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VECTORS AND MATRIXES IN GROUPING INFORMATION PROBLEM 

Donchenko V. 

 

Abstract: Grouping information problem appears in application in two main forms. These are the problem of 
recovering function, represented by its observations and the problem of classification (clusterization).It is very 
important for both them which are the ”representatives” of the objects under investigations: scalars, vectors or 
objects of other kinds. This choice is determined by the math technique can be used for handling with the 
“representatives”. Using the real valued vectors and Euclidean spaces correspondingly is therefore usual. 
Development of the technique, including SVD and Moore-Penrose inversion on the base of special “cortege 

operators” for Euclidean space of m nR  type, is proposed in the article  

Keywords: Feature vectors, information aggregating, generalized artificial neuronets, vector corteges, matrix 
corteges, linear operator between cortege spaces, Single Valued Decomposition for cortege linear operators. 

ACM Classification Keywords: G.2.m. Discrete mathematics: miscellaneous,G.2.1 Combinatorics. G.3 
Probability and statistics, G.1.6. Numerical analysis I.5.1.Pattern Recognition H.1.m.  Models and Principles: 
miscellaneous:  

Introduction 

The problem of grouping the information (grouping problem) is the fundamental problem of applied investigations. 
It appears in various forms and manifestations. All of them eventually are reduced to two forms. Namely, these 
are: the problem of recovering the function represented by their observations and the problem of clustering, 
classification and pattern recognition. State of art in the field is represented perfectly in [Kohonen, 2001; Vapnik, 
1998; Haykin, 2001; Friedman, Kandel, 2000; Berry, 2004]. 

It’s opportune to mark what the information regarding the object or a collection of similar object is exposed to 
aggregating is. It is of principal importance that an object is considered as a set of its main components and 
fundamental for the object ties between them. Such consideration and only this one enable application of the 
math in object description, namely, for math modeling. It is due the fact that after Georg Cantor the objects of 
investigation in math (math structures) are the sets plus “ties” between its elements. There are only four (may be, 
five) fundamental mathematical means to describe these “ties”. Namely, these are: relations, operations, 
functions and collections of subsets (or combinations of mentioned above). Thus, the mathematical description of 
the object (mathematical modeling) can not be anything other than representing the object structure by the means 
of mathematical structuring. It is applicable to the full extent to that objects which indicated by the term “complex 
system”. A “complex system” should be understanding and, correspondingly, determined, as an objects with 
complex structure (complex “ties”). Namely, when reading attentively manuals by the theme (see, for example, 
[Yeates, Wakefield, 2004; Forster, Hölzl, 2004]) one could find correspondent allusions. It is reasonable 
understanding of “complex systems” instead of the its understanding as the “objects, consisting of numerous 
parts, functioning as an organic whole”. 

So, math modeling is designing in math “parts plus ties”, which reproduce “part plus ties” in reality. 
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So it is principal question in math modeling which math objects represents “part” of the object and which the “ties” 
ones. The math object - representative should be chosen in such a way that variety of math structuring means 
were sufficient to  convey the object structure.   

It is commonly used approach for designing objects - representative to construct them as an finite ordered 
collection of characteristics: quantitative (numerical) or qualitative (non numerical). Such ordered collection of 
characteristics is determined by term cortege in math. Cortege is called vector when its components are 
numerical. In the function recovering problem objects - representatives are vectors and functions are used as a 
rule to design correspond mathematical “ties”. In clustering and classification problem the collection may be both 
qualitative and quantitative. In last case correspond collection is called feature vector. It is reasonable to note that 
term “vector” means more, than simply ordered numerical collection. It means that curtain standard math “ties” 

are applicable to them. These “ties” are adjectives of the math structure called Euclidean space denoted be 
nR . 

Namely these are: linear operations (addition and scalar multiplying), scalar product and correspond norm. 

Just the belonging to the base math structure (Euclidean space) determines advantages of the “vectors” against 

“corteges”. It is noteworthy to say, that this variant of Euclidean space is not unique: the space
m nR 

 of all 

matrixes of a fixed dimension m n may represent alternative example.  The choice of the 
nR space as 

“environmental” structure is determined by perfect technique developed for manipulation with vectors. These 
include classical matrix methods and classical linear algebra methods. SVD-technique and methods of 
Generalized or Pseudo Inverse according Moore – Penrose are comparatively new elements of linear matrix 
algebra technique [Nashed, 1978] (see, also, [Albert, 1972; Ben-Israel, Greville, 2002]). Outstanding impacts and 
achievements in this area are due to N.F Kirichenko (especially, [Кириченко, 1997; Kirichenko, 1997], see also 
[Кириченко, Лепеха, 2002]). Greville’s formulas: forward and inverse - for pseudo inverse matrixes, formulas of 
analytical representation for disturbances of pseudo inverse - are among them. Additional results in the theme as 
to further development of the technique and correspondent applications  one can find in [Кириченко, Лепеха, 
2001; Donchenko, Kirichenko, Serbaev, 2004; Кириченко, Крак, Полищук, 2004; Kirichenko, Donchenko, 
Serbaev, 2005; Кириченко, Донченко, 2005; Donchenko, Kirichenko, Krivonos, 2007; Кириченко, Донченко, 
2007; Кириченко, Кривонос, Лепеха, 2007; Кириченко, Донченко, Кривонос, Крак, Куляс, 2009]. 

As to technique designing for the Euclidean space 
m nR 

as “environmental” one see, for example [Донченко, 
2011]. Speech recognition with the spectrograms as the representative and the images in the problem of image 
recognition are the natural application area for the correspond technique.  

As to the choice of the collection (design of cortege or vector) it is necessary to note, that good “feature” selection 
(components for feature vector or cortege or an arguments for correspond functions) determines largely the 
efficiency of the problem solution. 

As noted above, the efficiency of problem solving group, the choice of representatives of right: space arguments 
or values of functions and suitable families past or range of convenient features vectors. This phase in solving the 
grouping information problem must be a special step of the correspondent algorithm. Experience showed the 
effectiveness of recurrent procedures in passing through selection features step. For correspond examples see, 
[Ivachnenko, 1969] with Ivachnenko’s GMDH (Group Method Data Handling), [Vapnik, 1998] with Vapnik’s 
Support Vector Machine. Further development of the recurrent technique one may find in [Donchenko, 
Kirichenko, Serbaev, 2004; Кириченко, Крак, Полищук, 2004; Kirichenko, Donchenko, Serbaev, 2005; 
Кириченко, Донченко, 2005; Donchenko, Kirichenko, Krivonos, 2007; Кириченко, Донченко, 2007; Кириченко, 
Кривонос, Лепеха, 2007]. The idea of nonlinear recursive regressive transformations (generalized neuron nets or 
neurofunctional transformations) due to Professor N.F Kirichenko is represented in the works referred earlier  in 
its development. Correspondent technique has been designed in this works separately for each of two its basic 
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form f the grouping information problem. The united form of the grouping problem solution is represented here in 
further consideration. The fundamental basis of the recursive neurofunctional technique include the development 
of pseudo inverse theory in the publications mentioned earlier first of all due to Professor N.F. Kirichenko and his 
disciples. 

The essence of the idea mentioned above is thorough choice of the primary collection and changing it if 
necessary by standard recursive procedure. Each step of the procedure include detecting of insignificant 
components, excluding or purposeful its changing, control of efficiency of changes has been made. 
Correspondingly, the means for implementing the correspondent operations of the step must be designed. 
Methods of neurofunctional transformation (NfT) (generalized neural nets, nonlinear recursive regressive 
transformation: [Donchenko, Kirichenko, Serbaev, 2004; Кириченко, Крак, Полищук, 2004; Кириченко, 
Донченко, Сербаєв, 2005]). 

Neurofunctional transformation in recovering function problem 

The fundament of the Math truth is the conception of deducibility. It means that the status of truth (proved 
statement) has the statement which is terminal in the specially constructed sequence of statements, which called 
its proof. The peculiarity in sequence constructing means, that a next one in it produced by previous by special 
admissible rules (deduction rules) from initial admissible statements (axioms and premises of a theorem). As a 
rule, corresponded admissible statements have the form of equations with the formulas in both its sides. So, each 
next statement in the sequence-proof of the terminal statement is produced by previous member of sequence 
(equation) by changing some part of formulas in left or right it side on another: from another side of equations-
axioms or equations premises. The specification of the restrictions on admissible statements and the deduction 
rules are the object of math logic. 

As it was already marked, the idea of neurofunctional transformation (NfT-) or neurofunctional transformation in 
recovering function problem in the variant of inverse recursion was offered in [Кириченко, Крак, Полищук, 2004], 
and in variant of forward recursion - in [Donchenko, Kirichenko, Serbaev, 2004; Кириченко, Донченко, Сербаєв, 
2005]. References on neuronets is determined by the fact that NfT generalizes artificial neuronets: in possibilities 
of the standard functional elements (ERRT (elementary recursive regression transformation) in NfT): in topology 
of its connection; in adaptive design of NfT structure in the whole; in adequate math for its description. Just this 
forward variant will considered below. Namely, NfT- is the transformation built by recursive application of the 
certain standard element, which will be designated by abbreviation ERRT (Elementary Recursive Regression 
Transformer). Process of construction of the NfT- transformation consists in connection of the next ERRT (or 
certain number of it) to already constructed during previous steps transformer according to one of three possible 
types of connection (connection topology). Types of connection which will be designated as “parinput”, 
“paroutput” and “seq”, realize natural variants of use of an input signal: parallel or sequential over input, - and 
parallel over output. An input of the Output of current step of recursion is input of the next step. 

The basic structural element of the NfT- -transformer is ERRT - an element [Кириченко, Донченко, Сербаєв, 

2005], which is determined as mapping from 
1nR 

 in mR of a kind: 



  
    

  1u

x
y A C , 

which approximates the dependence represented by training sample 0 0 0 0
1 1
( ) ( ) ( )

M M( x , y ), ...,( x , y ) , 0 1( ) n
ix R , 

0( ) m
iy R  ,  1i ,M , 



International Journal “Information Theories and Applications”, Vol. 20, Number 2, 2013 

 

106

where: 

 C–(nn) - matrix, which performs affine transformation of the vector  1nx R  - an input of the system; it 
is considered to be given at the stage of synthesis of ERRT; 

 u  – nonlinear mapping from 
nR in 

nR , which consists in component-wise application of scalar 

functions of scalar argument iu  , i ,n 1  from the given final set   of allowable transformations, 

including identical transformation: must be selected to minimize residual between input and output on 
training sample during synthesis of ERRT; 

 A+– solution  A with minimal trace norm of the matrix equation  

uCAX Y  , 

in which matrix 
uC

X  formed from vector-columns 
( )

( )i
u u i

x
(C ) ( z )
 

   
 

0
0

1
, and Y – from 

columns, 0 1( )
iy , i ,M  . 

In effect, ERRT represents empirical regression for linear regression y on 
  

   
  1u

x
C ), constructed with 

method of the least squares, with previous affine transformation of system of coordinates for vector regressor x 
and following nonlinear transformation of each received coordinate separately.  

Remark 1. Further we shall assume that functions of component-wise transformations from  would have a 
necessary degree of smoothness where it is necessary. 

Task of synthesis of ERRT by an optimal selection of nonlinear transformations of coordinates on the given 
training sample was introduced and solved in already quoted above work [Кириченко, Донченко, Сербаев, 
2005]. The solution of a task of synthesis is based on methods of the analysis and synthesis of the pseudoinverse 
matrices, developed in [Кириченко, 1997]. Particularly, reversion of Grevil’s formula [10] was prooved in these 
works, that recurrently allows to recalculate pseudoinverse matrices when a column or a row of the matrix 
changed by another one.  

Details of designing the NfT one can find in [Donchenko at al, 2012]. Details regarding NfT classification and 
clastrerization problems one can find in [Kириченко, Кривонос, Лепеха, 2007; Donchenko, Krak, Krivonos, 
2012]. 

Development of Pseudo Inverse Technique for matrixes Euclidean spaces  

The following are results that transfer basic features of describing the basic structures of Euclidean spaces 
[Донченко, 2011] matrix Euclidean spaces. These are, first of all General Single Valued Decomposition (SVD) 
theorems and then determination of Pseudo Inverse (PdI) and designing the constructive methods for 
manipulating with basic structures within matrixes spaces on the base of the Pseudo Inverse. 

Matrixes spaces and cortege operators 

Theorem 3. For an arbitrary linear operator between a pair of Euclidean spaces ( ,(,) ), 1,2i iE i  : E E E 1 2: , 

the collection of singularities i l i l Ev u i r r rank    2 2( , ),   ( , ) 1, ,  exists for the operators 
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E EE E E E    1 1 2 2: ,  : correspondingly, with a common for both operators E E
 , set of 

Eigen values l i ii r i r     2
1, 1, :  0,  2,  such that 

r r

E i i i E i i i
i i

x u v x y v u y 

 

    1 2
1 1

( , ) ,       ( , )  

Besides, the following relations take place: i i iu v i r  1 , 1, , i l E iv u i r   1 , 1, . 

SVD – technique for matrixes spaces 

We denote by ( ),m n KR  - Euclidean space of all matrixes K-corteges from m n matrixes: 
( ),

1( ... ) m n K
KA A R     with a "natural" component wise trace inner product: 

K K
T

cort k k tr k k
k k

A B trA B 
 

  
1 1

( , ) ( , ) , 

m n K
K KA A B B R     ( ),

1 1( ... ), ( ... )    . 

1. We also denote by K m nR R
 : a linear operator between the Euclidean space, determined by the 

relation: 

1
( ),

1
1

, ( ... ) ,
K

m n K K
k k K

k
K

y

y y A A A R y R

y
  



 
       
 
 

     (1) 

2. Theorem 4. Range ( ) L
   , which is linear subspace of m nR  , is the subspace spanned on the 

components of cortege ( ),
1( ... ) m n K

KA A R    , that determines  : 

1( ) ( , , )KL L A A
     . 

3. Theorem 5. Conjugate for the operator, determined by (1) is a linear operator, which, obviously, acts in the 

opposite direction: : m n KR R
   , and defined as: 

T T

T T
K K

trA X trX A

X

trA X trX A



   
   

     
   
   

 
1 1

. 

4. Theorem 6. A product of two operators : K KR R 
  is a linear operator, defined by the matrix from the 

next equation: 

T T
K

T T
K K K

trA A trA A

trA A trA A




 
 

   
 
 


1 1 1

1

,...,

,...,

 (2) 

Remark. Matrix defined by (2) is the Gram’ matrix for the elements of the cortege ( ),
1( ... ) m n K

KA A R     , 

which determines the operator. 
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5. Singular value decomposition for a matrix (2) is obvious, as it is the classical matrix: symmetric and positive 

semi-definite, on vector Euclidean KR . It is defined by a collection of singularities 2( , ), , 1, :i iv i j r   

1 2|| || 1, , ; , 1, ; ... 0i i j rv v v i j i j r           , 

2 , 1,i i iv v i r      . 

The operator  
  by itself and is determined by the relation 

r r
T

i i i i i i
i i

v v v v   

 
     2 2

1 1
( ,   ) . 

Each of the row - vectors T
iv i r, 1,  will be written by their components: 

T
i i iKv v v i r 1( ,..., ), 1, , 

i.e. , 1, , 1,ikv i r k K  is  the component with the number k of a vector v with a number I.  

6. Theorem 7. Matrices
K

m n
i i i k ik

ki i

U R U v A v i r 



    

1

1 1
: , 1, , defined by the 

singularities 2( , ), 1,i iv i r   of the operator  
  are elements of a complete collection of singularities 

2( , ), 1,i iU i r   of the operator. K m nR R
  :  

Proof. This follows from Theorem 1, and the standard relations between singularities of the    
  ,  

operators. 
7. Theorem 4 (Singular Value Decomposition (SVD) for cortege operator). Singularity of two 

operators ,   
   , obviously determine the singular value decomposition of operators  

 ,  : 

r
T K

i i i
i

y U v y y R 


  
1

, , 

r
m n

i i i tr
i

X v U X X R  



  
1

( , ) , . 

8. Corollary. A variant is a SVD for the operator   is represented by the next relation: 

 
r r

T T
k k k k k

k k

U v v v 
 

    
1 1

. 

Pseudo Inverse Technique for matrixes Euclidean spaces 

Basic operators PdI theory for a cortege operators: pseudo inverse by SVD-representation. 

1. Theorem 8. The PdI operators for  
 ,  are determined, correspondingly, by the relations 
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r r

m n
k k k ktr tr

k k

X v U X v v X X R     

 

      1 2

1 1

, , , , 

 
r

T K
i i

i

y U v y y R 
 



    1

1

, . 

2. Basic operators PdI theory for a cortege operators:: basic orthogonal projectors. 
The basic orthogonal projectors PdI-theory are two pairs of orthogonal projectors. The first one is the pair of 

orthogonal projectors on the pair principal subspaces of L L
 

    
 

 
     , : ( ) , ( ) -their ranges. 

These orthogonal projections will be designated in one of two equivalent ways: 

K

m n K
L A A L LP P P L R P P L R

  
  

  

 


      
1( ,..., )( ) , , ( ) , . 

The second pair is a pair of orthogonal projectors onto the orthogonal complement m n KL R L R
 


  
 

 , of the 

first pair of the subspaces. The complements, namely, are the Kernels of the correspondent operators. Each of 
these projectors will be denoted in one of two equivalent ways: 

L L
Z P Z P


  

 

   ( ) , ( ) ,  

Obviously: 

K m nZ E P Z E P   
 

       ( ) ( ), ( ) ( )  (3) 

In accordance with the general properties of PdI, the next properties are valid: 

 P P       

            ( ) , ( ) . 

Correspondingly: 

K m nZ E Z E     
  

       ( ) ,   ( ) . 

3. Basic operators PdI theory for a cortege operators: basic orthogonal projectors. 

Grouping operators, denoted below as R R 
 ( ),  ( ) , are also "paired" operators, and are determined by the 

relations: 

          R R         

                       ( ) ,  ( ) . 

4. Theorem 9. Grouping operators for the cortege operators  
 ,   can be represented by the next 

expression: 
r r r

T T
k k k tr k k k k k k

k k k

R X U U X U trU X U trX U      

  

     2 2 2

1 1 1

( ) ( , ) , 

and the quadratic form trX R X
( , ( ) )  is determined by the relation: 

r

tr k k tr
k

X R X U X  



  2 2

1

( , ( ) ) ( , ) , 

where 



International Journal “Information Theories and Applications”, Vol. 20, Number 2, 2013 

 

110

   
r r

k k k ktr tr
k k

X v U X v v X    

 

    1 2

1 1

, , , 

 
r

T
i i

i

y U v y 
 



  1

1

. 

5. Theorem 10. Quadratic form trX R X
( , ( ) )  may be written as:  

T T T T T T
K

T T T T T Tr
T K

tr i i i
i

T T T T T T
K K K

trA XtrA X trA XtrA X trA XtrA X

trA XtrA X trA XtrA X trA XtrA X
X R X v v

trA XtrA X trA XtrA X trA XtrA X

  



 
 
    
  
 






   


1 1 2 2 1

4 2 1 2 2 2

1

1 1 1

( , ( ) ) = 

=  
T

r r
T T

i i i i
i iT

K

trA X

v v X

trA X
   

 

  
  

   
  

  

 

2

1
24 4

1 1

. 

Importance of grouping operators is determined by their properties, represented by the next two theorems. 

6. Theorem 11. For any , 1,iA i K  of ( ),
1( ... ) m n K

KA A R    the next inequalities are fulfilled: 

i i trA R A r i K r rank 
    ( , ( ) ) , 1, , . 

7. Theorem 12. For any , 1,iA i K  of ( ),
1( ... ) m n K

KA A R    the next inequalities are fulfilled: 

i i trA R A r r i K r rank 
     min( , ( ) ) , 1, , , 

i i tr
i n

r A R A r r i K r rank 



      min min

1,
min( , ( ) ) , 1, , . 

Comment to the theorems 11, 12. These theorems give the minimal grouping ellipsoids for the 

matrixes , 1,iA i K . In order to build it one only has to construct cortege operator  by the 

cortege ( ),
1( ... ) m n K

KA A R    . 

Pseudo Inverse Technique for matrixes Euclidean spaces clasterization 

The results, represented earlier one can apply to solve the grouping information problem in applied math with 
matrixes ‘representatives‘: matrixes ‘feature vectors’ just in the way of the first part of the article. 

Conclusion  

Development of the technique for manipulating with the basic structures of Euclidean spaces within matrixes 
spaces is represented. This technique include General SVD theorem and Moore - Penrose pseudo inverse 
technique for matrixes spaces. Designing the technique demanded introduction matrixes corteges and of special 
cortege operators associated with them. 
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