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CELLULAR COMPUTING: TOWARDS AN ARTIFICIAL CELL 

R. Lahoz-Beltra  
 

Abstract: At present most point of views are in agreement with the idea that the similarity between cells and 
computers is a useful metaphor from which to obtain powerful predictions about life. In this paper we suggest that 
the analogy between computers and cells should be carefully reviewed when creating a silico artificial cell or 
whole-cell simulation, avoiding some common misconceptions derived from Cybernetics and the study of 
biological information processing based on a ‘hardware + software’ dualism. 
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Introduction 

Traditionally those sciences devoted to design artificial creations of biological systems, for instance Artificial Life 
as well as Artificial Intelligence, are based on the Cybernetics assumption that most biological entities can be 
represented as machines. One of the most interesting challenges is the creation of an artificial cell. An artificial 
cell is a minimal cell or in silico ‘machine’ composed by artificial parts, either wetware elements or software 
subroutines, respectively. The first wetware artificial cell was authored by T. Chang [Chang and Poznansky, 
1968] consisting of a vesicle with a wall membrane and enzymes (Figure 1). Following, several other attempts 
were conducted creating artificial cells [Hotani et al., 1992;  Noireaux et al., 2011] but far away of a fully 
operational cell. In 2010 Craig Venter successfully synthesized ‘Synthia’, a bacterial cell controlled by a 
chemically synthesized genome. On the other hand, M. Tomita [Tomita et al., 1999] designed E-Cell (Figure 2), 
one of the first in silico simulated artificial cell projects.  

 
FIGURE 1.- Artificial cells. (A, B) Von Neumann’s scheme of cell-reproducing automata [Noireaux et al., 2011]. 

(C, D) Craig Venter’s ‘Synthia’ and genome 
One of the misleading assumptions applied to biological cells is the parallelism between cells and von Neumann 
architecture used to design computers [Bray, 1990; Sipper et al., 1997a, 1997b]. Usually terms like 
CytoComputation introduced by Paton [Paton, 1994] or the notion of computational architecture applied to cellular 
processing show the impact of Cybernetics modelling cells and cellular systems. Furthermore, this influence 
becomes apparent from the classical question about ‘what is life?’ [Klyce, 1999] to those conceptions derived 
from Artificial Life. For instance, the notion of ‘A-Life avatar cell’, thus models in which a cell is created in a 
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computer memory with software. At present, the analogy between cells and computers has been accepted as a 
main assumption in other fields. For instance, in Medicine acupuncture functions through the Yin and Yang 
component of the cellular mediator, that is cyclic AMP and cyclic GMP, which activates the autonomic nervous 
feedback loop. In agreement with Kim [Kim, 1981] a computer works through Yin (0 binary digit) and Yang 
(1 binary digit) components which combinations represent symbols through a feedback loop of a central memory 
storage. 

 
FIGURE 2. A whole-cell simulation model with E-Cell software 

In this paper we suggest that the analogy between computers and cells should be carefully reviewed avoiding 
some common misconceptions derived from the (i) Cybernetics assumption that considers biological entities (i.e. 
cells, organs, etc.) as machines as well as (ii) the study of biological information processing based on a ‘hardware 
+ software’ dualism that is a ‘false dualism’ when it is ingenuously applied in the analysis of biological systems.  
The above misleading assumptions are usual when creating in silico artificial cells or whole-cell simulations. 
For instance, if DNA is the program - thus, the source code in a high level language - then are proteins the binary 
code? Furthermore, since proteins perform their task after their folding in a specific environment, i.e. cytoplasm, 
does the cytoplasm plays the role of the operating system in a computer? Which is the resemblance between 
protein biosynthesis and a compiler program? Is the Ray’s TIERRA simulation [Ray, 1991] an analogy (Figure 3) 
to the Cambrian explosion fine enough and under what conditions?  
Is cell circuitry, i.e. metabolic pathways, analogous to electronic circuits? [Lahoz-Beltra, 2001, Di Paola et al., 
2004] Are biological molecules, i.e. proteins and enzymes, finite state machines? [Lahoz-Beltra, 1997]  Are 
biological molecules, molecular automata with the capability to perform Boolean operations? [Lahoz-Beltra et al., 
1993] These and other questions are critically analyzed in the present paper concluding that there is a ‘likeness’ 
between cells and computers but is this likeness between cells and computers a metaphor or it just arises from a 
real similarity between both systems? 

 The Analogy between Software Compilation and Biosynthesis of Proteins 

Several analogies between computers and cells could be proposed considering that the main differences 
between both systems are given by their origin, hardware, software and the regulation of program execution. 
However, between cells and computers there are several analogies such as the (i) the linear topology of the 
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program, (ii) the execution of the program is based on the translation of code, (iii) program code uses a few 
symbols, such as A, T, G, C in cells, and 0, 1 in computers, (iv) both systems, cells and computers, are 
susceptible of ‘virus infection’.  

 
FIGURE 3. Thomas S. Ray’s TIERRA simulator [Ray, 1991]. TIERRA is an example of an artificial life model or 

metaphor where evolvable computer programs can be considered as digital organisms which compete for energy 
(CPU time) and resources (main memory). 

Our discussion about the likeness between cells and computers is illustrated (Figure 4) with the analysis of above 
analogy (ii).  

 
FIGURE 4.  Analogy  between cells and computers (for explanation see text) 

The similarity between software compilation and the biosynthesis of proteins could be analyzed considering the 
following phases during the translation process: 
(a) Decoding the source: DNA   

 Source code 
Since DNA macromolecule is a sequence of four different subunits (A, T, G, C), the programming language in 
genetic terms is very simple consisting of A, T, G, C sequences of variable length. Program structures such as 
conditional if-then expressions, loops and sequential expressions (i.e. arithmetic expressions) are not apparently 
present in DNA, thus in the genetic source code. 
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Source analysis 
The enzymatic complex RNA polymerase reads the DNA code in one-way direction (from the 5’ end to 3’) bearing 
a resemblance with a compiler during the lexical analysis phase. In such phase a compiler scans a source code 
from left to right, character per character. Furthermore, some DNA segments could be like arithmetic operators 
(+, -, *, /) or functions (i.e. exp(x), ln(x), Sin(x)) in a programming language but in such a case only 
understandable to cells promoting, repressing or terminating gene transcription. For instance, TATA box, -35 
region, pause sites rich in GC and rho-dependent sequences could be the biological counterpart of above 
operators and functions but their representation may vary according to the compiler in use, thus the RNA 
polymerase complex which sets the parsing and syntax rules. In compiler terms, type checking is a strict process 
since the transcription from DNA to RNA is a precise and enzymatically controlled process where the semantic 
rules are usually respected and errors are not theoretically allowed (e.g. promoters cannot have a termination 
function). 

Intermediate optimization 
Most RNA resulting from DNA transcription contains both introns and exons. Through a complex enzymatic 
processing known as splicing introns are eliminated and exons are bound in a sequence. The final sequence form 
is the mature and optimized sequence of mRNA (messenger RNA). Also, further modifications may occur through 
nucleotide covalent changes and addition of caps or poly-A sequences. In the realms of compiler, this phase 
corresponds to an intermediate code generation and optimization where a simple and easily translatable source 
code representation is generated and unnecessary information is eliminated. It is interesting to note that the 
splicing event is relatively complex just as the compiler optimization phase is generally slow. 
(b) Generating the active product: protein 

Analysis of the optimizes source 
Unlike a compilation process which at this step should generate the object code, the mature mRNA must be 
translated by ribosomes to a polypeptide or protein according to a dictionary or codon triplet table. DNA 
transcription as well as RNA translation comprises a lexical, syntactic and semantic analysis. In this case, A, G, C 
and U nucleotides must form three letter words or triplets (codons) which are associated through a degenerative 
translation table to specific amino acids (protein subunits) or to translation initiation or termination codons. Such a 
degenerative nature of codons counterbalances the effect of mutations which would form structurally or 
functionally different proteins. Likewise, a software program can be written in different ways performing all the 
programs the same task (e.g. ‘while’ and ‘for’ loops are different structures but both have similar function).  

 Synthesis 
 The tRNA-ribosomal system produces the protein sequence (primary structure) resembling a compiler during 
object code generation. Afterwards, specific enzymes (i.e. proteases) may modify the protein which could be 
considered as object code optimization during the compilation process. Finally, even after the biosynthetic 
process is finished a protein may be inactive until the protein is under the right conditions (pH, temperature, 
peptide cleavage, etc.). For this reason, the environment (i.e cytoplasm, membrane, etc.) in which proteins are 
embedded could bear a resemblance with the operating system which allows the compiler to work. As a result, 
functional proteins or enzymes could be considered as executable programs but proteins are able to carry out 
their function only under the right environment, just like a program compiled under a specific operating systems.  

The Computational View of Cell: Metaphor versus Similarity 
At present most point of views are in agreement with the idea that the similarity between cells and computers is a 
useful metaphor from which to obtain powerful predictions about life. In agreement with David Baltimore 
[Baltimore, 2011] modern biology is a science of information but people is not satisfied with the computer code 
metaphor of DNA. According to Baltimore there are two main reasons: (i) the meaning of a computer code (with 
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only 2 possible symbols at each position, 0 or 1) is not a common knowledge and because (ii) the metaphor does 
not communicate the richness of coding systems buried in a monotonous string of symbols. For instance, the 
dynamic behaviour of cellular automata in computer simulations (i.e. propagation, interaction, storing, computing 
information, self-organization, chaos) bear a strong resemblance to those behaviours shown by biomolecules in 
the interior of real cells [Lahoz-Beltra, 1998].  Molecular automata, thus biomolecules simulated as finite 
automata, are able to capture the biological functionality exhibited by biomolecules inside cells [Lahoz-Beltra, 
1997]. In consequence, such approach represents a modelling framework for computer simulation of complex 
activities exhibited inside cells.  
Based on above considerations, our point of view about the analogy between cells and computers is as follows:   
 (1)    Cells as well as their biological molecules (i.e. proteins, enzymes, etc.) are able of information processing 

but information processing in biological systems is not like in digital computers. That is to say digital 
computers are a reason for finding inspiration about how cells perform information processing and self-
organize their wetware (e.g. biomolecules, membrane, cytoplasm, etc.). For details about the differences 
between cells and computers we suggest the reading of ‘Circuits of a Cell’ published by the Berkeley Lab 
Research Review [Preuss, 2000].    

(2)    The ‘hardware + software’ dualism leads to a misleading conception of cell. In cells ‘biomolecule + function’ 
are inseparable elements in contrast with computers. For instance, it is possible to have a computer without 
operating system and software. Of course, it is not useful but in cells it is impossible to have biomolecules 
without biological function.    

 
FIGURE 5. Organization of T-cell and S-cell 

(3)    Most views about information processing inside cells consider the organization of cell in layers as in Figure 5. 
Conceptually, such organization model finds its inspiration in the organization of software in layers (i.e. MS-
Dos, Unix /Linux operating systems, Internet Protocol, etc.).  We suggest that in agreement with this model of 
organization two different type of cells or architectures could be defined: T-cell or transduction cell and S-cell 
or subsumption cell. The transduction cell type is a model of cell that is similar to the senso-motor 
architecture used in simple autonomous agents (i.e. simple mobile robots). On the other hand, the 
subsumption cell should be similar to an operating system model in layers - where DNA and membrane 
represent the kernel and the shell respectively of the operating system - or to a complex autonomous agent 
(i.e. the robots designed by Brooks, see [Brooks, 1986]) where cells have the possibility to choose a layer 
depending on the problem to solve.   
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Conclusion 

In conclusion, our point of view has been resumed in the above three statements (1) (2) (3) concluding that there 
is a ‘likeness’ between cells and computers. Cells are able of information processing but bearing in mind that 
bioinformation processing involves many features that are distinct from digital computers. 
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