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MEMBRANE STRUCTURE SIMPLIFICATION 

Fernando Arroyo, Carmen Luengo, José R. Sánchez 

 

Abstract: Idempotent operators are one of the possible criterions for simplification trees. These operators act 
over internal nodes of trees. Moreover, they transform structural equivalent sub-trees, which have the same root 
into a single copy. This copy will be placed into the common root reducing –simplifying- the tree. 

This process can be also applied to membrane structures; in this case idempotent operator will be applied to non 
elementary membranes, and the process will produce the simplest possible membrane structure. The main idea 
of this work is to apply this kind of operator to binary membrane structures to identify possible recurrent sub-trees 
and to study possible application of this concept to hardware design implementations. 
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Initial concepts 

In literature, membrane structures are usually defined as strings or words built over the alphabet {[, ]}. However, it 
can be also find alternative definitions as trees [Păun 2002]. Using this alternative definition, we will define an 
idempotent operator acting over trees and we will try to characterize binary membrane structures after the 
simplification procedure studying the average size and the variance of such structures. 
In this paragraph we are going to study binary membrane structure simplification based on idempotent operators. 
First, we will provide some classical definitions based on trees, which we will need for defining the concept of 
membrane simplification and one simplification algorithm. 
 Let Mb be a binary family membrane with two types of leaves. This family can be recursively defined by the 

equation: 

),( bbb MMM  x  (1) 

where symbols λ and x are the two types of leaves and ◦ is a binary operator acting over pairs of binary 

membranes. In this case, the size of a binary membrane structure μ  Mb (represented by |μ|) is the number of 

non-elementary membranes. 

Definition 1: The probability p(μ) of a membrane structure μ Mb is: 
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Definition 2: Let S be any set. It is said that a binary operator ◦ defined over S is idempotent if and only if for 

every a S,, a ◦ a ≡ a 

Definition 3: If ◦ is an idempotent operator defined over the set of binary membrane structures Mb. Given μ 
Mb, it is defined the simplified membrane of μ, represented by simp(μ), the membrane obtained starting in μ 

applying  iteratively the rule ◦ (u, u) = u whenever appears the sub-tree ◦ (u, u). 
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Figure 1: Simplification process of a binary membrane structure with idempotent rule 

 

1 function simp(μ:Mb):Mb; 
2 Local u,v :Mb; 
3 If |μ|=0 then simp := μ; 
4 Else 
5 u:= simp(μ.izq); v:=simp(μ.der); 
6 if eq(u,v) then simp := u; 
7 else simp:=o(u,v);fi;fi; 
8 end(simp); 
 
9 function eq(u,v: Mb):boolean; 
10 if |u| = 0 or |v|=0 then eq:=(u.info = v.info); 
11 else if eq(u.izq = v.izq) 
12 then eq:=eq(u.der=v.der); 
13 else eq:=false;fi;fi; 
14 end (eq) 

Figure 2: Simplification algorithm with idempotent rule 

Average and variance of simplified binary membrane structure size 

A binary membrane structure μ Mb can be simplified applying definition 3 and the simplification algorithm. Our 

first goal is to study the average size of μ Mb where |μ| = n (expressed as function of n) when it is assumed the 

probability model of definition 1. That is: 
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Using the generatrix function technique, it is defined the associated power series: 
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Now it is needed to look for direct recurrences to characterize the series through some functional equation. 

Let I be the set of unreductable elements of Mb, that is, the set of binary membrane structures such that 

simp(μ)=μ. 
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}:),({)( III,I   x  (5) 

Then for each μI let Mμ={μ’ Mb : simp(μ’)= μ} and let 
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be the generatrix function associated to membrane structures that simplify to μ. Then, 





I

 )(||)( zMzszS
n

n
n

0

 (7) 

Next step is to characterize the succession {Mμ} μI. Firstly, it is easy to see that a membrane simplifies to a leave 

l{λ,x} if and only if all their leaves have the same label, hence next equation defines the set of membranes in 
Mb that simplify to the leaf l. 

),( lll MMM  l  (8) 

Now from (2) and (8) it is obtained that the following generatrix function 
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satisfies the differential equation 
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and its solution is 
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On the other hand, let ◦(u,v) be an element of I, then u,v  I and u≠v. The fact that μM◦(u,v) implies that either 

the left sub-tree of μ simplifies to u and the right one to v, or both sub-trees simplify to ◦(u,v) producing 
◦(◦(u,v),◦(u,v)) and this tree reduces to ◦(u,v). Therefore, it is possible to recursively define the set M◦(u,v) by 

),(),( v)(u,v)(u,vuv)(u, MMMMM     (12) 

Expressing (12) in terms of a generatrix function 
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(13) 

Deriving with respect to z it is obtained. 

002  )(),()()()(' ),(),(),( vuvuvuvu MzMzMzMzM   (13) 

This inductive definition of the Mμ(z) series for each μ I permit us to characterize the S(z) series trough a 

differential equation 

Lemma 1: Generatrix function S(z) satisfies the differential equation 
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Proof: 

Let us to consider the generatix function of Mb. 
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On the other hand {Mμ}μ I is a partition of Mb and then 
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To evaluate S(z) we introduce the two variables series 
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Now considering (14) and the fact that ◦(u,v)
 
 I if u, v  I and u≠v it is obtained the following partial differential 

equation 
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That in y=1 give us the expected result.■ 

Hence the problem is reduced to study the function 
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In particular, we are interested in finding out an appropriate functional bound for each one of the Mμ(z). In order to 

get this goal, we need some previous results. 

 

Lemma 2: For each μ I and       we have that 

Proof: We will proceed by induction over |μ|. If |μ|=0 the result is evident. 
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Finally, with a very simple calculation it is proof that  when zJ. ■ 
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Lemma 3: 
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Proof:The proof will be done by induction over |μ|. When |μ|=1 from (13) and proof of lemma 2, it can be 

concluded that Mμ(1)≈0.566<29/50, due to that in this case Mμ(1)=g(1) where g(z) is given in (17). If |μ|≥2 then at 

least one of the two sub-tree in μ is not a leave. Let us suppose that |u|≥1. It is known that Mμ(z) is a non 

negative function and it is monotonically increasing in [0, 1] whatever will be μ I, from (13) and lemma 2, we 

have that for each z[0, 1], 
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Now applying the trapezium rule [Burden 1985] in the integral 
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Because Mu(z) is a series with positive coefficient we have that M’’u(z)<0 for each ξ(0, z). 

Inequalities (18) and (19) guarantees that Mμ(z) satisfies in [0, 1] the differential inequality 
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Now considering that by induction hypothesis it is Mμ(1)<29/50, we have that for each z[0, 1] 
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And finally, considering the differential equation w’(z)=0.29+w2(z), w(0)=0, which has as solution 
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Proof: It |μ|≥1, from lemma 3 and trapezium rule, we have that for each z[0, 1], 
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The result is immediate considering (13).■ 

These previous results give us the desired bound for Mμ(z). 
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Proof: The proof will be done by induction over |μ|. If |μ|=1 we have that 
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suppose now that μ=◦(u, v) with |μ|>1. We will distinguish two cases: firstly the case in which one sub-tree is a 

leave, for instance v. In this case we have that |u|=|μ|-1 and |v|=0. Applying (11) and the induction hypothesis, we 

have that: 
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In the second case both sub-trees are not leaves, that is, |u|≥1 and |v|≥1. Applying again the lemma 4 and 

induction hypothesis, we have that 
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This result permits us to conclude that 
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for each z[0, 1] whenever the series be convergent, but this fact does not implies that P(z) be convergent in the 

interval [0, 1]. To guarantee this convergence, we consider the generatrix function 
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associated to the family I of unreductable binary membrane structures (5). Considering the inductive definition of 

this family, it is easy to verify that I(z) satisfy the differential equation 
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From this differential equation it is easy to see that inside its convergence circle, I(z) verifies the differential 

inequality 

010
2

12  zIzIzI ,)(,)()('  (24) 

Let L(z) be the solution of the differential equation (24) replacing “≤” by “=”. Then we have 

.
)(

)(
)(

121

121

2

1
22

22









z

z

e

e
zL  (25) 

Hence, for each 0≤z≤ρ is I(z)≤L(z), been 
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 and the constants K=1.24 and M=4α2(1)/K≈4.864<4.87. These constants will be very 

useful to proof that P(z) is an analytic function in an appropriate domain. 

Lemma 6: The set {M|μ|p(μ)}μM  is bounded by a constant M*. 

Proof: A simple calculation proof that M|μ|p(μ)≤M*=5.41 for each μMb with |μ|≤26, considering for each size the 

membrane structure almost complete well balanced corresponding. Let now be μ=◦(u, v) with | μ|≥27. Applying 
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since α(z) is growing in [0, 1]. Consequently, P(z) uniformly converges in the disk |z|≤1 because |P(z)|≤P(|z|) and 

K<ρ. At this point it is possible to extend the convergence of P(z)  to a disk of radius bigger than 1. 

Corollary: There exists ε>0 such that the series P(z) converges in |z|≤1+ε. 

Proof: For continuity, is enough to choose ε>0 in shuch a way that satisfies the following conditions at the same 

time: 
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These requirements come from the previous development. 
Then, P(z) is an analytic function in the disk |z|<1+ε by the Weierstrass (Appendix 1) theorem. Solving the 
equation of lemma 1, we have that 
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and consequently, S(z) satisfies every hypothesis to apply the Darboux theorem (Appendix 2), from which the 
following result is deduced 
Theorem 1: Under the probabilistic model of (2), the average size sn of membrane structures resulting from 
simplify with idempotent rule random membrane structures of size n is 
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Now we will study the variance of this random variable. 
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Let H(z) be the generatrix function associated to the second moment, that is, 
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This function is characterized by the following lemma. 
Lemma 7: Generatrix function H(z) satisfies the following differential equation 
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Solution of the previous equation is 
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Functions q(z) and N(z) are both analytic in a disk with radius bigger than 1, hence Darboux theorem is 
applicable, providing the following asymptotic equivalent for the coefficients of the functions appearing in (27): 
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been γ=q(1)≈0.752 and α=N(1)≈0.457. Now it is possible to quantify the variance of the simplified membrane 
structures. 
Theorem 2: Under the probabilistic model of (2), the variance of the size of simplified membrane structures with 

idempotent rule is )(1Onvn   , where 27102 .  . 

Appendix 

This paragraph will be enunciated the Weierstrass and Darboux theorems which are used in the previous section 
of this paper. 

Appendix 1: Weierstrass theorem [Henrici 1977, Marsden 1987] 

Let {fn(z)}n≥0 a sequence of analytic functions defined on a region C . We have that 

 If fn → f uniformly on every closed disk in Ω, then f is analytic. Moreover, f’n→ f’ pointwise in Ω and 
uniformly on every closed disc included in Ω. 

 If  


0n n zfzg )()(  converges uniformly on every closed disk in Ω, then g(z) is analytic in Ω and 

 


0n n zfzg )(')('  pointwise in Ω and uniformly in every closed disk included in Ω. 

Appendix 2: Darboux theorem [Henrici 1977] 

Let f(z) be an analytic function in the disk |z|<ρ and let us suppose that it has only one single singularity on its 
convergence circle in z=ρ. Let us also suppose that f(z) admits, in an environment of z=ρ, a local development in 
the form 
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for some functions g(z) and h(z) analytics in an environment of z=ρ, with g(ρ)≠0, and for some real number 
},,,{ 210 s . Then, when n→∞, 
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where gk are the coefficients of 
k

k k

z
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and the symbol ≈ denotes asymptotic equivalence. 

Since the first series term is preponderant, theorem conclusion is written many times as 
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Is the Euler’s gamma functions and  
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Conclusions 

This paper study a simplification process on binary membrane structures. The study establishes that the average 
size and variance of simplified membrane structures are both linear on the number of non elementary 
membranes. 

The study of non reducible membrane structures can be useful to determine hardware modules that could be 
implemented a priory and they can be used in general membrane systems implementations. 
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