
International Journal Information Theories and Applications, Vol. 20, Number 2, 2013 113

Program Invariants Generation over Polynomial Ring using Iterative Methods.

Sergii Kryvyi, Oleksandr Maksymets

Abstract: A solution for program polynomial invariant generation problem is presented. An iteration upper approximation
method that was successfully applied on free algebras in this paper was adopted for polynomial ring. Set of
invariants is interpreted as an ideal over polynomial ring. Relationship and intersection problems solution are
proposed. Intersection of Gröbner basis is applied to solve intersection problem. Inverse obligatory is applied
to solve relationship problem.

Keywords: verification theory, invariant generation, polynomial ring.

ACM Classification Keywords: D.2.4 [Software/Program Verification]: Assertion checkers; F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Invariants; I.2.2 [Automatic Programming]: Program verification; B.6.3
[Design Aids] : Verification; D.4.5 [Reliability]: Verification.

Introduction

Scope of this paper, as the name implies, refers to software verification problems. Software verification is one of
the most difficult step of software development. Challenge of this step is that the developer, except knowledge of
software development, require knowledge of methods of modern algebra, logic, combinatorics, number theory, and
other related areas. In addition to these subjective factors there are also objective factors related to fact that currently
available methods of verification are not at a sufficient level for software development. It turns out impossible to
verify the systems of industrial size. The general picture, observed at this point is that the complexity of software is
growing, and methods of analysis are significantly behind.
Software systems are divided into two classes: class functional systems and class reactive systems nowadays. The
first class includes systems that have to work in finite time and have an input and output (ie, function computation).
The second systems should work potentially infinite time, reacting in its compliance to internal and external events.
Unfortunately, methods of properties verification of first systems do not apply to verify the properties of second
systems. That led to the fact that for both classes were developed different methods.
Research in the field of formal verification methods develops in two directions: (1) deductive verification and theorem
proving [1; 2; 3] and (2) algorithmic verification with check procedures, such as verification procedures in the
satisfiability of logical formulas on model [4; 5], symbolic modeling [6] or symbolic execution paths [7].
If the verification of reactive systems is reduced to soluble properties of the finite automata theory, verification of
functional programs is reduced to the problem of proving theorems in languages dynamic program logic or predicate
logic of first order. One of the first language of program logic was proposed by Hoare [8] and named in his honor
Hoare logic. The Hoare method is based on methods of finding and generating invariants of program cycles with
further usage of deductive proof methods of assertions (theorems) about programs properties. This method stills
currently principal at verification of software functional systems . Verification problem of functional systems refers
to a problem on statements of φ and ψ about P program to prove truth of a statement ψ about output values of
program P , asserting that the values of the input variables satisfy φ.
Solution of this problem is quite difficult and requires careful program analysis. It can be greatly facilitated if
invariants for a given program state are known. An invariant of program at a state is an assertion that is true
for any memory state reaching the program state. The use of invariants in the verification is reduced to the problem
of invariant relations generation for a given structure of the program (for example, loop invariants). Further, based
on the constructed set of invariants prove required predicate (postcondition) what existence would guarantee the



114 International Journal Information Theories and Applications, Vol. 20, Number 2, 2013

correctness of the program. Methods used to solve this problem called data flow program analysis methods. The
appearance of these techniques have been associated with with the creation of high-quality and reliable software.
After verification of programs based on Floyd-Hoare-Dijkstra’s inductive approval, using pre and post conditions and
loop invariants [10] in the seventies (Wegbreit, 1974, 1975; German and Wegbreit, 1975; Katz and Manna, 1976;
Cousot and Cousot, 1976; Suzuki and Ishihata, 1977; Dershowitz and Manna, 1978) there was silent period in this
domain. Recently significant progress in development of automated provers, SAT solvers and models checkers had
place. All mentioned tools use assertions as input data. Therefore, during last years problem of finding assertion for
programs became actual again.
Investigations in this area were active also in USSR, especially in Kiev and Novosibirsk, during 70-th and 80-th. In
result, effective invariant generation algorithm were built. Data algebras that algorithms affected were absolutely
free algebra[13][21], groups, semi-groups, Abelian groups and Abelian semigroups, vector space [12], polynomial
ring[18] [19].
We interpret program as U -Y schema on algebra of polynomials. Iterative algorithms applied for free algebras and
vector space was adopted in this paper for polynomial space [16] .
An invariant of U -Y schema at state is an assertion that is true for any memory state reaching the schema state.
Further we use term state as state(node) of U -Y schema. Proposed approach generates basis of invariants for
each program state taking in consideration passed invariants for initial state.
This work was inspired by related work done in generating invariants for polynomial space using Gröbner basis
(Müller-Olm and Seidl, 2006 [22] , Sankaranarayanan et al., 2004, Rodriguez-Carbonell and Kapur, 2004 [23]).
We argue some opportunity to discover more invariants using iteration method, that looks promising on smaller
problems.

Preliminaries

The concept of the U -Y scheme considered in this section, is a the most common mathematical model of the
program [14], which we receive after ignorance of specific program and information environment.

Definition 1. (Memory) Let R = {r1, . . . , rm} be the set of variables (the memory) and T (R) the Ω-algebra of
terms over R interpreted on D. Where D is a Ω-universal algebra and we call it an data algebra. We consider
(D,Ω) as polynomial ring ℜ[r1, . . . , rm].

Consider the set of expressions of the form π(tI , . . . , tn) , where r is the symbol of an n-place predicate from π,
tI , . . . , tn ∈ T (R).
Each of these expressions defines a certain assertion on the set variable values, whose value for a given memory
state. Let U(R,Ω,Π) be the set of all such assertions and U the set of propositional boolean functions of
conditions from U(R,Ω,Π). The elements of the set U(R,Ω,Π) are termed basic conditions over the memory
R, and the elements of the set U are called elementary conditions over the memory R.
The assignment operator is an expression of the form Y = {r′i = p(r1, . . . , rn)}. Each assignment operator y
specifies a certain transformation on values of the memory.

Definition 2. (U -Y scheme) The couple (U(R,Ω,Π), Y (R,Ω)) is called the standard basis over the memory
R defined by the signature (Ω,Π). IfU ⊆ U(R,Ω,Π), Y ⊆ Y (R,Ω), then the standardU -Y program schema
over memory is the set A of schema states together with the set of transitions S ⊆ A× U × Y ×A.

Definition 3. (Language) L is the language in which assertions about the properties of the memory values are
written. Regarding the languageL we assume that any sentence inL is representable by a formula u(r1, . . . , rm)
in the language of the first-order predicate calculus containing the free variables r1, . . . , rm and interpreted on the
data domain D. The signature of this calculus contains all the symbols of the signatures Ω and Π.

As an example of U -Y schema interpretation we consider program of two matrices n × n multiplication. Source
code provided in pseudo-code :



International Journal Information Theories and Applications, Vol. 20, Number 2, 2013 115

MULT (A,B, n)

X,Y, Z : array[1 : n]

i, j, k, n : integer

for i = 1 to n do
for j = 1 to n do

z(i, j) := 0
for k = 1 to n do

z(i, j) := z(i, j) + x(i, k) ∗ y(k, j)
end for

end for
end for

U -Y scheme of the program MULT (A,B, n) will look like:

a0

?
1

1/y1 = (i := 1; )

?
1/y2 = (j := 1);

2

?
3

1/y3 = (t1 := j · n + i;
z(t1) := 0;

k := 1;)

?
4

-

¬u1/ε

1/y4 = (t2 := j · n + i;

t3 := j · n + i

t4 := j · n + k;
t5 := k · n + i;

z(t2) := z(t3) + x(t4) · y(t5)
k := k + 1;)

?
5

u1 = (k > n)/y5 = (j := j + 1; )

?
6

u2 = (j > n)/y6 = (i := i + 1; )

-

¬u2/ε;

?
a∗

u3 = (j > n)/ε;

-

¬u3/ε;

A = {a0, a1, . . . , a∗} is a set of U -Y schema nodes. Nai is a basis of assertions that we have in node ai on
current step of the method. Na0 , Na1 , . . . , Na∗ are assertion bases for nodes of U -Y schema. U is a set of
conditions with elements that have structure u = (p (r1, . . . , rn) = 0), where p (r1, . . . , rn) ∈ ℜ[r1, . . . , rn].
Set of assignments Y has next element’s structure ri := p(r1, . . . , rn), where p (r1, . . . , rn) ∈ ℜ[r1, . . . , rn].

Definition 4. (Algebraic Assertions) An algebraic assertion ψ is an assertion of the form
∧

i pi(r1, . . . , rm) =
0 where each pi ∈ ℜ[r1, . . . , rm]. The degree of an assertion is the maximum among the degrees of the
polynomials that make up the assertion.

Definition 5. (Ideals) A set I ⊆ ℜ[r1, ..., rn] is an ideal, if and only if
1. 0 ∈ I .
2. If p1, p2 ∈ I then p1 + p2 ∈ I .
3. If p1 ∈ I and p2 ∈ ℜ[r1, ..., rn] then p1 · p2 ∈ I [15].

An ideal generated by a set of polynomials N , denoted by ((P )) is the smallest ideal containing N . Equivalently,

((P )) = {g1p1 + . . .+ gmpm|g1, . . . , gm ∈ R[r1, . . . , rn], p1, . . . , pm ∈ P}

An ideal I is said to be finitely generated if there is a finite set N such that I = ((P )). A famous theorem due to
Hilbert states that all ideals in ℜ[r1, . . . , rn] are finitely generated. As a result, algebraic assertions can be seen



116 International Journal Information Theories and Applications, Vol. 20, Number 2, 2013

as the generators of an ideal and vice-versa. Any ideal defines a variety, which is the set of the common zeros of all
the polynomials it contains.
(Ideals intersection) A set K is an intersection of ideals I = {f1, . . . , fl} and J = {g1, . . . , gm} if

K = {s(r1, . . . , rn)|s(r1, . . . , rn) =
l∑

i=1
pi · fi =

m∑
j=1

qj · gj

where p1, . . . , pl, q1, . . . , qm ∈ ℜ[r1, . . . , rn]}.

Theorem 1 (Ideal intersection). Let I and J be ideals in R[r1, . . . , r2].

I ∩ J = (t · I + (1− t) · J) ∩ ℜ[r1, . . . , r2] (1)

where t is a new variable [15].

Proof. Note that tI + (1− t) J is an ideal in ℜ[x1, . . . , xn, t]. To establish the desired equality, we use strategy
of proving by inclusion in both directions.
Suppose f ∈ I ∩ J . Since f ∈ I , we have t · f ∈ tI . Similarly, f ∈ J implies (1− t) · f ∈ (1− t) J . Thus,
f = t · f + (1− t) · f ∈ tI + (1− t) J . Since I, J ⊂ ℜ[x1, . . . , xn].
To establish inclusion in the opposite direction, suppose f ∈ (tI + (1− t) J) ∩ ℜ[r1, . . . , rn]. Then f (r) =
g (r, t) + h (r, t), where g (r, t) ∈ tI and h (r, t) ∈ (1− t) J . First set t = 0. Since every element of tI is
a multiple of t, we have g (r, 0) = 0. Thus, f (r) = h (r, 0) and hence, f (r) ∈ J . On the other hand, set
t = 1 in the relation f (r) = g (r, t) + h (r, t). Since every element of (1− t) J is a multiple of 1 − t, we
have h (r, 1) = 0. Thus, f (r) = g (r, 1) and, hence, f (r) ∈ I . Since f belongs to both I and J , we have
f ∈ I ∩ J . Thus, I ∩ J ⊃ (t · I + (1− t) · J) ∩ ℜ[r1, . . . , r2] and this completes the proof. �
Generator finds invariants in language L. Generator consist of 3 components: function ef : L × U × Y → L
named effect, semi-lattice structure of assertion’s set on L and iterative algorithm description.
Function ef transform assertion u that is true before execution of assign operator y ∈ Y in condition ef(u, y) that
is true after execution.
SinceN and ef(N,u, y) represent some of the predicates on the setD, then they can be considered as relations
on D, defined by these predicates. Then the power set B(L) can be presented in the form of a lattice with
respect to set-theoretic operations of union and intersection, which contains zero ∅ and one L. Expressions
ef(N, u, y)

∩
(
∪
)ef(N ′, u′, y′) in this case refers to the intersection (union) of relations at D.

The number of different possible paths in the program (in the presence of at least one cycle) can be infinite. Then
the process of building assertion basis of state a can also become infinite. However, let consider states ai of U -Y
program denoteA that have transitions (ai, ui, yi, a) with a andNi, basis of assertions for state ai. Then equality

has place Na =
k∩

i=1
ef(Ni, ui, yi) is assertion basis for state a and candidate for invariant basis in this state.

After assertion basis is not changing with iterations then assertion basis becomes invariant basis. This fact is the
starting point for the construction of two iterative methods for generating invariants and has strict proof [20].
Upper Approximation Method (UAM) is the iterative process [11] that is defined by the recurrence relation

N (n)
a = N (n−1)

a

∩
(

∩
(a′,u,y,a)∈S

ef(N
(n−1)
a′ , u, y)), n > 0, a, a′ ∈ A (2)

and the initial approximation is defined by N (0)
a0 = {u} and some collection of simple paths that cover whole

set of states. The evaluation of the initial approximation carried out along these paths, starting with N (0)
a0 . If

for some a′ ∈ A is already known N (0)
a′ and a transition (a, u, y, a′) belongs to one of considered paths and

N
(0)
a is undefined then we set N (0)

a = ef(N
(0)
a′ , u, y). From equality 2 for every a ∈ A we have inclusions



International Journal Information Theories and Applications, Vol. 20, Number 2, 2013 117

N
(0)
a ⊇ N

(1)
a ⊇ . . .. Therefore, required invariant basis can be obtained only after the stabilization of the iterative

process. Since invariants search process can be infinite, that is UAM disadvantage. However, if the effective
completion generates more complete basis of invariants than the lower approximation method [11].
Methods for generating invariants shows that finiteness of the invariants search process is closely connected with
language terms of L. The most common languages are conditions languages such as equalities and inequalities
based on that fact that any programming language virtually includes predicates of equality and inequality.

Algorithm of UAM

Let provide listing in pseudo-code of UAM from [11].
Input: U-Y scheme A, N0 is basis of invariant for state a0.
Output: Na0 , Na1 , . . . , Na∗ invariant basis for every state.
Na0 := N0

ToVisit.push(a0)
Visited := {}
while ToVisit ̸= ∅ do

c := ToVisit.pop()
Visited := Visited

∪
c

for all (c, y, a′) do
if Not a′ in Visited then

Na′ :=ef(Nc, y)
ToVisit.push(a′))

end if
end for

end while
ToVisit := A/{a0}
while ToVisit ̸= ∅ do

c := ToVisit.pop()
if Nc ̸= ∅ then

N := Nc

for all (a′, y, c) do
N := N

∩
ef(Na′ , y)

end for
if (N ̸= Nc) then

Nc := N
ToVisit := ToVisit

∪
{a| for all (c, y, a)}

end if
end if

end while

Therefore, relationship(ef(. . .)), intersection(
∩

) and stabilization problems should be solved before algorithm
application for polynomial algebra.
Relationship Problem. Given the assertions algebraic basis Na and the operator y ∈ Y . Construct the algebraic
assertions basis ef(Na, y) that implies after assignment operator.
We consider particular case of invertible assignments to solve relationship problem. In this case equality that
assignment presents r′i = p(r1, . . . , rn) can be transform as ri = p(r1, . . . , r

′
i, . . . , rn), where r′i is new

value of variable. Effect function that execute assignment of schema A is simple replacement old variable with new
polynomial.



118 International Journal Information Theories and Applications, Vol. 20, Number 2, 2013

Intersection Problem. Given the algebraic basis of assertions sets I and J . Construct the algebraic basis
assertions set I ∩ J . Accordingly to Theorem 1 intersection construction can be held using formula (1).
Stabilization Problem. Show that the construction process of basis assertions sets associated to the program
states will finish in finite time. Investigation of this problem is out of scope of this paper.

Realization

Consider theU -Y schema from Fig. 1. On this program, we will show work of algorithm considering data algebra as
polynomial ring [17]. Applying the UAM to the U - Y schema we will receive next chain of computing and invariant
relations.

a0

?

1/y1 = (u := x;

z := 0;)

1 - a∗
u = 0/ε;

-

y1 = (u := u − 1;

z := z + y; )

Fig. 1. U -Y schema MULT(x, y)

We generate the initial sets of assertions during first stage of the algorithm. At first, assertions bases for all the
states of the program are assigned to 1 (∀N : N

∩
1 = N ), with ToV isit = {a0}.

We move to state a0 of ToV isit and modify V isited = {a0}. There is only one edge from a0:

(a0, 1, y = (u := x; z : = 0), a1).

We assign new value to assertion basis Na1 analyzing this edge:

Na1 := ef(Na0 , y) = ef(1, (u := x, z := 0)) = {u− x = 0, z = 0}.

In this case, ToV isit = {a1}. We move to state a1 of ToV isit and modify V isited = {a0, a1}. State a1 has
two outgoing edges (a1, (u ̸= 0), (u := u− 1; z := z + y), a1), (a1, (u = 0), ε, a∗). We consider only the
edge a1 to a∗ because a1 ∈ V isited.
After analysis we decide replace the edge (a1, (u = 0), ε, a∗) with (a1, 1, u := 0, a∗) That is required for every
condition of equality type and should be replaced with assignment. We assign new value to assertion basis Na∗

analyzing this edge:

Na∗ := ef(Na1 , y) = ef({u− x = 0, z = 0}, {u := 0}) = {x = 0, z = 0}.

In this case, ToV isit = {a∗}.
We move to state a∗ of ToV isit and modify V isited = {a0, a1, a∗}. There are no edges from a∗. First stage
of the UAM is over because ToV isit = ∅. We proceed to the second stage of the algorithm.
On second stage basis of assertions is generated on each step of iteration. After we intersect basis of obtained
assertions with received on previous step. Start with initializing ToV isit = A/{a0} = {a1, a∗}.
We continue with state a1 of ToV isit . Initial value of assertion basis is

N = Na1 = {u− x = 0, z = 0}.

State a1 has two edges (a0, 1, (u := x; z := 0), a1), (a1, (u ̸= 0), (u := u− 1; z := z + y), a1).
We assign new value to assertion basis N analyzing (a0, 1, (u := x; z := 0), a1):



International Journal Information Theories and Applications, Vol. 20, Number 2, 2013 119

N := N
∩
ef(Na0 , y) := N

∩
ef(1, (u := x; z := 0)) =

= {u− x = 0, z = 0}
∩
{u− x = 0, z = 0} = {u− x = 0, z = 0}.

After analysis of (a1, (u ̸= 0), (u := u− 1; z := z + y), a1) new value to assertion basis N is assigned:

N := N
∩
ef(Na1 , y) := N

∩
ef({u− x = 0, z = 0}, (u := u− 1; z := z + y)) =

= {u− x = 0, z = 0}
∩
{u+ 1− x = 0, z − y = 0} = {z + (u− x)y = 0, (u− x)2 + (u− x) = 0}.

Based on N ̸= Na1 we receive new assertion basis for a1

Na1 := {z + (u− x)y = 0, (u− x)2 + (u− x) = 0}

and

ToV isit := ToV isit
∪
{a1, a∗} = {a1, a∗}.

We move to state a∗ of ToV isit and modify V isited = {a1}. Let assign N = Na∗ = {x = 0, z = 0}. State
a∗ has only one edge (a1, 1, u := 0, a∗).
We assign new value to assertion basis N analyzing this edge:

N := N
∩
ef(Na1 , y) = = N

∩
ef({z + (u− x)y = 0, (u− x)2 + (u− x) = 0}, u := 0) =

= N
∩
{z − xy = 0, x2 − x = 0} = {x = 0, z = 0}

∩
{z − xy = 0, x2 − x = 0} =

= {z − xy = 0, x2 − x = 0}.

Based on N ̸= Na∗ we receive new assertion basis for a∗:

Na∗ := {x = 0, z = 0}.

We move to state a1 of ToV isit and modify V isited = ∅. Let assign

N := Na1 = {z + (u− x)y = 0, (u− x)2 + (u− x) = 0}.

State a1 has two edges (a0, 1, (u := x; z := 0), a1), (a1, (u ̸= 0), (u := u− 1; z := z + y), a1).
We assign new value to assertion basis N analyzing (a0, 1, (u := x; z := 0), a1):

N := N
∩
ef(Na0 , y) := N

∩
{u− x = 0, z = 0} =

= {z + (u− x)y = 0, (u− x)2 + (u− x) = 0}
∩
{u− x = 0, z = 0} =

= {z + (u− x)y = 0, (u− x)2 + (u− x) = 0}.

After analysis of (a1, (u ̸= 0), (u := u− 1; z := z + y), a1) new value to assertion basis N is assigned:

N := N
∩
ef(Na1 , y) := N

∩
ef(Na1 , (u := u− 1; z := z + y)) = {xy − uy − z = 0, . . .}.

Based on N ̸= Na1 we receive new assertion basis for a1

Na1 := {xy − uy − z = 0, . . .}

and

ToV isit := ToV isit
∪
{a1, a∗} = {a1, a∗}.

We continue with state a∗ of ToV isit and modify V isited = {a1}. Initial value of assertion basis received from
previous step is



120 International Journal Information Theories and Applications, Vol. 20, Number 2, 2013

N = Na∗ = {z − xy = 0, x2 − x = 0}.

State a∗ has only one edge (a1, 1, u := 0, a∗).
We assign new value to assertion basis N analyzing this edge:

N := N
∩
ef(Na1 , u := 0) := N

∩
{xy − z = 0, . . .} = {xy − z = 0, . . .}.

Based on N ̸= Na∗ we receive new assertion basis for a∗: Na∗ := {xy − z = 0, . . .}.
Moving forward algorithm’s steps we noticed that dimensions of bases Na1 and Na∗ doesn’t change, as well as
one of the polynomials of these bases. This polynomials are xy − uy − z = 0 in a1 and xy − z = 0 in a∗. As
we notice from formulation of the problem invariant z = xy validates programs. Proof of program correctness is
obvious even without help of an automatic prover.

Conclusion

In this paper we present theoretical basis and realization for application of UAM on program over polynomial ring
as data algebra. We provide important definitions for program analysis and further methods. Part of polynomial
ring theory were referred. Ideal interpretation for program invariants was chosen. We present reasoning for iterative
approximation methods. Operations defined on Gröbner basis satisfy all requirements stated in [11] to apply UAM.
Method has been implemented using Maple software that contains powerful tools for symbolic operations. We
showed method work on example and provided step by step listing of operations.
Development of iterative methods for invariant generation are facing with considerable challenge. However, development
of programing languages, object oriented programming, lambda functions solving invariant generation problems for
these languages requires the use of rather complex methods of modern general algebra.

Bibliography

[1] Kaufmann M., Manolios P., Moore J.S. Computer Aidede Reasoning: An Approach. Kluwer Academic
Publishers. - 2000. - 212 p.

[2] Nipkow T., Paulson L., Wenzel M. Isabelle/HOL: A Proof Assistant for Higher Order Logic. Springer Verlag. -
LNCS. - 2002. - v. 2283. - PP. 3 – 51.

[3] Oppen D.C., Cook S.A. Proving Assertion About Programs that Manipulate Data Structures.
In Proceed. of the 7-th Annual ACM Symposium on Theory of Computing (STOC 1975). - Aluquerque. - NM.
- ACM Press. - 1975. - PP. 107 – 116.

[4] Clarke E.M., Emerson E.A. Design and Synthesis of Synchronization Skeleton Using Branching Time
Temporal Logic. In D.C. Kozen, edit. Logic of Program Workshop. - Springer Verlag. - LNCS. - 1981. - v.
131. - PP. 52 – 71.

[5] Queille J.P., Sifakis J. Proving Specification and Verification of Concurent Systems in CESAR. In Proceed. of
the 5-th Intern. Symposium on Programming. - Springer Verlag. - LNCS. - 1982. - v. 137. - PP. 373 – 351.

[6] Jones R. B. Simbolic Simulation Method for Industrial Formal Verification. Kluwer Academic Publishers. -
2002. - 286 p.

[7] Chou C. The Mathematical Foundation of Symbolic Trajectory Evaluation. In N. Halbwach and D. Peled, edit.
Proc. of the 11-th International Conference on Computer Aided Verification (CAV 1999). - Springer Verlag. -
LNCS. - v. 1633. - 1999.

[8] Hoare C.A.R. An axiomatic basis of computer programming. CACM. -1969. - v.12. - PP. 576–580.



International Journal Information Theories and Applications, Vol. 20, Number 2, 2013 121

[9] C.E.Shannon. The Mathematical theory of communication. In: The Mathematical Theory of Communication.
Ed. C.E.Shannon and W.Weaver. University of Illinois Press, Urbana, 1949.

[10] Hoare T. The Verifying Compiler: A Grand Challenge for Computing Research. Journal of the ACM, No.
50(1), P. 63–69, 2003

[11] Godlevskii A. B., Kapitonova Y. V., Krivoi S. L., Letichevskii A. A. Iterative Methods of Program Analysis.
Cybernetics and Systems Analysis Vol. 25, No. 2, 1989, 139–152.

[12] Krivoi S. L. About one invariant search algorithm in programs. - Cybernetics and Systems Analysis. - 1981. -
No. 5, p. 12–18.

[13] Krivoi S. L. About invariant relations search in programs. Mathematical theory and design of computing
machines -Kiev: UK AN USSR. -1978. - p. 35–51.

[14] Letichevsky A. A. On finding invariant relations of programs. In Algorithms in Modern Mathematics and
Computer Science (Urgench, 1979), number 122 in LNCS, pages 304-314, 1981.

[15] Buchberger B., Winkler F. Gröbner Bases and Applications, Cambridge University Press, 1998

[16] Maksymets O. M. Check of Invariants generated by Iterative Algorithm for programs on Absolutely Free
Algebra using Mathematical Induction, Problems of Programming 2012, Vol. 2-3, 228-333

[17] Maksymets O.M. Upper approximation method for polynomial invariants Theoretical and Applied Aspects
of Cybernetics. Proceedings of the 2nd International Scientific Conference of Students and Young Scientists.
Computer Science Section. - Kyiv. - 2012. - P. 45–47.

[18] Lvov M. S. About one algorithm of program polynomial invariants generation Proc. Workshop on Invariant
Generation: (Techn. rep.) Univ. of Linz; Eds. M. Giese, T. Jebelean. N 0707 (RISC Report Series). Linz
(Austria), 2007. P. 85–99 (electronic).

[19] Lvov M., Kreknin V. Nonlinear invariants for linear loops and eugen polynomials. - Programming technical
complexes. - 2012.

[20] Godlevskii A. B., Kapitonova Y. V., Krivoi S. L., Letichevskii A. A. Iterative Methods of Program Analysis.
Equalities and Inequalities. -Cybernetics and Systems Analysis. - 1990. - No. 3, p. 1–10.

[21] Sabelfeld V. K. Equivalente Transformationen fur Flussdiagramme. -Acta Informatica. - v. 10. -1978. - p.
127–155.

[22] Markus Müller-Olm, Michael Petter, and Helmut Seidl Interprocedurally Analyzing Polynomial Identities. -
Symposium on Theoretical Aspects of Computer Science), LNCS 3884, Springer, 2006. - p. 50–67.

[23] Enric Rodriguez-Carbonell, Deepak Kapur An Abstract Interpretation Approach for Automatic Generation of
Polynomial Invariants Proc. Static Analysis Symposium (SAS), Italy, August 2004.

Authors’ Information

Sergii Kryvyi Professor, Cybernetics department, Taras Shevchenko National University of Kiyv,
Ukraine.
e-mail: s.l.krivoi@gmail.com
Major Fields of Scientific Research: Verification Theory, Petri Nets, Software Development.
Oleksandr Maksymets Ph.D. student, Cybernetics department, Taras Shevchenko National
University of Kiyv, Ukraine.
e-mail: maksymets@gmail.com
Major Fields of Scientific Research: Verification Theory, Data Flow Analysis.


