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Abstract: It is shown that genetic algorithms can be used successfully in problems of definite integral calculation 
especially when an integrand has a primitive which can't be expressed analytically through elementary functions. 
A testing of the program, which uses the genetic algorithm developed by authors, showed that the best results 
are reached if the size of population makes 30-50 chromosomes, approximately 40-60% of its take a part in 
crossover, and the program stops if the population's leader didn't change during 5-10 generations. An answer of 
genetic algorithm is more exact than answer received by the classical numerical methods, even if a quantity of 
partition’s points into segment is small or if an integrand is quickly oscillating. So genetic algorithms can compete 
both on the accuracy of calculations and on operating time with well-known classical numerical methods such as 
midpoint approximation, top-left corner approximation, top-right corner approximation, trapezoidal rule, Simpson's 
rule. 
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Introduction 

A solution of many problems in physics, chemistry, mechanics and other natural sciences requires calculation 
definite integrals. Unfortunately, an exact analytic calculation of definite integrals is often impossible. Many 
functions do not have primitive that can be expressed analytically through elementary functions. For example, this 
is true for the function )exp()( 2xxf  . Moreover, a symbolic integration is a much more difficult problem than a 

finding the primitive and there is no universal algorithm solving this problem. That’s why an exact calculation of 
definite integrals by the fundamental theorem of calculus is often difficult or impossible at all. 

Traditionally, many algorithms for calculating of the integral's value are used in numerical analysis. In most of 
them, the integrand )(xf  is replaced with the approximating function )x(  which is easier to integrate 

[Samarsky, 1989]. 

In this paper a new method of numerical integration is described. This method doesn't require knowledge of 
integrand's primitive because it is based on a genetic algorithm. 

Such an unusual method of numerical integration expands area of applicability of genetic algorithms, which are 
traditionally used for solving of optimization problems [Gladkov, 2009]. 

Theoretical premises 

Let a function )(xf  be defined on segment ],[ ba . It is required to calculate a definite integral I of the function 

)(xf  over the segment ],[ ba : 



International Journal “Information Theories and Applications”, Vol. 20, Number 3, 2013 

 

253


b

a
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Let  kx,...,x,x,xP 210  be a partition of the segment ],[ ba . It is assumed that bxxxa k =<...<<= 10 . The 

nodes kx,...,x,x,x 210  of partition P subdivide the segment ][ b,a  into k small segments 

     kk x,x,...,x,x,x,x 12110   so that kabxx ii )(  1  for all k,i 1 . 

According to the additive property of definite integrals we have the equality 
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The theorem of mean value integration states that into segment  ii x,x 1  there exists a point i  for which the 

following equality is true [Shipachev, 2005]: 
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Let us pick some point iс  into each segment  ii x,x 1  and then define the following integral sum 

)c,...,c,c(S k21 : 

 .xx)c(f)c,...,c,c(S ii

k

i
ik 1

1
21 


   (2) 

Geometric interpretation of this integral sum (2) is shown on Fig. 1. 

 

Figure 1. Geometric interpretation of the integral sum S with random points  

The integral sum ),...,,( kcccS 21  is random variable, because points iс  into each segment  ii xx ,1  are selected 

by random way. However it approximately equals to the value of the definite integral (1) and the calculation error 
does not exceed the error given by the rectangle method. Moreover the mathematical expectation ][SM  of 

integral sum's value must be equal to the exact value of the integral (1), i.e. 

.dx)x(f]S[M
b

a
  

If another set of points iс  is selected, the value of the integral sum is different, but still it must be approximately 

equal to the integral's value. In case of large N arithmetic average value of integral sum S* converges to the value 
of integral (1) when N tends to infinity: 
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The closer value of the integral sum (2) to the average sum S* (3) is, the closer it is to the exact value of the 
integral (1). Therefore if we select points fortunately, we can calculate integral (1) with high accuracy. So we 
reduced the problem of the integral's calculation to the optimization problem: to find the points kc,...,c,c 21  into 

segments      kk x,x,...,x,x,x,x 12110   so that 

.minS)c,...,c,c(S *
k 21   

Further we shall show that this minimization problem can be solved by a genetic algorithm with a high accuracy. 
For this purpose we 

 worked out a genetic algorithm for calculating the numerical value of definite integral of arbitrary 
functions defined on an segment; 

 developed a program that implements the genetic algorithm; 

 tested and debugged the program, using our genetic algorithm. 

Genetic algorithm's description 

Before we develop the genetic algorithm we need to: 

 define the space of search; 

 select the method of coding the possible solutions; 

 set rules of crossover and mutation; 

 define the fitness-function. 

The main requirement to the fitness-function is following: its minimum's point must be an exact solution of the 
minimization problem [Gladkov, 2009]. 

By means of our genetic algorithm we will find the set of points kc,...,c,c 21 , which minimize the difference 

between the integral sum (2) and the integral value (1) as far as it is possible. 

Coding of possible solutions 

The solution is an ordered set of k points, so it can be encoded by a sequence of k numbers – the coordinates of 
these points (Fig. 2). It's important to note, that there is only one point iс  into segment  ii x,x 1  for each k,i 1 . 

 

Figure 2. The encoding of the solution 

So each chromosome is a sequence of k numbers kc,...,c,c 21 , where k is quantity of small segments into the 

segment ],[ ba . 

Crossover and mutation 

We choose the classical crossover technique – the one-point crossover. The crossover point is a random point 
from the partition  kxxxxP ,...,,, 210  of the segment ],[ ba , where kabxx ii )(  1  for all ki ,1 . 

     a                        b         

 c1          c2      c3       ck-1              ck             
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Parent 1 

      d1          d2        d3              dk-1         dk    

 c1          c2       c3         ck-1               ck  

Parent 2 

 c1          c2           c3               dk-1             dk   

      d1         d2       d3      ck-1            ck    

Child 2 

Child 1 

Since all the segments      kk x,x,...,x,x,x,x 12110   have the same length, all children after the one-point 

crossover are viable undoubtedly, because it is impossible that there would be no point or would be more than 
one point into segment  ii xx ,1 . An example of crossover's result is shown on Fig. 3 (the vertical line cuts 

chromosomes). 

 

Figure 3. One-point crossover's result 

Let crossp  be a quantity of percents of the best chromosomes in the generation, which participate in crossover 

(the parameter crossp  can be adjusted). The crossover's point is random. 

Let mutp  be a quantity of percents of the chromosomes, which mutate (the parameter mutp  can be adjusted, 

usually it does not exceed to ). The mutation's operator randomly changes the coordinate of the point iс  into 

segment  ii xx ,1 . An example of the mutation is shown on Fig. 4 (point c3 is replaced by point d3). 

 

Figure 4. Mutation's result 

After the mutation operator is applied to a chromosome, the resulting chromosome always is viable, because the 
point iс  moves within the segment  ii xx ,1 . 

Fitness-function 

Fitness-function has to meet the following requirements: the exact decision has to settle down in a point of its 
global minimum and value of function has to reflect a level of fitness of a chromosome [Gladkov, 2009]. 

For definition of fitness-function we will calculate the integrated sum for each chromosome in population on a 
formula (2). The problem of optimization is to minimize a divergence between the integrated sum and the value of 

 c1          c2                  d3         ck-1               ck     

After 

   Before 

 c1           c2      c3        ck-1               ck    
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integral (1). As it was noted earlier, if the value of the integrated sum S is close to average value S* of all 
integrated sums, then it is closer to value of integral too.  

Therefore for calculation of fitness-function F we will use a formula: 

,),...,,(),...,,( *ScccScccF kk  2121
 (4) 

where S* is the average value of all integrated sums in a given generation. It is obvious that the most adapted 
chromosomes are those who have the smallest value of fitness-function (4). 

The algorithm stops when the leading chromosome doesn't change during several generations. 

Testing of genetic algorithm 

During a testing the quality and the operating time of genetic algorithm were investigated, their dependence on 
number of points in partition of a segment and parameters of genetic algorithm (such as size of the population, 
percent of the chromosomes chosen for crossing, a stop condition, etc.) was estimated. 

To estimate the quality of the received decision in case of 0I  the relative error of result is calculated by 

formula: 

%,
I

II *
100


  (5) 

where I is exact value of integral (1), I* is answer received by means of genetic algorithm. If the integral (1) can't 
be calculated precisely, then I is received by means of some classical numerical method (such as midpoint 
approximation, Simpson's rule etc.). During the testing only one of parameters of the genetic algorithm was 
changed, and all the others parameters remained fixed. 

Dependence of quality and operating time of genetic algorithm on partition's size 

It is obvious that if number k of points into segment ],[ ba  grows, the value kab )(  decreases. Therefore it 

is possible to calculate the integral (1) more precisely if we increase the number k. Suitable value of k depends on 
properties of integrand )x(f . 

  

Figure 5. A result's precision given by genetic algorithm and by numerical methods 
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For example we consider an integral with a monotonic continuous integrand such as
 

32
1

0

/dxx  . The 

dependence of result's precision (5) given by genetic algorithm and by numerical methods on quantity of 
partition's points is presented on Fig. 5. It is important to note that the result’s precision (5) given by genetic 
algorithm is much higher than ones given by known numerical methods such as top-left corner approximation, 
top-right corner approximation, Simpson's rule, especially in case of small partition's points. 

The essential error arises in case of quickly oscillating functions if the integral is calculated by means of classical 

numerical methods. For example, we mean the integral
 

dx)x/sin(
.

1

010

1 . The diagram of quickly oscillating 

integrand )x/sin(1  is shown on Fig. 6. 

 

Figure 6. Diagram of quickly oscillating function sin(1/x) 

But even in case of quickly oscillating function the genetic algorithm gives more exact answer, than other known 
numerical methods such as midpoint approximation, top-left corner approximation, top-right corner approximation, 
trapezoidal rule, Simpson's rule (Fig. 7). 

 

Figure 7. Precision given by genetic algorithm and by numerical methods in case of a quickly oscillating 
integrand 

If the quantity k of partition's segments increases the operating time of the genetic algorithm increases too of 
course. For example, if the number of partition's segments is equal to 1000 the operating time of the genetic 
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algorithm doesn't exceed 1 minute. But if the number of partition's segments is less than 100, an operating time 
doesn't exceed 4 seconds.  

Dependence of a quality and an operating time of genetic algorithm on its parameters 

As a result of testing of the program using the genetic algorithm the following regularities were found: 

 In case of small quantity of chromosomes in population (less than 15) the error of the decision is rather 
great. If to increase number of chromosomes in population then the average error (5) monotonically 
decreases and stabilizes. 

 The percent of the chromosomes who are taking a part in crossover slightly influences an operating time 
of algorithm and doesn't influence almost response accuracy. 

 The algorithm stops if the leader doesn't change during several generations. Such quantity of 
generations is one of the algorithm's parameter. A user can set its value voluntarily. If this parameter's 
value is small (less than 5), then an error of received decision (5) can be big. However in case of this 
parameter's value is more than 10 an error considerably decreases, and in case of its further increase 
the error practically doesn't change. 

Calculating multiple integrals 

The developed genetic algorithm can be extended for calculating multiple integrals. The task is to compute an 

integral where integrand depends on n arguments and exists into a domain D, where nRD  : 

,dx...dxdx)x,...,x,x(f
D

nn 2121
 

(6) 

The domain of the function ),...,,( nxxxf 21  is a set D which satisfies the following requirements:  

 D is bounded in nR , i.e. nn IDI  : , where nI  – n-dimensional parallelepiped; 

 the bound of D is a null-set in Lebesgue measure. 

At the beginning we consider a simple case when the domain D is a n-dimensional parallelepiped. For clarity, we 
describe a genetic algorithm when integrand has two arguments and D is a rectangle. 

Integration over a rectangle 

The domain D of the function f(x,y) is a rectangle which is separated into equal rectangles by lines 

yjxi kjyykixx ,,,,, 00   Then we pick a point ijc  in each rectangle (Fig. 8). 

 

Figure 8. Diagram of function f(x,y), the partition of the rectangle and chosen points ijc  

 

In case of n = 2 a chromosome is a two-dimensional array and selected points 

 m,j,k,i)y,x(с jiij 00  
 are elements of this array. In this case we need to select 2 crossover lines for 

f(x,y) 

cij 
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the crossover operator. But when D is n-dimensional parallelepiped we need to select n hyperplanes. Children 
inherit fragments of parents’ chromosomes. The example of crossover is shown on Fig. 9. 

 

Figure 9. Crossover operator 
 

During the mutation a point randomly changes its position inside the rectangle (Fig. 10). 

 

Figure 10. Mutation operator 

Fitness-function F is computed by the formula (4), where S* is the average value of the integral sums in the 
generation and S is integral sum for the chromosome calculated with following formula: 

)yy()xx()c(fS jjii

k

i

m

j
ij 11

1 1


 
  .  

Integration over an arbitrary domain 

For calculating integrals (6) over more complicated areas D, we introduce the concept of characteristic function. 
Let characteristic function for the set D be the function 









.Dx,

,Dx,
)x(D 0

1 .  

The integral (6) of the function f(x) over the domain D is defined as: 

 
nI

nnDn
D

nn dx...dxdx)x,...,x,x()x,...,x,x(fdx...dxdx)x,...,x,x(f 2121212121
. 

 

where nID   and nI  – n-dimensional parallelepiped. 

Thereby, the task of integration over an arbitrary domain D is reduced to the integration over a parallelepiped nI . 

We tested our genetic algorithm with the purpose to evaluate its accuracy and an operating time. The testing 
procedure is similar to the one-dimensional case above. One of the parameters is changing while the others are 
fixed. 

First, we investigated the dependence of the solutions’ precision on number of the segments in the partitions. 
These solutions were obtained by genetic algorithm and classical numerical methods. There are two examples of 
the test below. In the first test, the integrand is smooth continuous function which is defined on a rectangle: 

Before After 

Parent 1 

 

 

Child 1 

Parent 2 

 

 

Child 2 
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The genetic algorithm shows more accurate result than other methods, even if the number of segments is small. 
The dependence of the solutions’ precision on number of the segments in the partitions is presented on Fig. 11. 

 

Figure 11. Results given by the genetic algorithm and numerical methods 

 

The second example shows us a dependence of precision on the number of segments for quickly oscillating 
integrand. 

 

 

Figure 12. Results given by the genetic algorithm and numerical methods in case of quickly oscillating integrand 
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In this example we calculated the integral with quickly oscillating integrand 

0230
1

1

10

1

10

4

.sin
. .









 

x

dy
xy

dx .  

The error increased when a quickly oscillating function is integrated, but the result given by genetic algorithm is 
more precise even than one given by Simpson’s rule, not to mention other more rough approximations (Fig. 12). 

Some more examples in the table below are shown: 

 

Integral  Accuracy, % 
Operating time, 

sec. 
Quantity of 
generations 
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2
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12 dr)coscosr(rdcosd  

0,0088 129,64 142 
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0,3369 12,02 109 
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dy)ysinx(dx  
0,5254 4,08 36 
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11000010
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0 11
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.

dr
r

r
rd  1,2788 8,29 81 

Conclusion 

A purpose of our investigation was to research a possibility of genetic algorithms' application to a task of definite 
integral's computation. To do this we developed a genetic algorithm and created the software product using this 
algorithm. 

The developed genetic algorithm allows calculating definite integrals with an acceptable accuracy. Testing of a 
software product showed that the best accuracy of the decision is reached if the size of population makes from 30 
to 50 chromosomes, 40-60% of chromosomes participate in crossover and the algorithm stops if the leader of 
population doesn't change during 5-10 generations.  

The genetic algorithm with the specified parameters provides the more exact result than if we would apply other 
well-known numerical methods such as midpoint approximation, top-left corner approximation, top-right corner 
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approximation, trapezoidal rule, Simpson's rule. Advantage of the genetic algorithm is especially noticeable, when 
a quantity of partition’s points is small and also when an integrand is quickly oscillating. 

Executed research shows that genetic algorithms can be used for numerical integration when integrand has a 
primitive which can't be expressed analytically through elementary functions. Also developed genetic algorithms 
allow to calculate multiple integrals with integrand function of n arguments defined over n-dimensional 
parallelepiped or arbitrary bounded domain into n-dimensional space. Thus was confirmed that genetic algorithms 
can successfully compete with classical numerical methods both on the accuracy of computation and on an 
operating time. 
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