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Abstract: This paper introduces APA (“Artificial Prion Assembly”): a pattern recognition system based on artificial 
prion crystalization. Specifically, the system exhibits the capability to classify patterns according to the resulting 
prion self- assembly simulated with cellular automata. Our approach is inspired in the biological process of 
proteins aggregation, known as prions, which are assembled as amyloid fibers related with neurodegenerative 
disorders. 
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Introduction 

Molecular self-assembly is one of the most relevant biological mechanisms related with the self-organization and 
biological functions exhibited within cells [Lahoz-Beltra, 1997]. Cellular automata are able to capture the main 
features of biomolecules that form part of cellular structures and organelles. A breakthrough in the computer 
modeling and simulation of proteins took place when cellular automata modeling was applied to simulate the 
interaction of proteins during self-assembly [Lahoz-Beltra, 1999]. In a different realm spin glasses and the 
Hopfield content addressable memory exhibit emergent collective computational abilities. Such capabilities are 
related with phase transitions between the crystalline state (low temperature and energy) and liquid state (high 
temperature and entropy). In consequence, crystalization process may be a manifestation of the ability of Nature 
to process information, e.g storage and pattern recognition.  

Cellular automata belong to a family of discrete, connectionist techniques being used to investigate fundamental 
principles of dynamics, evolution, and self-organization. In general, they constitute exactly computable models for 
complex phenomena and large-scale correlations that result from very simple short-range interactions. In this 
paper, a cellular automaton is designed to model the proteins behavior during self-assembly. The cellular 
approach makes it possible to achieve a theory-based view of morphogenesis detail to link the results directly to a 
classification model. In this paper we explore how prion protein aggregation or self-assembly could be used to 
design an artificial pattern recognition system. The proposed computational system has been dubbed as APA 
(“Artificial Prion Assembly”) memory. 

Prion protein aggregation and its simulation models 

A prion is an infectious agent composed of protein in a misfolded form. Prion diseases are fatal 
neurodegenerative disorders associated with the polymerization of the cellular form of prion protein (PrPC) into 
an amyloidogenic β-sheet infectious form (PrPSc) [Fontaine & Brown, 2009]. 
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Prions propagate by transmitting the misfolded protein state. When a prion enters a healthy organism, it induces 
existing properly folded proteins to convert into the disease-associated prion form; the prion acts as a template to 
guide the misfolding of more proteins into prion form. These newly formed prions can then go on to convert more 
proteins themselves; this triggers a chain reaction that produces large amounts of the prion form. 

Under normal conditions, the high-energy barrier separates PrPC from 
PrPSc isoform. However, pathogenic mutations, modifications as well 
as some cofactors, such as glycosaminoglycans, nucleic acids, and 
lipids, could modulate the conformational conversion 

process. Abundant nonfibrillar oligomeric intermediates are a common 
feature of amyloid formation [Bemporad & Chiti, 2013], and these 
oligomers, rather than the final fibers, have been suggested to be the 
toxic species in some amyloid diseases. 

Evidence suggests that an aggregated form of PrPSc is in fact the key 
component in the disease [Stahl et al., 1987; Brown et al., 1997] but 
the precise character of the infectious aggregates is unclear. 
Therefore, the study of in vitro aggregation of recombinant PrP is 
instrumental in providing insight into the mechanisms behind 
conversion from PrPC to PrPSc and aggregate accumulation, as well 
as to determine the conformation and species that is actually 
responsible for prion pathogenesis. 

Many efforts are dedicated to design aggregation models developed. Aggregation of PrP has been modelled 
using three kinetic theories: template assisted-aggregation, nucleation-elongation polymerization, and branched-
chain polymerization [Fontaine & Brown, 2009]. Each of these theories has been reviewed elsewhere, but in brief 
summary all employ the idea that a 
smaller unit of PrP is responsible for 
further catalysing protein aggregation. 

Mainly, models of aggregation 
processes in prion disease include one-
dimensional, fibrillar aggregation-and-
fission models, since aggregates grown 
in vitro are typically seen to be fibrillar. 
There are several approaches used to 
model this kind of processes. These 
models range from stochastically and 
deterministic approaches through 
known kinetic models based on 
differential equations [Greer et al, 2006] 
to cellular automata based models 
[Kulkarni et al, 2003]. 

Diffusion-Limited Aggregation and Crystal Growth models 

Diffusion-limited aggregation (DLA) [Witten & Sander, 1981]  is an idealization of the process by which matter 
irreversibly combines to form dust, soot, dendrites, and other random objects in the case where the rate-limiting 

Figure 1. TEM images of prion-seeded Ure2p fibrils 
(a and b) and unseeded Ure2p fibrils (c and d) 

before PK treatment (a and c) and after PK 
treatment (b and d). TEM grids are negatively 

stained with uranyl acetate. Scale bars represent 
200 nm. [Kryndushkin et al, 2011] 

Figure 2. Prion protein aggregation kinetic models. Schematic illustrating the differences 
between the kinetic theories of PrP aggregation. [Fontaine & Brown, 2009] 
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step is diffusion of matter to the aggregate. Diffusion is the movement of particles due to temperature fluctuations 
and seen in Brownian motion. By the other hand, an aggregate is a collection of particles that are connected 
together this growing process is called diffusion-limited when the aggregate increases in size by one particle at a 
time. A particle is appear from a random position far away and is allowed to diffuse. If it touches the seed, it is 
immobilized instantly and becomes part of the aggregate. This happens since the density of particles is low and 
thus the particles do not come into contact with each other before reaching the aggregate. 

The growth processes [Levi & Kotrla, 1997] are described by nonlinear partial-differential equations and both the 
analytical and the numerical treatments of these equations are extremely difficult even on current computers. As 
a result, many of the questions concerning structure formation and transitions between different growth 
morphologies have not so far been satisfactorily answered. Much effort has especially been devoted to 
establishing the relationship between cluster morphology and the growth mechanism. 

The crystal growth is a phase transition process with sharp border between it and initial feeding phase like a 
liquid, gas or plasma. The structure element, molecule, of the crystal could be determined as a minimum part of it 
when a reaction of incorporating itself in the crystal will effect with changing energy of the whole system that will 
be equivalent to the condensation energy of the corresponding mass of crystal. The molecule is the minimum part 
of the crystal that behaves as a whole crystal. The principal difference of behavior of molecules in liquids is based 
on the principle of the long order in the crystals structure. Each molecule has exact position relatively to the other 
in crystal. 

In the every moment of time one molecule on the surface of a crystal have two options: to get out to initial matter 
or stay incorporated as a part of crystal. The same choice is true for the molecule outside of crystal in direct 
closeness to its surface. It can be incorporated into body of crystal or stay outside. Most of simulation models 
implement these phenomena by calculating these probabilities for each position on the surface of the crystal and 
comparing with the random number to decide what one of the possible events will happen.  

 

 

 

 

 

 

 

 

 

Spin glass models and addressable memories 

At this point it should be noted that many studies find that some types of addressable memory as Hopfield’s 
neural network [Hopfield, 1982] was inspired by analogies with the physics of magnetism the same as 
crystallization kinetics. Main characteristic of the Hopfield’s model is the recurrence of the network with total 
connectivity and a symmetric weight matrix; binary valued outputs, which provide a simple prescription for the 
weights, with no training needed; output settles down to a steady state. 

As it was mentioned, there are some relations between the behavior of addressable memories and the physics of 
magnetic spin systems [Edwards & Anderson, 1975]. In particular, phase transitions represent a competition 
between minimizing the energy (usually producing an ordered state) and maximizing the entropy (increasing the 

Figure 3. Sample DLA images from java applet: http://www.joakimlinde.se/java/DLA/ 
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disorder). This can be understood in terms of the behavior to the free energy, F=E-TS, which tends to a minimum 
for a system in thermal equilibrium. At low values of the temperature T, is more important to minimize the energy 
E. When T is high, then large values of the entropy S will make F smaller. The most interesting aspect is the 
abrupt, discontinuous nature of the transition between the ordered state and the disordered state occasionally 
attributed to emergent collective behavior. This behavior depends on the values of the positions and momentum 
of each of the molecules.  

The key to being able to quantitatively describe the free energy and related thermodynamic quantities is to 
express the total energy of the system in terms of the states of the atoms. In this sense, it is described the 
Hopfield’s model behavior where, in the presence of more than one pattern, the weights aren't optimum for the 
retrieval of any one pattern, but represent an average or compromise over the set of patterns. Instead of having a 
single minimum energy state, we will have a local minimum for each pattern. If the initial state of the network isn't 
too far from the stored state, the system will slide into the nearest local minimum, which will be the desired output 
state. When it try to minimize the error in a feed-forward net by using the back-propagation algorithm, getting 
stuck in a local minimum can keep us from finding the global minimum that produces the best set of weights. In 
this case, local minima are desirable.  

Hopfield found in his computer experiments that the ability of the network to retrieve patterns fell dramatically 
when the number of stored patterns approached 15% of the number of neurons. As the number of patterns 
becomes large, the weight begins to look like a random variable. The term in the sum that favors a particular 
pattern is greatly outweighed by all the others, and the associative memory begins to look like a true spin glass.  

Analogously to the above approach, the work presented in this paper is based on parallelism between the 
phenomena of crystallization (in the case of prions) and addressable memories behavior that implement pattern 
recognition capabilities as it is described below. 

Pattern recognition system based on Prion Crystalization 

This work presents a pattern recognition system based on a model of prion crystallization. This proposed model 
represents an unsupervised learning system. The theoretical model is composed of two phases: Phase-I) in 
which is modelled the winged-helix dimerization process through a probabilistic cellular atuomata approach in 
order to obtain the nucleation seeds of the prion-crystallization process. Phase-II) in which crystallization process 
will model prion dynamics from the nucleation centers obtained. The system will be able to classify input patterns 
by decoding implicit information from the morphology of the crystal-prions, which will be obtained as a result of 

the application of the two phases of the 
model. 

As mentioned, the proposed system is 
inspired by the biochemical process by 
which certain strands of DNA in vitro affect 
the process of prion formation. Specifically, 
this process is described in the work “A 
DNA promoted amyloid proteinopathy in 
Escherichia coli" [Fernandez et al, 2011]. 
This research team goes into detail about 
this phenomena, core of proposed model 
in its Phase-I, and states that similarly to 
the mammalian proteins PrP and a-

Figure 4. Schema of the Probabilistic Cellular Automata proposed. 
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synuclein, the winged-helix dimerization (WH1) domain of the bacterial plasmid-encoded RepA protein can 
assemble into amyloid fibers upon binding to DNA in vitro.  

In the proposed model, this phenomenon is simulated by a two-level automaton. At first level (Level-I) each 
occupied cell represents one of the three different DNA sequences (ADN1, ADN2, ADN3) that can interact with the 
protein subunits (PrP). At second level (Level-II) proteins are represented. These cells can transit, with some 
probability defined at probability vector (Pv), from six different states according to the transition rules defined in 
each case. The formalization of the proposed cellular automata is described below. Our cellular automata is 
defined by M= (G, G0, N, Q, δ, T), where: 

 G: matrix automata (Q-dimensional); 

 G0: set of initial values of the automata (G) states; 

 N: function that assigns each automaton the set of neighbors (Neighborhood function); 

 Q: sets of possible states; 

 δ: transition function that assigns a new state to an automaton having into account the state of all its 
neighbors; 

 T: set of final states. 

The automata consists of a set of six possible states (Q= {S0, S1, S2, S3, S4, S5}), it implements the well-known 
function of Von Neumann neighborhood [Kennedy & Mendes, 2003] and has a unique final state, S4. Each of the 
possible states represents a different physicochemical prion formation state during the process, thus: 

 S0= represents the absence of protein in the cell; 

 S1= represents a stable state of the protein. This state is not affected by the interaction with the DNA 
grid (Level-I); 

 S2= molecular state of instability. Cells in this state are potentially exposed to interaction with Level-I. 
The neighborhood function is applied and executed transition rules; 

 S3= represents a functional protein; 

 S4= represents a prion infectious form. Seed of the nucleation center; 

 S5= represents a nonfunctional protein; 

The transition rules, TR = {p0,1, p1,2, p2,3, p2,4, p2,5, p3,0, p5,0}, are applied in each case with a certain probability. In 
particular, the rules p0,1 and the set {p3,0 ,p5,0} represent the 
transition probability S0→S1, S3→S0 y S5→S0 , these 
probabilities represent the rate of molecular generation and 
degradation rates respectively. In the case of the rule p1,2 

represents the transition probability S1→S2 in which the cell 
moves from one stable state to a state of molecular instability. 
Finally, the rule set {p2,3 ,p2,4, p2,5} implements the transition 
functions related to the interaction with DNA sequences 
(Level-I) by applying the selected neighborhood function 
(S2→S3 binding to ADN1, S2→S4 binding to ADN2, S2→S5 

binding to ADN3). This behavior is shown in FIGURE 5. 
Figure 5. Pion-crystalization Automaton. State-transition detail. 
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In this paper are shown two simulations of the proposed model. The first one corresponds to the simulation 
without the presence of input pattern. By this simulation it can appreciate the molecular concentrations of different 
states according to the underlying model at Phase-I. The second simulation presents the results obtained during 

the training phase of the system. Note that in this 
work the results related to Phase-II of the model 
(algorithm crystallization) are not shown. The 
results obtained by applying the model of 
crystallization and the appropriate decoding for 
final classification of the patterns will be shown in 
the near future. 

At first simulation, the initial population of items, 
molecules, is randomly distributed on a two-
dimensional square lattice with periodic boundary 
conditions, Nx×NY=50×50. The initialization of the 

Level-I grid corresponds to three-type DNA initial concentration (CDNAn). These values have been calculated 
according to the following proportions: CDNA3 > (CDNA1 + CDNA2) and CDNA1 > CDNA2. In FIGURE 6 results over 10 
simulations with same settings can be observed. These average concentrations were obtained after 30 system 
iterations and with rates of generation and degradation of 0,15 and 0,45 respectively, for each simulation. As you 
it can see the concentration of state 3 (functional proteins triggered by DNA1) is higher despite the initial 
conditions of concentration of DNA sequences, where the proportion of type sequences DNA3 is majority. This 
behavior corresponds proportionally to results observed in real (in-vitro) prion formation processes. 

Finally, it is shown the 
results obtained in the 
training phase of the 
proposed system, 
FIGURE 7. This training 
experiment aims to get 
the system to recognize 
alphanumeric characters. 
Specifically, in the case 
above, is introduced an 
input pattern which 
codifies the character 'A' 
(FIGURE 7-a), the input 
pattern is encoded in the 
Level-I of the model. The 
DNA sequences of this 
level are initialized with 
concentrations according to the codification of the input pattern. As a result of applying the underlying algorithm it 
is obtained the corresponding Level-II, state level, configuration (FIGURE 7-b) and also the resulted configuration 
of Level-III, nucleation seed level, (FIGURE 7-c); starting point of crystallization process. As mentioned above, 
this process will result in encoded input patterns implicitly in the resulting morphology of prion forms. By applying 
the decoding algorithm designed for the system will be able to classify unknown input patterns. 

 

Figure 6. Average of states concentration chart. 
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Figure 7. Pion-crystalization Automaton. State transition detail. a)encoded pattern in Level-I b) Level-II and Level-III at 30% simulation c) Level-
II and Level-III at hundred 100% simulation d) Hamming distance beyween input pattern and resulted outputs. 
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Conclusion 

This paper introduces APA: a novelty artificial pattern recognition system based on prion crystalization. At present 
we conducted the modeling and simulation experiments showing the plausibility of a memory based on prion self-
assembly.  Thus, we studied the main steps and features of the training step. The system is able to memorize 
patterns into the resulting prion self- assembly. Such memory is implemented as a hierarchical (DNA, proteins, 
crystal assembly) bioinspired 2D cellular automata. Our approach opens the possibility of designing pattern 
recognition systems inspired by the phenomenon of crystallization in biology. 
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