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CROSS INTERSECTION SEQUEL OF DISCRETE ISOPERIMETRY1 

Levon Aslanyan, Vilik Karakhanyan 

 

Abstract: This work inspired by a specifically constrained communication model. Given collections of 

communicating objects, and communication is by means of several relay centres. The complete cross 

connectivity of elements of different collections is the target, supposing that communicating objects differ by their 

connections to the relay centres. Such models exist only for proper object groups – when they have specific sizes 

and there is a corresponding number of relay points. We consider optimization problems studying the validity 

boundaries. Terms are combinatorial – geometry of binary cube, lexicographical orders, shadowing and 

isoperimetry. The main interest is methodological and aims at extending the consequences that can be delivered 

from the solution of the well known discrete isoperimetry problem. 
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Introduction 

Mass communication models with resource limitations require a proper design and analysis stage. Practical 

examples are populations with sophisticated communication means, wireless sensor models with requirements of 

connectivity, coverage and energy efficiency, and other ad hoc networks with different additional requirements. 

Resource limitations which appear everywhere need to be checked against the existence of a valid network, and 

when it is, - optimization that brings the resource minimization and the quality enhancement.  

Communication model which we consider consists of several independent (none intersecting) societies 

m ,...,, 21  whose elements are to be cross connected totally. This means that each pair 11 ipis 
 and 

22 iqis 
, 21 ii   is connected. Connection is through the set of n  relay points nXXX ,...,, 21 . If object s  is 

connected to the relay points kjjj XXX ,...,,
21  then we code it as the binary n -vector 

),...,,()(~
21 ns    with coordinates kjjj ,...,, 21  equal to 1, and all other coordinates - to 0. Now for 

objects 
~

 and 
~

 connectivity means that they (their code vectors) intersect by their sets of 1 coordinates. 

Connectivity that we described requires all connections between the societies m ,...,, 21 . Inside the society 

we require that the binary codes defined for objects are all different. One more condition may require that objects 

are connected to a fixed number of relay points and this condition is also applied to our model. 
                                                           
1 Partially supported by the Grant 11-1b193 “Approximation algorithmic research on novel, open and hard combinatorial optimization problems” of 

State Committee of Science of Republic of Armenia. 
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Given above - is a particular communication model for societies. There can be a broad diversity of models varying 

in requirements. For instance, one can require a balanced use of relay points. Diversity of object binary codes 

can be applied on the total integrated society, etc. But our goal is to see the optimization framework of models of 

this type. It is shown that combinatorial optimization appears as the instrument of design of such networks. The 

particular technique that appears is the binary n -cube geometry being linked to the fundamental results of 

combinatorial optimization in that area. 

The Formal Model 

Boolean domain: First formal model that we consider to interpret the cross intersection property is in terms of 

n -dimensional binary cube, Boolean functions and systems of Boolean functions. Let }1,0{E . Cartesian 

degree nE  represents the set of all n - dimensional binary vectors ),...,,(~
21 neeee  . As usual we define the 

weight of vector and the Hamming distance of a pair of vectors in nE . Weight of e~ is the number of its 1 

coordinates. The Hamming distance )~,~( 21 eeh  between 1
~e  and 2

~e  is the number of coordinates where these 

vectors are different. Consider the Hasse diagram of nE . An example for 5E  is given below. 

00000

10000010000010000001 00010

11000101001001010001011000101001001001100010100011

11100110101100110110101011001101110011010101100111

1111011101110111011101111

11111
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The diagram consists of 1n  layers n,...,1,0  placed vertically. Each layer is composed of the same weight 

vertices placed on that layer horizontally. k -th layer consists of k
nC  vertices denoted by n

kE  . Edges connect 2 

neighbour vertices – those that have distance 1 (differing exactly in 1 coordinate). Vertices 1
~e  and 2

~e  are 

comparable, in particular 21
~~ ee  , if all corresponding coordinate vice similar inequalities hold. In a special case 

when 1
~e  and 2

~e  are comparable and their distance equals 1, then they are connected by an edge in the 

diagram.  
 

Consider the list of vertices of layer 2 in the order we see them on the diagram: 

0000,10100,1110001,1001010,01100,0,01001,0100101,001100011, . 

 

It is easy to check that this is lexicographic sequence of all vertices of layer 2. In a similar way we may compose 

the lexicographic sequence of all n -dimensional words of weight k  over the alphabet }1,0{ . Here we suppose 

the usual precedence 10  . We denote this sequence as n
kL , and let )(n

kL  is the initial  -segment of n
kL . 

And let n
kT  and )(n

kT  denote the reverse sequence to n
kL  and its initial  -segment. In area of discrete 

isoperimetry it is common for n
kT  the term standard placement. 

It is well known the specific (and unique in this form) decomposition of set )(n
kT  and the number   itself in the 

following way: 

11 ...2

2

1

1








  rmk

mn
mk
mn

mk
mn

r

r
CCC , where nmmm r  ...1 21 . (1) 

Consider arbitrary vertex subsets nEA . kA  denote the 

intersection n
kEA . Two type of concepts are introduced – 

internal (blocked) area )( k
l AC , and bordering (shadow) area 

)( k
l AH . )( k

l AC  is the set of all those vertices of layer lk   

that are internal by the set of vertices of kA . In other terms 

)(~
k

l AC  iff all vertices of layer k  comparable with ~  belong 

to kA . )( k
l AH  belongs to layer lk   and consists of vertices 

~  that at least one of elements of layer k  comparable with ~  

belongs to kA . Below we suppose that 2/nk  . When after 

some transformations we receive subsets above the layer 2/n , 

then )( k
l AC  and )( k

l AH  are in some sense bottom up 

constructions. In this case )( k
l AC  belongs to layer lk   and 

)( k
l AH  is from layer lk   (we refer to this by notion). 

1
~

0
~

k

lk 

lk 

n
kk EA 

)( k
l AC

)( k
l AH
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Consider the set )(n
kk TA  . How this is related to the formula (1)? Consider series of splits in nE . 

Coordinates nxxx ,...,, 21  are applied consequently. Initially we are given the cube size n  and   vertices to be 

on layer k . Split of nE  by 01 x  and 11 x  brings two 1n subcubes. kA  (similarly any other subset of 

vertices of nE ) is split to one part on the layer k  of subcube with 01 x , а the reminder vertices of that are on 

layer k  of (right) subcube with 11 x . Depending on whether one of these parts completes the layer we choose 

the left or the right subcube for continuation.  

Let after several splits that use coordinates ixxx ,...,, 21  we face the situation that the ik  -th layer of right 

subcube is filled by elements of kA . Here appears the first term ik
inC 

  in formula (1). After that we continue 

splitting in left subcube, where we have the cube size in   and ik
inC 

  vertices to be on layer 1 ik .  

 

Continuation of splitting that finally concludes the formula (1) is a series of splits similar to the case we 

considered.  

 

Decomposition of   given by formula (1) have two major 

properties. Explain them in terms of a particular step of split 

process. In a situation, when the right subcube become 

completed by   reminder vertices, this part creates several new 

internal vertices on layer lik  , аnd several new bordering 

vertices on layer lik   (in global cube nE , not the splitted 

ones, these are layers lk   and lk   ). Internal а bordering 

vertices created during this step are non intersecting with the 

ones created during the previous splitting steps.  

 

So the following formulas are consequences of (1). 

 

First we suppose the case 1l . Introduce the formulas: 

211
11 ...)()( 2

2

1

1








  rmk

mn
mk
mn

mk
mnkk

r

r
CCCcc   

(2) 
rmk

mn
mk
mn

mk
mnkk

r

r
CCChh 







  ...)()( 211
11

2

2

1

1
  

For l  general we have: 

11
11 ...))))((...(()( 2

2

1

1








  rlmk
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lmk
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lmk

mnklklk
l
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r

r
CCCcccc   

(3) 
11

11 ...))))((...(()( 2

2

1

1








  rlmk
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mnklklk
l
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r

r
CCChhhh   

 

ix

),...,,( 1 nii xxxE 

1
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0
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k
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Here we define the base isoperimetry problem, give its one, very easy solution, аnd mention some consequences 

that we will use. Vertex nEA ~  is interior, if all 1 distance vertices from ~  belong to A . In general, 

)~(n
rS  denotes the sphere of radius r  with center ~ . So ~  is interior in A , if AS n )~(1  . )(Ant  will 

denote the set of all points interior in A . The reminder vertices )(\ AntA   of A  we call boundary vertices. The 

base discrete isoperimetry problem (DIP) by a given size naa 20,   is seeking for subsets A  so that 

 

aBEB n

BntAnt



,

)()( . 

 

Theorem 1. )()0
~

(1 n
k

n
k TS   is a DIP solution for k

n

k

i

i
n CCa  


 ,

1

0
. 

 

Consequence 1. If n
kEA , k

nCA   ,  then  

)())(()(  l
lk

n
k

ll cTCAC  . 

 

Consequence 2 (Kruscal-Katona theorem). If n
kEA , k

nCA   ,  then  

)())(()(  l
lk

n
k

ll hTHAH  . 

 

Given is the basic knowledge that we need from the discrete isoperimetry area. We may use several extensions 

of results but we prefer to stay on basic postulations to be more or less transparent and understandable.  

We may also use an equivalent terminology given in terms of Boolean functions. n -dimensional Boolean function 

f  accepts value 1 (true) in some subset n
f E . Denote f

nE \  by f  which is now the set of all 0 

values of function f  (and 1 vertices of the inversion of function f ). Introduce spectral characteristics for 

function f  as the sequence nttt ,...,, 10  of sizes of sets f
n
kf Ek  ][ , nk ,...,1,0 . 

In terms of cross connected network design we associate one Boolean function to one society. f  consists of 

all codes of object in one society f . These codes are all different. An object code belongs to the layer k  means 

that it is connected to the k  relay points. In a simplest case we suppose that only the sets ][ 0kf  for one fixed 

values of k  are nontrivial (non zero). In cross societal connectivity problem we posted above a system 

mfff ,...,, 21 of Boolean functions is considered. 
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Set-theoretical domain: The set-theoretical framework related to the applied communication model defined 

above was introduced and studied firstly in [HIL,1977]. Here interpretation is as follows. Let 1, mk . k  is the 

number of links from objects to the set of n  relays. m  is the number of societies. Let 

 

},...,,{
1112111 tSSS  

… 

},...,,{ 21 mmtmmm SSS  

 

be a list of collections of subsets (societies) with subsets of set },...,2,1{ n . Suppose that  

Condition 1. 

2/nkSir  for mi 1  and itr 1  /objects are linked to the same number k  of relays/ 

(4) 
21 irir SS  ,  itrrmi  211,1  /objects in one society are different by their connections to relays/ 

0
21

  riri SS
21

1,1,1 21 ii trtrmii   /objects from different societies are intersecting/. 

 

Theorem 2. [HIL,1977] proves that under the Condition 1. 










 ./

,/
...

1
1

21
mknifmC

mknifC
ttt

k
n

k
n

m  
(5) 

 

Here 1
1/ 
 k

n
k
n CknC  so that the maximum between the k

nC  and 1
1



k
nmC  is correlated with maximum 

between the kn /  and m . 

The proof of this postulation is hard in [HIL,1977], with intensive formula manipulations. After the result was 

achieved, a series of publications appeared bringing more simple and transparent results. We aim to demonstrate 

that the most suitable technique for this research area is the discrete isoperimetry technique [ASL,1979]. This not 

only gives the numerical estimates but also explains the structural properties of cross connectivity collections. 

 

Intersection – Isoperimetry Relations 

 

Theorem 3.  If a collection of sets  m ,...,, 21  of characteristics },...,,{ 21 mttt exists under the Condition 

1. then the same Condition 1. properties obeyed by the set )}(),...,(),({ 21 m
n

k
n

k
n

k tTtTtT . 
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To prove this consider an induction on m . If 1m , it is simply evident that as the set 1  we can take initial 

fragment )( 1tT n
k . This choice is valid due to k

nCt 1  by Condition 1. 

Suppose that the theorem postulation is correct for arbitrary collections },...,,{ 21 m  of characteristics 

},...,,{ 21 mttt   under the Condition 1., when mm  . Consider the proof for values 2, mm . 

Let },...,,{ 21 m  be an arbitrary collection of subsets of connections of objects that satisfies Condition 1. 

Consider the sub-collection },...,,{ 121  m  and construct in accord to this collection the collection of 

compliments/negations },...,,{ 121  m  of initial sub-collections, where },...,,{ 21 iitiii SSS , 

11  mi .  It is clear that the relation knknS ij  2/  holds so that during this negations all points 

are transferring from layer k  to the layer kn  . 

Consider the set 
 1

1






m

i
iS and let 

 1

1






m

i

iS . Compose by this the set 














1

1

m

i

i
lH  for the value 

knl 2 . Recall that if n
knES 


, 2/nk   (notion), then )(SH l


 consists of some elements of n

kE , 

those that are covered by elements of set S


. Hence we received that n
k

Ss

l EsH 









 , with the general 

requirement that 

m
Ss

lk
n tsHC 











 . (6) 

The last requirement takes into account that sets mmj tjS  11,
1

 doesn’t belong (are not covered) to any 

  iij
l tjmiSH  21,11,2  and so, they doesn’t belong to the union of these sets. If an inclusion 

 21
ij

l
mj SHS   holds for some 11  mi , then we receive that the initial vectors are not intersecting, 

0
21
 ijmj SS , which contradicts to the theorem conditions. This means that the set m  is to be out of 













Ss

l sH  and the corresponding relation of sizes of these sets is introduced in formula (6). 

By the induction suppositions, there exists a collection },...,,{ 121  m  of characteristics },...,,{ 121 mttt  that 

satisfy Condition 1. and that )( i
n

ki tT . It is easy to check that )(
1

1

tT n
k

m

i
i 




 for some value 

),...,,max( 121  mtttt . 

Now the set 
 1

1






m

i

iS  is represented as a finite sequence )()( tLn
kn  of the kn  -th layer of nE . 
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According to Consequence 2.  

  m
Ss

lk
n

n
kn

lk
n tsHCtTHC 











 )( . (7) 

Moreover, each subset n
kES , not belonging to the set 












Ss

l sH  intersects with some subset ijS , 

11  mi , itj 1 . 

In addition, )()(
1

1

tLtLHsH n
kn

m

i
i

n
kn

l

Ss

l

























  , - and the compliment of )(tLn
k  in the layer n

kE  is 

some )(tT n
k  . Now, constructing the proper },...,,{ 21 m  it is enough to take the m as the set )( m

n
k tT  

taking into account the proven relation  mtt  . This proves the Theorem 3. 

 

Denote by )(mR  the number of all those vectors mttt ,...,21  which correspond to some sets 

},...,,{ 21 m as the characteristics and obey the Condition 1. 

Theorem 4. A necessary and sufficient condition for existence of a collection },...,,{ 21 m  of 

characteristics mttt  ...21  with Condition 1. is the existence of a collection },{ 21   of characteristics 

),( 21 tt  that accords Condition 1. 

 

The necessity point of theorem postulation is evident. To prove the sufficiency suppose that we are give 

collections },{ 21   of k -subsets, and collections have sizes 1t  and 2t  with Condition 1, satisfied. Theorem 

3. implies, that without loss of generality we may suppose that .2,1),(  itT i
n

ki  Take 

mitT i
n

ki ,...,3),(   and prove that the resulting system },...,,,{ 321 m  obeys Condition 1. 

According to construction of collections },...,,,{ 321 m  we have that first 2 points of Condition 1. are 

satisfied. Then, each pair of elements from },{ 21   are proven intersecting. Similarly, elements of  1  and 

2  are intersecting with elements of other sets because of sets 3,  ji  are subsets of 2 . Last to prove is 

that subsets from 
1i

  intersect with subsets from 
2i

 , when mii  213 . This happens because of 

11
i  and 22

 i .  

 

Now we combine (1), (3) and (7) to achieve a quantitative condition for cross intersections. Consider again values 

mttt  ...21  and the formula (1) for value 1t : 

11
1 ...2

2

1

1








  rmk

mn
mk
mn

mk
mn

r

r
CCCt , where nmmm r  ...1 21 .  
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Apply a simple transformation of parameters. Replace k  by kn   taking into account that nkn 0  and 

that k
n

kn
n CC  . In a similar way replace r  values im  by ii mn  . Based on (1) and (3) the modified 

formulas appear as: 

11
1 ...

21

  rkkk

r
CCCt   and )1(1

1 ...)(
21


  rlklklkl

lk r
CCCth  . 

When 1t  points 1T  belong to the layer kn   and we consider )( 1TH l  downward by the layers (note), then 

without major changes of parameters we receive that )1(1
1 ...)(

21


  rlklklkl

lkn r
CCCth   for the 

value knl 2  applied. 

This representation of 1t above and the one in (3) is used to formulate a necessary and sufficient condition for 

existence of set collections under the Condition 1. 

 

Theorem 5. A necessary and sufficient condition of existence of collection },...,,{ 21 m  of an n -element 

set, with characteristics mttt  ...21  and with Condition 1., is the relation  

)1(1
2 ...

21

  plklklkk
n p

CCCCt  . 

 

The theorem, initially, can be given in terms of a 

two set collection, 2m , by the Theorem 4. 

To prove the postulation it is essential to know 

the real volume of points projected from the 1t  

set )( 1tT n
kn  onto the layer k . 

Suppose, that the desired pair },{ 21   with 

),( 21 tt  exists. Then, by Theorem 1. 

21)( tHC lk
n  . 

Write the Consequence 2. inequality for this 

case: 

)1(1
1 ...)(

21

  plklklkk
n

l

p
CCCCH 

. 

Further we come with this to the necessity point 

of theorem. Concluding the inequalities we 

receive the requirements 

)1(1
2 ...

21

  plklklkk
n p

CCCCt  . 

1
~

...00

...01

...10

...11

1x 2x

2k

1k

1k

 k

)1(

)2(
)3(

)4(
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To consider the sufficiency part, and suppose that the last inequality is valid. Take )( 11 tT n
kn . Now the 

possibility to choose a set 2  that consists of 2t  elements and obeys the Condition 1. follows from the given 

inequality, taking into accounts considerations with complementary subsets, which was used regularly in the 

given descriptions. 

Theorem 5 gives a technique to check the cross intersection for given ),( 21 tt . We can consider the problem of 

maximising the 21 tt  . Increasing 1t  points that we have on the layer kn  , and composing the shadow of set 

)( 1tT n
kn  to the layer k  we may take all the reminder part as the set )( 2tLn

k .  

Maximum is when these quantities are approximately equal. Practically there is a very simple construction 

explaining this convergence. Consider the two dimension split of the unite cube. Increase 1t  and consider the 

corresponding set )( 1tLn
k . Find for this the corresponding maximal value of 2t . )( 1tLn

k  starts by the point from 

(1) continued then by (2), (3), and (4). When it is in area of (1), then 2t  maximum equals 1t  but still this is not the 

total maximum. The same postulation is also true for area (1)+(2). Here intersection is provided by the value 

11 x .  

Consider the next to the (1)+(2) vertex ~ .  ~  starts with 01  followed by 1k  entities of 1, and then 0 ’s. 

 0...001...1101~
1


k

 . Due to condition 2/nk   number of right 0 ’s are not less than 1k  so that 

1k  1’s can be shifted right without an intersection by the initial set of 1 coordinates. Do this shift, and replace 

first 2 coordinates by 10 . We receive a vertex which belongs to (2) 
1

1...110...0010
~




k

 . It is easy to 

check that ~  and ~  are non-intersecting vertices which proves that 1
11

 k

nCt  when 2m . Further increase 

of 1  leads to a similar decrease of 2 . This construction appears in Lemma 2.2 of [5] proving the inequality 

indicated in (5).  

 

Conclusion 

The set theoretical issue of complete cross intersecting set systems is considered. This is one of cases of applied 

societies’ connectivity model but variations of models are possible and their analysis come to similar set 

theoretical optimizations. The paper can be characterised as methodological and it continues the line of possible 

application of Discrete Isoperimetry Property started at [5]. [8] represents another important application in area of 

search engines. The cross intersection topic itself is not yet expired. Extensions to consider include nodes with 

different number of connections to relays. Instead of artificial requirement that nodes are different by their 

connections to relays, more realistic models are required. Optimization of use of relays and their balancing can be 

studied which can bring natural conditions of nodes to be different inside the societies. The proof technique will 

move from the flat layer k  consideration to the space constructions in entire cube nE . 
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