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Abstract: In this paper, combined exterior penalty function-conjugate gradient algorithm for a constrained optimal 
control problem for the coefficients of a quasilinear equation is applied. The constrained optimal control problem 
has been converted to one of the optimization problem using a penalty function technique. One of the approaches 
of building the gradient of the modified functional using the solving of the adjoint problem is investigated. A 
special case of the optimal control problem for the considering problem to illustrate the numerical results is 
investigated. The computing optimal controls are helped to identify the unknown coefficients of the quasilinear 
parabolic equation. The numerical results are presented. 
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Introduction 

Owing to its importance for engineering applications, the field of partial differential equations (PDE) constrained 
optimization has become increasingly popular [Ahmed,1996], [Farag,2012],[Iskenderov,1983]. In them, the 
control can occur both in the equations and in the boundary and initial conditions. These problems arise in 
modeling processes such as heat conduction, diffusion, filtration, in evaluating risks in financial mathematics, etc 
[Tagiev,2009], [Vasilev,1981], [Farag,2006]. In this paper, combined exterior penalty function-conjugate gradient 
algorithm for a constrained optimal control problem for the coefficients of a quasilinear equation is applied. The 
constrained optimal control problem has been converted to one of the optimization problem using a penalty 
function technique. One of the approaches of building the gradient of the modified functional using the solving of 
the adjoint problem is investigated. A special case of the optimal control problem for the considering problem to 
illustrate the numerical results is investigated. The computing optimal controls are helped to identify the unknown 
coefficients of the quasilinear parabolic equation. The numerical results are presented. 

Problem Formulation 

Let D  be a bounded domain in NE   and ],0(,]},0(,:),{( TSTtDxtx   

and }2,0,),,(:),,(:{
,2210210

2
 mRvlvvvvvvvvvV mlmmmmm  . 

Consider the following process  
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It is proved in [Ladyzhenskaya,1973] that, under the foregoing assumptions, a reduced problem (1) - (3) has a 

unique solution and niC
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A2) The function ),,( 2vtxf  is given function continuous in 2v  on 2l  for almost all ),( tx .  
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The inequality constrained problem (1) - (5) is converted to a problem without inequality constrains by adding a 

penalty function [Farag, 1996; Yenia, 2005] to the objective function )(vf yielding the following )(, vk  
function: 
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Now, we give the following theorems [Farag, 2012]: 

Theorem 1: The functional )(0 vf  is continuous on V.  

Theorem 2: For any 0  the problem (1) - (4) has at least one solution.  

Theorem 3: There exists a dense set K of 2l such that for any mmKwm ,0,  . 

The sufficient differentiability conditions of function (5) and its gradient formulae will be obtained by defining the 

Hamiltonian function ),,( vx   as [Tagiev, 2009]: 
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Theorem 4: Let the above assumptions be satisfied. Then )(, vk  is Frechet differentiable, and its gradient 

satisfies the equality 
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COMBINED EXTERIOR PENALTY FUNCTION – CONJUGATE GRADIENT ALGORITHM  

A) Statement  of the control problem and Modified function 

Let D  be a bounded domain in NE  and )},0(,:),{( TtDxtx  . Consider the following 
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are required to minimize the functional  
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where ),,( vtx  is the adjoint state of the above PDE and from the results the section 1 we can compute the 

gradient 
v

vk


 )(, . 

B) Numerical  Algorithm 

With the gradient obtained 
v

vk


 )(, , the following conjugate gradient method [Rao,1984] combined with the 

penalty function method [Yenia, 2005] can be developed for the optimal control values of Vv . The 

outlined of the algorithm for solving the optimal control problem are as follows: 
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Step 3: Set )0()0()0()0( SvS  , with )0(S  being the optimal step length in the searching 

direction )0(S . Set 1IT  and go to step 4. 
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Step 5: Compute the optimum step length )( It  in the searching direction )( ITS  and update  )( ITv  by 
)()()()( ITITITIT Svv  . 

Step 6: Test the optimality of )1( ITu . If )1( ITv is optimum, stop the process.  Otherwise, set 1 ITIT , 
)1(

1
)(  ITIT AA   and go to Step 4. 

Numerical Results and Dissection 

The problem in the above section is considered as one of the identification problems on definition of unknown 
coefficients of parabolic quasilinear equation type. The numerical results were carried out for the following 
examples: 
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The Numerical study has given the following results:  

1) Knowing the computed optimal control values *v obtained by the above numerical algorithm, we can calculate 

the approximate values of the unknown coefficients 
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each one can be represented in a series according to every example. 

2) For example 1, in Figure 1 the curves are denoted by ,6),(,4),( **  NCvuLNCvuL are the 

approximate values of ),( vu  with *v . Obviously, by increasing the number of controls NC, the approximate 

values of the coefficient ),( *vu  are agree with the exact values. Also, in Figures 1 the curves are denoted by 

,6,4 LERRLERR  are the absolute errors of ),( vu . It is clear that the absolute errors are 

decreased by increasing the number of controls NC. 

 

Figure 1 
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3) For example 2, the curves of the initial and computed optimal control by the above numerical algorithm versus 
number of controls (NC) are displayed in Figure 2. 

 

 
Figure 2 

4) For examples 4, Figure 3 shows the values of the components of the gradient modified function 
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at every iteration (IT) versus number of controls (NC). 

 

 

Figure 3 
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5) For example 2, the maximum absolute errors of ),( vu and ),( vuB versus the number of controls NT are 

displayed in table (1) which are calculated by the following formulae  
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It is clear that the maximum absolute errors are decreased by increasing the number of controls. 

 

Table 1 

6) For example 3, Figure 4 we display the exact and the approximate solutions ),,( *vtxu  of the state 

equation (29) - (31) at the computed optimal control values *v .  

 

 
Figure 4 
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