin) proof of D, from D, and x, = & with n steps.

Lemma 2: Let D, be v (x, +x,+--+x,_, =i)and D, be ie[\({n](xl +X, +--+x, =i). Then there
exists an R(lin) proof of D, from D, and (xn = O)V (xn = 1) with 27 + 2 steps.

Now we can consider complete marked # -vertices graph. For each vertex we have the following R(lin) formula

X, X, +--+x, =g , Where g is the value assigned to the given vertex and x,
n— J

(1 <j<nl<Li< @j are variables assigned to the incident edges.

Using Resolution rule to R(lin) formulas n —1 times (or, summarizing those formulas), we obtain

2%+ 2x) 4 2, =1 (1)
2

On the other hand, for all the variables, we have the following axioms, (x, = 0)v (x, =1),i e {1,

By Lemma 2, there is an R(/in) proof of
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ze[O XH) (xl +x, + +xn(,;_1) = l] (2)
2
(1)
5 493 2 _6n-1
from the axioms, and the number of proof steps is Z(2i+2): L L +74n 6n 16 . Using
i=2

Resolution rule

+1 times, every time taking the next linear equation of (2) as L, = L,, we obtain

n(n - 1)
2

\ 2x+2x, 4+ 22,0, ) =20 (3)
ie[o n(nfl)J

I 2

Now, let us consider (1) and (3).

(n-1)

Using Resolution rule " + 1times and Simplification rule

n(n - 1)
2

+1 times (by using Resolution rule,

we take (1) as L, and the next linear equation of (3) as L, ), we will cut-off all linear equations in (3) and obtain
the empty clause (0=1).

The number of proof steps is

n4—2n3+7n2—6n—16+n(n—1) n(n—l) n(n—l) :n4—2n3+13n2—8n

n—1+ +1+ +1+ +1
4 2 2 2 4
‘Taking into consideration that |Tsgf,| = n(n —1)2"~* , we obtain try < p(log, | Tsgf, ).

The size of the proof of (1) is O(n’), the size of the proof of (2) is O(n®). The size of the proof of (3) is
O(n®) . And, the size of deducing of the empty clause is O(n°). So, the size of the proof of the initial formula is

O(n)  hence, I1i\" = O((log, | Tsgf, )*).00

1. Inorder to prove the point 2, let us at first demonstrate a proof of 7sgf,, in

GCNF '+ permutation system. The axioms for this case are indicated as (4).

1 X 0 I I =
X1X2Xg X1X,X6 X X2X6 X[ X,X¢
X1X3X, X X3X, X[ X3X4 X1X3X4 4)
X, Xy
X X = - - - - =
i 6 X2X;X5 X, X3X5 X,X;X5 X2X3Xs
n X 0 _ _ o
3 X4XsXg X4X5Xs X4X5X6 X4X5X6
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X.. X1 X>.X3

log — —
X1V X,. X,.X3
Perm — — _
L X1V Xse XioX3. X VX3, X1.X, XA X2 (5)
09
Log X1V Xy, X, VX3, X1V X2, X2V Xy, X;,X3, X,

X1V Xay X, VX3, X1V X2, X2V X3, X; VX,, X, VX3

Using x, = x,,x, = x;,x; — X, Permutation rule to (5), we obtain

X2V X, X, VX1,X2V X3,X3V X,X, V Xy, X5 VX1 (6)

Using x, = x;,x, — x;,Xx; — X, Permutation rule to (5), we obtain

x3 vxz,x3\/;z,;3 vgl,;lvxz,x3vxl,xlv;2 (7)
Applying Logical inference rule to (5), (6), (7) and respectively to axioms xm;ﬁ, x4,;4 : xs,% , We obtain first

three lines of (4). The last line of (4) we can deduce as follows:

XiaX4  XeoXs

Log — — _
X.VX-. XaV X-. Xs X..Xa
Log — — .
X+ VX X4V Xeo X4V X5. XaV X5 X X6
Log
Log Xa VX VXey Xy VXNV Xgy X,V Xy XaVXs X

X4V X5V Xg, X3V X5V Xg, X4V X5V Xg, X4V X5V Xe

For Tsgf,, we denote by t(i) the derivation steps of first i —1 lines (as above) of the axioms corresponding to

the complete graph with i vertices. It is not (difficult to see that t(3):4 and

n(3n-5)
2

consists of such variables that do not exist in the n —1-vertices complete graph, that is, those variables are

tin)=t(n—1)+(n—-2)+2(n—1), hence, t(n)= —2<3n’. The last line of the axioms

assigned to the edges which are incident to the newly added vertex. Each clause consists of n —1 literals and

2(n—2) steps are needed to deduce the last line. So, the number of proof steps is

3n—1)

m—2+2(n—2)=”( 5

—6<3n’, then we obtain z7,," """ < p(log, | Tsgf, |).

There are at most (n - 1)2”’2 literals in each step of the proof and the number of proof steps is at most 317,
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hence ;" """ = O(| Tsgf, |) . Itis obvious that the lower bound is the same by order. [

log, n
o | =2
Theorem 2: /5" 7o = Q(Z vl

2"-1 n Y
Proof. It is not difficult to see that CNF of -y, = & v &x,” has at least n* ' conjuncts such

G50, JEE" J=1 i=1
that neither these conjuncts nor any of their subset can be obtained from each other by Permutation rule (for

o, =0,==0,=1 and for o, =0,==0,=0 ), therefore
ZE}VC/'i\’FUrPermumtion > 2(1 I, INTDURRE, L l)nzu — 2n(2n _ l)nZ”fl > (2n _ 1)2 2(2”—1)]0g2n . Taklng into
consideration that |ﬁ z//n| =2"(2" —1)n, we obtain the statement of the Theorem. [J

Now, let us recall some additional systems.
1. GCNF'+ renaming system is based on GCNF" with one more inference rule [Arai,1996].

Renaming: %) p — g, Where T'(p — ¢) is obtained by replacing every occurrence of p by g in I".
P49

2.  GCNF '+ restricted renaming system is based on GCNF" with one more inference
rule [Arai, 1996].

Restricted renaming: _r p = q,where I'(p = q) is obtained by replacing every occurrence of p
I'(p=49)

by a variable g which does not appearin I".

3. We also use the well-known notions of F'— Frege, SF' — Substitution Frege and EF —
Extended Frege systems (see, for example, [Pudlak, 1998]).

Theorem 3:
1. F has exponential speed-up over the GCNF'+ permutation.

2. F' p—simulates GCNF'+ permutation.

Proof of point 1 follows from Theorem 2 and main result of [Aleksanyan, Chubaryan, 2009] where it is proved that

F proofs of tautology T7M ,,, are [ —polynomially bounded.

Proof of point 2 follows from some results of [Arai, 1996], [Arai, 2000] and [Cook, Reckhow, 1979], in particular

a) GCNF'+renaming p — [ —simulates GCNF '+ restricted renaming (it is obvious).

b) GCNF '+ restricted renaming p —/ —simulates GCNF '+ permutation (see [Arai, 1996]).

c) F p—I[—simulates GCNF'+ renaming iff ' polynomially simulates EF’ (see [Arai, 1996]).
d) SF and EF are p —1[—equivalent (see [Pudlak 1998]).

e) F and SF are p —[—equivalent (see [Chubaryan, Nalbandyan, 2010]). [J
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