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CORRELATION MAXIMIZATION IN REGRESSION MODELS BASED ON CONVEX 

COMBINATIONS 

Oleg Senko, Alexander Dokukin  

Abstract: A new regression method based on convex correcting procedures over sets of predictors is developed. 

In contrast to previously developed approach based on minimization of generalized error, the proposed one utilies 

correcting procedures of maximal correlation with the target value. In the proposed approach a concept of a set of 

predictors irreducible against target functional is used where irreducibility is understood as lack of combinations of 

at least the same value of the functional after removing any of its predictors. Sets of combinations simultaniously 

irreducilbe and unexpandable are used during the construction of a prognostic rule. Results of some 

computational experiments described in the present article show an efficiency comparison between the two 

approaches. 
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Introduction 

Several statistical methods were developed last years that allow improving significantly prognostic ability of 

regression modeling in tasks of high dimension. Efficiency of these methods is associated with effective selecting 

of prognostic variables. Least angle regression or Lasso [Efron et al., 2004], [Tibshirani, 1996] methods may be 

mentioned thereupon. However a problem of low generalization ability of empirical models in high-dimensional 

tasks cannot be considered completely solved. Development of new alternative approaches may be useful for 

estimating of forecasting ability upper boundaries or for evaluating of selected variables optimal number. An 

approach in which optimal forecasting models are built by ensembles of preliminary trained predictors is 

discussed in this paper. It is supposed that initial predictors are simple. For example they may be one-variate or 

two-variate regression models. Suppose that we have set of L  predictors 1,..., Lz z  that forecast some variable 

Y . Let  1 ,..., Lc c c  be a vector of nonnegative coefficients satisfying condition 
1

1



L

i
i

c . Convex correcting 

procedure (CCP) calculates forecasted value as a weighted sum of prognoses that are calculated by single 

predictors:  

 
1

 
L

ccp i i
i

Z c c z . 

Convex combinations are widely used in pattern recognition. The bagging and boosting techniques [Breiman, 

1999], [Kuncheva, 2004]  may be mentioned as an example, as well as methods based on collective solutions by 

sets of regularities [Zhuravlev et al., 2008], [Zhuravlev et al., 2006], [Kuznetsov et al., 1996]. Convex correction is 
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used in regression tasks also. Thus, neural networks ensembles are discussed in [Brown et al., 2005] that are 

based on optimal balance between individual forecasting ability of predictors and divergence between them. 

Efficiency of convex combinations of repressors’ pairs was shown in [Senko, 2004]. Earlier it was shown that 

error of predictors’ convex combination in any case is not greater than the same convex combination of single 

predictors’ generalized errors [Krogh et al., 1995]. In previous works [Senko, 2009], [Senko et al., 2010] a method 

for CCP optimization has been studied that is based on minimization of general error estimates. Experiments with 

simulated data demonstrated that CCP error optimization also implements effective selection of informative 

prognostic variables. It is easy showing that the decrease of CCP variance comparing to the same combination of 

single predictors’ variances is also a quality of convex combinations. Such a decrease deteriorates the CCP’s 

prognostic ability. So, CCP predictions must be additionally adjusted, that may be done with the help of simple 

linear uni-variate regression. But forecasting ability of a linear regression model depends monotonically on 

correlation coefficients between ccpZ  and Y . In this paper we develop a new technique for constructing the 

CCP of maximal correlation with Y . This technique is based on the same concept of irreducible ensembles 

searching that was used in [Senko et al., 2010].  

It is supposed further that predictors from initial set are additionally transformed with the help of optimal uni-

dimensional regression models to achieve best forecasting ability. Such predictors will be further called reduced. 

In other words predictor z  will be called reduced if for all  ,  the inequality 

   2 2     E Y z E Y z  

is correct. Here  E X  is mathematical mean of X  by space of admissible objects with defined σ-algebra and 

probability measure. It will be further denoted as X̂ . Variance of X  will be denoted as ( )V X . It is known that 

following equalities are true for a reduced predictor z : 

       2

 
      

ˆ ˆ ˆcov ,Y z E Y Y z z E z z . 

The use of the described conditions allows effectively searching ensembles with maximal prognostic ability, but 

the approach has its drawbacks. First of all, there are many ensembles with the prognostic ability close to the 

optimal one and it would be rational using them all. Secondly, CCP always decrease prognoses’ variation and 

uni-dimensional correcting transformation becomes inevitable. Of all predictors the maximal quality is provided by 

the one most correlated with Y. 

Irreducible ensembles relatively correlation coefficients 

Standard Pearson correlation coefficient is defined as the ratio: 

   
   


cov ,

,
ccp

ccp

ccp

Y Z
K Y Z

V Y V Z
. 

On the other hand    
1

 cov , cov ,
L

ccp i i
i

Y Z c Y z . But iz  is a reduced predictor. So,    cov , i iY z V z , 

1 ,...,i L   and therefore 
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i i j

c V z
K Y Z c

V Y c V z c c

. 

Further discussions are based on irreducible ensemble concept. A set of predictors z  is called irreducible 

ensemble if removing of at least one predictor from it does not allow constructing CCP with the same prognostic 

ability as of z . The following is a strict definition of ensemble’s irreducibility. 

Definition 1. Sets LD , LD  from L  are defined as 

1

1 0 1


 
    
 
 ; , ,...,

L

L i i
i

D c c c i L , 

1

1 0 1


 
    
 
 ; , ,...,

L

L i i
i

D c c c i L . 

Definition 2. Set of predictors 1,..., Lz z  is called irreducible ensemble relative to some functional  F c , that 

characterize forecasting ability, if there is such vector *
Lc D , that   \L Lc D D ,    *F c F c . 

A set of points from L  simultaneously satisfying constraints: 
1

1



L

i
i

c  and  
1





L

i i
i

c V z  will be further 

referred to as  W . 

Theorem 1. A necessary condition of irreducibility of predictors set 1,..., Lz z relative to  , ccpK Y Z  is existence 

of such real   that quadratic functional  

 
1 1


 

 
L L

v
f i j ij

i j

P c c c . 

achieves strict maximum at  W  in 1
* *,..., Lc c  that satisfies conditions 0*

ic , 1 ,...,i L . 

The maximum necessary condition is existing of positive 0  , such that the following equation holds 

 
1 1


 

 , max
L L

i j i j
i j

c c z z  (1) 

 

with the next contingencies: 

 
1





L

i i
i

c V z , 

1

1

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L

i
i

c , 

0ic , 1 ,...,i L . (2) 
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Lets write down a Lagrange functional for the task (1) 

   
1 1 1 1

1   
   

   
       

   
  ,

L L L L

i j i j i i i
i j i i

L c c z z c V z c , 

and equal its partial derivatives to zero 

   
1

2 0  



   

  ,
L

i i k k
ik

L
c z z V z

c
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 
1

0
 


  

 
L

i i
i

L
c V z , 

1

1 0
 


  

 
L

i
i

L
c . 

Moving to a vectorial form we get 

2    DC E I O , 

TE C , 

1TI C . 

where  


 ,i j n n
D z z ,    2

1 1 
 i i

n n
E E z V z , 

1
 i n

C c , 
1

1



n

I , 
1

0



n

O . 

Lets denote 1  TE D E , 1  TI D E , 1  TI D I  for short. The received equation system gets the 

following form 

2 0     , 

2 0    . 

From these equations a dependence between c  and   can be derived 

 2 2
1 1

0
   
    

 
  

  
L L

k ki i ki
i i

c d V z d , 1 ,...,k L , (3) 

 

where ijd  is an element of the 1D  matrix.  

It must be noted also that the point *c  can be a point of strict maximum of fP  only if  

1 1

0  
 


L L

ij i j
i j

 (4) 

 

for any  0 ,..., L  satisfying conditions 
1

0



L

i
i

. Let min  is minimal and max  is maximal value of   for 

which one of inequalities (3) becomes equality. Let  
1




 
L

v
k i ki

i

R V z ,  
1




 
L

k ki
i
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0
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v
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then 2
0 1 2   fP B B B , where 

0 0
0

1 1


 

  
L L

i j ij
i j

B , 

 0 1 1 0
1

1 1


 

     
L L

i j i j ij
i j

B , 

1 1
2

1 1


 

  
L L

i j ij
i j

B . 

It is easy to show that 

   
2

1 2 0

1  
 

 
 

,
( )

ccpK Y Z
V Y B B B

. 

Theorem 2. Simultaneous correctness of inequalities 0

1

2
  min max

B

B
,  0

1

2
  
 

 
 

min

B

B
 and negativity of 

the condition (4) is necessary condition of irreducibility of predictors set 1,..., Lz z . 

Necessary conditions allows effectively evaluate irreducibility of predictors set. It is sufficient to calculate min   

and max  to evaluate negativity conditions (4) and to evaluate inequalities 0

1

2
  min max

B

B
. It is evident that in 

case when necessary conditions are satisfied and 0

1

2

 
 
 

B

B
 for the evaluated ensemble is greater than maximal 

correlation coefficient for any irreducible ensemble with less predictors than the evaluated ensemble is 

irreducible. It is important that optimal coefficients kc  may be received from (3) when 0

1

2
 

B

B
. 

Regression models based on sets of unexpandable irreducible ensembles 

At the first stage initial set of reduced predictors is formed with the help of standard uni-variate least squares 

technique. Let  1,..., LZ z z  is initial set of L  predictors. An irreducible ensemble z  consisting of l   

predictors will be called unexpandable irreducible ensemble (UIE) if there are no irreducible ensembles in Z  with 

number of predictors greater l   that contain all predictors from z . Two ways of regression model construction 

by sets of UIE were considered that are based on enumerating of all possible UIE. The first method chooses 

single best UIE where correlation coefficient of optimal ccpZ  with Y  is maximal. This optimal ccpZ  ( max
ccpZ ) is the 

final regression model of the first method. The second method selects set of UIE where correlation coefficient of 
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optimal ccpZ  with Y  is greater than  max* , ccpTr K Y Z ,  0 1,Tr  . Thus threshold parameter Tr  allows to 

select UIE with correlation coefficient of optimal ccpZ  with Y  close to maximal value  max, ccpK Y Z . It is 

supposed that Tr must be close to 1. In the second method parameters of final regression models are calculated 

as average by all UIE with    max, * ,ccp ccpK Y Z Tr K Y Z . Our experiments showed that second approach is 

more effective. Method of UIE enumerating is based on gradual raising of predicates set meeting irreducibility 

condition. First, a set of all possible predictor pairs 2P  is considered. A set of all irreducible pairs 2
irrP  is then 

extracted using the Theorem 2 results. Subsequently, a set of triplets 3
irrP  is formed using 2

irrP . The process is 

going on until step i  in which irr
iP  becomes empty. UIE based method depends on squared variances of single 

predictors V  and distances between predictors  . The parameters were evaluated from training data by 

standard formulae   2

1

1 ˆ
M

j
j

V z z z
M 

    ,   21 2 1 2

1

1
,

M

j j
j

z z z z
M




    , where M  is training set size. 

Experiments showed that such type of estimates leads to selection of too many variables and so to decrease of 

prognostic ability. However effectiveness may be systematically improved by using additional penalty multiplier 

for   equal 
1

5
1

M


. This effect demands mathematical explanation. 

Experiments 

In all studies dependent variable Y  and regressor variables X  are stochastic functions of 3 latent variables 1U , 

2U , 3U . The vector levels of variables U  are independently distributed multivariate normal with mean 0 and 

standard deviation 1. The value of dependent variable Y  in j-th case is generated by formula 
3

1

j
j jk y

k

y u e


   

where jku  is a value of the latent variable kU , j
ye  is a random error term distributed  0, yN d . At that 85% of 

cases were generated with 1yd  , 15% of cases were generated with 2yd  . Thus, main and noisy 

components of data were modelled. The values of relevant variable iX  were generated by binary vector 

 1 2 3, ,i i i i    . In j-th case 
3

1

i j
jk jk k xi

k

x u e


  , where jku  is a value of the latent variable kU , j
xie  is a 

random error term distributed  0, xiN d . At that for 5 relevant variables 0 2.xid   and rest relevant variables 

were generated according 0 5.xid  . The levels of irrelevant variable iX  in j-th case are generated by formula 

j
jk xix e . In each experiment 100 pairs of data sets were calculated by the random numbers generator 

according to the same scenario. Each pair includes training set that was used for optimal regression model 

construction and control data set that was used to evaluate prognostic ability of this model. In all experiments 

relevant variables were generated at  1 1 0, ,  ,  1 0 1, ,  ,  0 1 1, ,  . Results of experiments are given 

in the Table 1. For each pair of samples of size M  the following characteristics of forecasting ability for LARS 
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and multiple UIE regression with 0 95.Tr   are given: K  – correlation coefficient between variable Y  and 

calculated prognoses, cN  – average number of relevant variables that were correctly used in regression model, 

fN  – average number of irrelevant variables that were mistakenly used in regression model, fR  – ratio of 

max




 for irrelevant variables. Here   is an absolute value of regression coefficient for some variable in 

regression model, max  is the maximal absolute value of regression coefficient among variables of regression 

model. It was considered that variable iv  is used by regression model if corresponding ratio 
max




 is less than 

0.001. 

Table 1. Results of expiriments. Prognostic ability. 

 CCPcor CCPerror 

M  K  cN  fN  fR  K  cN  fN  fR  

20 0.729 15.13 6.03 0.132 0.694 4.84 0.23 0.092 

30 0.752 16.81 5.76 0.054 0.716 6.57 0.07 0.006 

40 0.772 17.36 7.35 0.066 0.744 8.34 0.03 0.012 

50 0.776 17.21 5.69 0.03 0.742 9.27 0 0 

Conclusion 

The results shown in the table 1 clearly show the superiority of the described novel approach, i.e. correction 

based on correlation maximization, over previously described [Senko et al., 2010] error minimization based one. 

Namely the correlation K  is about 0.03 higher in all tasks. It is achieved by correct selection of almost all 

informative variables of the samples and though the amount of falsely selected noise variables is also increased, 

their weights in resulting combinations are low.  

The primary drawback of the proposed method is slow speed that is decreasing dramatically with the increase of 

a task dimension. It is planned that further research will be aimed at reduction of computational complexity it. 

Nevertheless, the method proved to be suitable for a wide range of forecasting applications, especially in tasks 

which require feature selection. 
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