VECTORS AND MATRIXES LEAST SQUARES METHOD: FOUNDATION AND APPLICATION EXAMPLES

Vladimir S. Donchenko, Inna M. Nazaraga, Olga V. Tarasova

Abstract: In this paper the application of the least squares method (LSM) has been substantiated. Case of matrix of observations for the arguments and values of the renewable function of the linear relationship between the components of observation has been considered. The solution of matrix optimization problem for the evaluation of the least squares method explicitly has been submitted, pseudo inverse means have been used. The importance of the results on applied problems of prediction media and macroeconomic indicators was illustrated.

Keywords: Moore-Penrose pseudo inverse, regression, least squares method, macroeconomic indicators, media indicators, prediction.

ACM Classification Keywords: G.3 Probability and statistics, G.1.6. Numerical analysis: Optimization, H.1.m. Models and Principles: miscellaneous.

Introduction

The Least Squares Method (LSM) is reliable and prevalent means to solve prediction problems in applied research and in econometrics particularly. It is used in the case when the function is represented by its observations (x_i, y_i) , $i = \overline{1, N}$. Commonly used statistical form of LSM is called Regression Analysis (RA). It is necessary to say, that RA is only statistical shape for representing the link between the components $x_i, y_i, i = \overline{1, N}$ in observations (x_i, y_i) , $i = \overline{1, N}$. So using RA terminology of LSM for solution of function estimating problem, and correspondingly, - prediction problem, is only the form for problem discussing.

It is opportune to note, that the LSM is equivalent to Maximum Likelihood Method for classic normal regression. Linear regression (LA) within RA has the advantage of having a closed form solution of parameter estimation problem and prediction problem.

Real valued functions of vector argument are the object of investigation in RA in general and in LA in particular. Such suppositions are due to technical capabilities of technique for solving optimization problems in LSM. This technique is in the essence an investigation of extremum necessary conditions. This remark is entirely true for yet another widely used assumption, namely, full column rank assumption for appropriate matrix, which ensure uniqueness of parameter estimation. It's interesting that another technique: Moore –Penrose pseudo inverse (M-Ppi) ([Moore, 1920; Penrose, 1955]) provides a comprehensive study and solution of parameter estimation problem.

Below in the article the results developing M-Ppi technique are presented. These ones enable operation with matrices as with real valued vectors and in optimization problem of LSM. And, as the consequence, the results enable designing of LSM for observations with matrix components. It is interesting to note, that such results would require the development of a full arsenal M-Ppi conception for objects in matrix Euclidean spaces. But in the case under consideration manage to use M-Ppi results for Euclidean spaces of real valued vectors to solve the

problem of LSM estimation for matrixes observations. Correspondent results are also represented below as well as illustration of its applications for predicting in macroeconomics of Ukraine and in estimating of TV audience performance.

And the remark in conclusion. Obvious advantage of matrixes LSM, besides the explicit closed estimation form, is the fact that matrixes observations preserve relationships between the characteristics of phenomenon under consideration.

Theoretical foundation: the least squares method

The LSM in its classic version – this is a way to "restore" the numeric functions $y = f(x, \theta), x \in X, \theta \in \Theta$ from parametric function family, when this function is represented by this or that collection observations $(x,y), x \in X, y \in R^1$. «Restored function» $\hat{y} = \hat{f}(x,\theta) = f(x,\hat{\theta})$ is defined by choosing appropriate $\hat{\theta} \in \Theta$ (estimation of parameter). The value of parameter $\hat{\theta}$ and restored function $\hat{y} = f(x,\hat{\theta})$ I call by its estimation correspondingly.

In the version of the discrete set of observations, a collection of observations (sample) is discrete: (x_i, y_i) : $x_i \in X, y_i \in R^1, i = \overline{1,N}$ and parameter is real valued vector: $\Theta \subseteq R^p$: $\theta^T = (\theta_0, \theta_2, ..., \theta_{p-1})$. "Recovery" can be understood in different ways:

- establish the true value of the function when the model observations is $y_i = f(x_i, \theta_0), i = \overline{1, N}, \theta_0 \in \Theta$;
- approximation of the observed values (x_i, y_i) : $x_i \in X$, $y_i \in R^1$, $i = \overline{1, N}$ by a function from appropriate parametric family: by the choice of appropriate parameters $\hat{\theta} \in \Theta$. Such choice has to be done in such a way that the function $y = f(x, \hat{\theta})$ were the "best" to conform with the observation (x_i, y_i) , $i = \overline{1, N}$.

Two previous versions can be combined in a model of observations, which can be described as a model of observations with errors:

• $y_i = f(x_i, \theta_0) + \varepsilon_i, i = \overline{1, N}, \theta_0 \in \Theta, \ \varepsilon_i, i = \overline{1, n}$ interpreted as errors of observations.

Last model of observations in the version, when ε_i , $i = \overline{1, N}$ - are the values of independent random variables is the subject of statistical theory, called regression analysis.

Problem "restoration of function" within the first model of observations can be reduced to the solution of simultaneous equations

$$\{y_i = f(x_i, \theta), i = \overline{1, N}$$
 (1)

In the rest two cases the approximation criteria $\Im(\theta)$ are to be determined.

In the method of least squares such criterion is determined by the formula:

$$\mathfrak{I}(\theta) = \sum_{i=1}^{N} (y_i - f(x_i, \theta))^2, \qquad (2)$$

Correspondingly, $\hat{\theta} \in \Theta$ defined as a solution of the optimization problem of LSM:

$$Arg\min_{\theta \in \Theta} \Im(\theta) = Arg\min_{\theta \in \Theta} \sum_{i=1}^{n} (y_i - f(x_i, \theta))^2$$
(3)

$$\hat{\theta} \in \operatorname{Arg\,min} \mathfrak{I}(\theta) = \operatorname{Arg\,min} \sum_{\theta \in \Theta}^{n} (y_i - f(x_i, \theta))^2.$$

It is easily to check, that the $\theta_0 \in \Theta$ in the first model (the system of equations (1)) belongs to the set of optimization solutions:

$$\theta_0 \in Arg\min_{\theta \in \Theta} \mathfrak{I}(\theta) = Arg\min_{\theta \in \Theta} \sum_{i=1}^{N} (y_i - f(x_i, \theta))^2$$
.

Thus, the recovery function problem for the function presented by its observations in both of the forms discussed earlier is reduced to solving an optimization problem (3).

Thus, in all cases of the recovery (estimation) problem for the function, presented by its observations (x_i, y_i) , $i = \overline{1, N}$, through parameter estimation $\hat{\theta}$: $\hat{f}(x, \theta) = f(x, \hat{\theta})$, $\hat{\theta}$ can be described as a solution of the optimization problem from (3) and called LSM estimation for parameter or function correspondingly:

The widespread use of LSM in solving of restoration problem for the function, presented by its observations, is determined by its very attractive feature. It is closed form solution for the parameter estimation problem. For a family of functions

$$f(\mathbf{x}, \boldsymbol{\theta}) = \sum_{j=0}^{p-1} \theta_j f_j(\mathbf{x}), \boldsymbol{\theta}^T = (\theta_0, \theta_2, ..., \theta_{p-1}),$$

 $f_i(x), j = \overline{0, p-1}$ - known function of vector argument x

Under additional assumption rank X=p.

Closed formed solution in LR for optimization problem (3) \ is determined by formula

$$\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y},\tag{4}$$

where X - matrix determined by relation

$$X = (f_j(x_i)), i = \overline{1, N}, j = \overline{1, \rho - 1},$$

 \mathbf{Y} - vector of observed values of the function: $\mathbf{Y}^T = (\mathbf{y}_1,, \mathbf{y}_N)$.

Constraint *rank X=p*.is ttechnical, determined only by the solution method for the optimization problem (3) and ensure uniqueness Gauss- Markov equation of the extremum necessary conditions for the functional in (2).

Functional $\Im(\theta)$ of LSM for LR turns to the form

$$\Im = || \mathbf{Y} - \mathbf{X}\theta ||^2$$
.

Correspondingly, and the optimization problem (3) turns to form of

$$\underset{\theta \in \Theta}{Arg \min} \Im(\theta) = \underset{\theta \in \Theta}{Arg \min} || Y - X\theta ||^2$$
(5)

Optimization problem (5) is essential element of pseudo inverse definition X^+ of a matrix X by Penrose [Penrose, 1955] (M-Ppi). By this definition pseudo inverse X^+ for $Y \neq 0$ is determined as norm minimal solution of optimization problem (5):

$$X^{+}Y = \arg\min_{\hat{\theta} \in Arg \min_{\theta \in \Theta} ||Y - X\theta||^{2}} ||\hat{\theta}||.$$

This definition is only one from more than ten or more equivalent definitions of M-Ppi.

M-Ppi technique enables comprehensive solution of optimization problem (3) in form (5) (see, for example [Кириченко, Донченко, 2005]):

$$\underset{\alpha \in \Theta}{\operatorname{Arg\,min}} || \mathbf{Y} - \mathbf{X}\boldsymbol{\theta} ||^2 = \mathbf{X}^+ \mathbf{Y} + (\mathbf{E}_p - \mathbf{X}\mathbf{X}^+) \mathbf{R}^p = \left\{ \boldsymbol{\theta} : \boldsymbol{\theta} = \mathbf{X}^+ \mathbf{Y} + (\mathbf{E}_p - \mathbf{X}\mathbf{X}^+) \boldsymbol{\beta}, \boldsymbol{\beta} \in \mathbf{R}^p \right\},$$

with M-Ppi X^+ for matrix X.

For classical conditions: under condition rankX = p matrix X^TX invertible

$$X^{+} = (X^{T}X)^{-1}X^{T}, XX^{+} = E_{p} \Rightarrow E_{p} - XX^{+} = 0,$$

and

$$\underset{\theta \in \Theta}{Arg \min} ||\mathbf{Y} - \mathbf{X}\theta||^2 = \mathbf{X}^+\mathbf{Y} + (\mathbf{E}_p - \mathbf{X}\mathbf{X}^+)\mathbf{R}^p = \left\{\mathbf{X}^+\mathbf{Y}\right\} = \left\{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}\right\}$$

Preferential use estimates from (4) and the equation of Gauss - Markov is quite restrictive in applying LSM, while advanced M-Ppi technique, as it mentioned above, enables comprehensive solution of an optimization problem (5). Such preferences of LSM users seems to be the results of habit and the fact of clarity of the source of Gauss - Markov equation as well as the fact, that M-Ppi technique require additional efforts for its mastering and applying.

Actually, directly Penrose [Penrose, 1955] pseudo inverse matrix A^+ to $m \times n$ matrix A defined as $n \times m$ - matrix, which specifies a linear operator $A^+ : R^m \to R^n$, whose action for arbitrary $y \in R^m$, $y \ne 0$ is defined by

$$A^{+}y = \underset{\substack{x \in Arg \min ||Az-y||^{2} \\ z \in R^{n}}}{arg \min} ||x||^{2}.$$
(6)

So, by this definition, A^+y associated with SLAE (system of linear algebraic equations) Ax = y and defined as smallest norm solution of the optimization problem of best quadratic approximation of the right side of SLAE values of the left side:

$$Arg \min_{y \in \mathbb{R}^n} ||y - Ax||^2, A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^m.$$
 (7)

The set of all solutions of the optimization problem (7) (see, for example, [Кириченко, Донченко, 2005]) is determined by relation

$$Arg\min_{x \in \mathbb{R}^n} ||y - Ax||^2 = A^+ y + (E_n - A^+ A)R^n = \left\{ x : x = A^+ y + (E_n - A^+ A)v, v \in \mathbb{R}^n \right\}.$$
 (8)

M-Ppi efficiency owes singular valued decomposition (SVD) in its special tensor product form (will be denoted as SVDtp) (see, for example, [Донченко, 2011]): any $m \times n$ matrix A is represented by singularities of two matrixes A^TA , AA^T : by orthonormal collections of eigenvectors $v_i \in R^n$, $i = \overline{1,r}$, $u_i \in R^m$, $i = \overline{1,r}$ of A^TA , AA^T correspondingly and common collection of correspondent nonzero eigenvalues $\lambda_1^2 \ge ... \ge \lambda_r^2 > 0$, r = rankA:

$$A = \sum_{i=1}^r \lambda_i u_i v_i^T,$$

$$u_i = \frac{Av_i}{\lambda_i}, u_i = \frac{A^Tu_i}{\lambda_i}, i = \overline{1,r}$$
.

For another definitions of SVD see, for example, [Алберт, 1977].

M-Ppi definition by SVDtp among more than a dozen other equivalent, is represented by equality:

$$A^+ = \sum_{i=1}^r \lambda_i^{-1} u_i v_i^T$$

M-Ppi is even more than just a tool for working with only vector objects. It provides a means for the manipulating with matrixes. Particularly, M-Ppi technique for real valued vectors enable comprehensive solution of optimization problem type of (3) in form (5) for matrix objects:

$$\underset{X \in \mathbb{R}^{n \times p}}{Arg \min} || Y - AX ||_{tr}^{2}, Y \in \mathbb{R}^{m \times p}, A \in \mathbb{R}^{m \times n},$$
(9)

where the trace norm $||\cdot||_{tr}$ generated by trace scalar product:

$$(C,D)_{tr} = \sum_{i,i} c_{ij} d_{ij} = trC^TD = sum of the diagonal elements of the matrix $C^TD$$$

Full solution of the optimization problem (9) is given by the theorem 1 below (see, for example, [Донченко, 2011]).

Theorem 1. For any $m \times n$ matrix A

$$\underset{X \in R^{n \times p}}{Arg \min} || Y - AX ||_{tr}^{2} = X^{+}Y + (E_{n} - A^{+}A)R^{n \times n} = \left\{ Z : Z = X^{+}Y + (E_{n} - A^{+}A)V, V \in R^{n \times n} \right\}.$$
 (10)

As in the vector case, the solutions of matrix optimization problem (10) coincide with the set of all solutions of matrix algebraic equations relatively X:

$$AX = Y, A - m \times n, Y - m \times p, X - n \times p$$

when such solutions exist.

Optimization problems and its solutions (8), (10) for, correspondingly, vector and matrix objects, namely, the problem of the best quadratic approximation of the right part of linear equation by the left one, constitute the basis for the least squares method for vector and matrix of observations. "Vectors" or "matrixes" case for observations (x,y) means, that both its components:, x, y - are simultaneously the vectors or the matrixes correspondingly under supposition that relation between them determined by the components a $m \times n$ matrix A.

Theorem 2. Let the collection of vector pairs (x_i, y_i) : $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}^m$, $i = \overline{1, N}$ or matrix pairs

 $(X_i,Y_i): X_i \in \mathbb{R}^{n \times p}, Y_i \in \mathbb{R}^{m \times p}, i = \overline{1,N}$ are an observations of linear operator, defined by $m \times n$ -matrix $A: \mathbb{R}^{n \times p} \to \mathbb{R}^{m \times p}$.

Then the set of LSM estimation of the operator A, is determined by the set of optimization problem solutions

$$\underset{A \in R^{m \times n}}{Arg \min} \, \mathfrak{I}(A)$$

with

$$\mathfrak{I}(A) = \begin{cases} \sum_{i=1}^{N} (y_i - Ax_i, y_i - Ax_i)^2, & \text{vector observations} \\ \sum_{i=1}^{N} (Y_i - AX_i, Y_i - AX_i)^2_{tr}, & \text{matrix observations} \end{cases}$$

is equivalent to optimization problem of the best quadratic approximation of the right hand part of algebraic equation $X^TA^T = Y^T$ by it left hand part respectively matrix A^T with matrices X, Y defined by the components of the observations accordingly to the relations:

$$X = \begin{cases} (x_1 : ... : x_N) - \text{ vector observation} \\ (X_1 : ... : X_N) - \text{ matrix observation} \end{cases}$$
 (11)

$$Y = \begin{cases} (y_1 : ... : y_N) - \text{vector observation} \\ (Y_1 : ... : Y_N) - \text{matrix observation} \end{cases}$$
 (12)

Proof. Indeed, It is easy to verify, that simultaneous equations: vectors $y_i = Ax_i$, $i = \overline{1,N}$ or matrixes $Y_i = AX_i$, $i = \overline{1,N}$, - in the observations model, are equivalent to matrix equations correspondingly:

$$(y_1 : \dots : y_N) = (Ax_1 : \dots : Ax_N) = A(x_1 : \dots : x_N),$$

$$(Y_1 : \dots : Y_N) = (AX_1 : \dots : Ax_N) = A(X_1 : \dots : X_N),$$

which follows from the definition of matrix algebra operations

Thus, in the notation (11), (12) observation models for both types of observations are represented by matrix equation AX = Y with known matrixes X, Y and unknown matrix A.

Besides

$$\underset{A \in R^{m \times n}}{Arg \min} \Im(A) = \underset{A \in R^{m \times n}}{Arg \min} || AX - Y ||_{tr}^{2}$$

So, equivalently

$$\underset{A \in R^{m \times n}}{Arg \min} \Im(A) = \underset{A \in R^{m \times n}}{min} || AX - Y ||_{tr}^{2} = \underset{A^{T} \in R^{n \times m}}{Arg \min} || Y^{T} - X^{T} A^{T} ||_{tr}^{2},$$
(13)

which proves the theorem.

Theorem 2. The set of all solutions for LSM - estimation of the linear operator by its vectors or matrixes observations is given by the relation:

$$\underset{A \in \mathbb{R}^{m \times n}}{Arg \min} \Im(A), \Im(A) = \left\{ A : YX^{+} + V(E_{n} - XX^{+}), V \in \mathbb{R}^{m \times n} \right\}, \tag{14}$$

Proof. The proof follows directly from theorem 1, relation (10), that describes the solution of matrix algebraic equations through obvious changes in notation and subsequent transposition using commutative property for M-Ppi for matrix and its transpose.

General algorithm of LSM with matrix observations

LSM wit matrixes observation for prediction is implemented in the usual way: by estimation of the function (operator) and using of the estimation on the appropriate argument. Observations, necessary for the estimation procedure to be applied, should be constructed on the basis of a data available. It is the first step of the algorithm proposed.

Step 1. Constructing the matrices components of observations. This step is performed on the based on statistical data by its aggregating firstly in vector and then - in matrixes $R_1, R_2, ..., R_k$. Such two - step procedure uses natural elements of phenomenon description. Vector constituents as a rule are a collection of that or those characteristics of phenomenon under consideration which corresponds to fix moments of time. These vectors constituents which correspond some "time window" are aggregated in matrix. Then the "time window" is shifted and new matrix is built, and so on.

Step 2. Constructing the observations. The matrixes $R_1, R_2, ..., R_k$ being built the observation pairs (X_j, Y_j) are built by consequence elements of $R_1, R_2, ..., R_k$: $(X_j, Y_j) = (R_j, R_{j+1}), j = \overline{1, k-1}$.

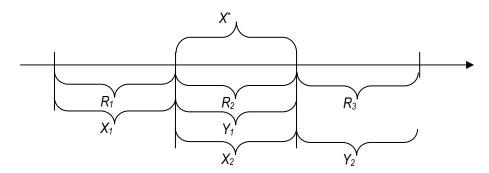


Figure 1. Aggregated matrixes and observations

Step 3. Parametrization of the model. The relationship between matrixes elements of observations is established by matrix equation Y = AX with matrix A as a parameter.

Step 4. LSM – estimation. The essence of this step is constructing the LSM-estimation accordingly to (14) by choosing the one with minimal norm:

$$\hat{A} = YX^{+}, \tag{15}$$

Step 5. Constructing the prediction formula. Prediction problem solution, based on the estimated operator \hat{A} is standard: for any appropriate matrix argument X^* predicted Y^* is defined by relation $Y^* = \hat{A}X^*$.

Step 6. Calculations and the accuracy of prediction. The accuracy of prediction in economic research, as a rule, is estimated by formal criterion of accuracy called "absolute percentage error (APE)", defined by the relation

$$APE = \left| \frac{z_t - \hat{z}_t}{z_t} \right|, t = \overline{1,T}$$
, where z_t - the actual value of the index at the time t , \hat{z}_t - prognostic value of the

index at the time t.

It is generally accepted that the value of *APE* which is less than 10%, corresponds to high prediction accuracy, so, values from 10 to 20% is interpreted as good prediction accuracy, values from 20 to 50% are considerd to be satisfactory, more than 50% - unsatisfactory prediction accuracy.

Example 1: prediction economic indicators

In this example, the statistical data of the State Statistics Service of Ukraine was used [Ukrstat].

As described in [Харазішвілі, 2007], the regression methods most often used to predict of economic indicators in the normal way. In this example, the theory of matrixes LSM (Sections 1) was used.

In particular, Table 1 - 3 presents the value of gross domestic product (GDP), wages of employees (WE), final consumption expenditure (FCE), exports of goods and services (E) and imports of goods and services (I) for the 2007 - 2012 years (quarterly and annual data at current prices).

	1 quarter	2 quarter	3 quarter	4 quarter	Total	1quarter	2 quarter	3 quarter	4 quarter	Total
	2007	2007	2007	2007	2007	2008	2008	2008	2008	2008
GDP	139444	166869	199535	214883	720731	191459	236033	276451	244113	948056
WE	69078	82021	91922	108915	351936	100492	116441	121522	132009	470464

Table 1. The value of 5 indicators for 2007 - 2008 years (at current prices; mln.UAH)

FCE	112494	130245	140935	174907	558581	161565	182154	194262	220921	758902
Е	67513	79664	88491	87537	323205	88516	116640	132177	107526	444859
1	-76022	-85992	-93895	-108464	-364373	-110802	-135800	-144433	-129553	-520588

	1 quarter	2 quarter	3 quarter	4 quarter	Total	1 quarter	2 quarter	3 quarter	4 quarter	Total
	2009	2009	2009	2009	2009	2010	2010	2010	2010	2010
GDP	189028	214103	250306	259908	913345	217286	256754	301251	307278	1082569
WE	99206	111616	114251	126270	451343	114062	133690	139108	153791	540651
FCE	172426	188041	196074	216285	772826	194511	216027	232397	271295	914230
Е	86994	95390	114962	126218	423564	112105	134553	145563	157144	549365
I	-92892	-96846	-116057	-133065	-438860	-114550	-131242	-156102	-179050	-580944

	1 quarter	2 quarter	3 quarter	4 quarter	Total	1 quarter	2 quarter	3 quarter	4 quarter	Total
	2011	2011	2011	2011	2011	2012	2012	2012	2012	2012
GDP	261878	314620	376019	364083	1316600	296 970	351 777	392 080	378564	1408889
WE	135831	155367	158186	178727	628111	158094	179159	179228	199638	718159
FCE	236580	268688	285548	314385	1105201	274401	311112	328 868	356607	1269601
Е	156545	179626	184258	187524	707953	165458	181021	185597	181657	717347
1	-173046	-187916	-202131	-215935	-779028	-180013	-212142	-215571	-219616	-835394

The use of the algorithm

- 1. Based on table 1 obvious way form a matrix of observations R_1 , based on table 2 matrix R_2 , based on table 3 matrix R_3 .
- 2. Pair of input output matrix data (X_1, Y_1) will have the form (R_1, R_2) .
- 3. Matrix \hat{A}_1 (see (15)), obtained from the equation $Y_1 = A_1 X_1$:

$$\hat{A}_1 = \begin{pmatrix} 0,472791 & 4,270925 & -0,44387 & 2,83749 & 4,410361 \\ -0,53049 & 3,940514 & -0,71641 & 2,130856 & 2,325999 \\ -0,79734 & 5,886174 & -0,49137 & 3,70521 & 4,549089 \\ 0,071931 & 0,956233 & 0,215418 & 0,572184 & 0,742387 \\ -0,34424 & 2,097631 & -1,97502 & -0,54289 & -0,95884 \end{pmatrix}$$

4. From the equation $\mathbf{Y}^* = \hat{A}\mathbf{X}^*$ calculate matrix predictive indicators \mathbf{Y}^* , $\mathbf{X}^* = \mathbf{X}_2$.

```
338005,3
                      333617,9
                                                                  399450,3
                                                                             357960,9
273694,0
                                 337446,1
                                           1282763,3
                                                       316432,6
                                                                                        337906,6
                                                                                                   1411750,4
136422,5
           169529,1
                      151972,4
                                164184,7
                                            622108,7
                                                       167281,7
                                                                  217282,3
                                                                             168935,4
                                                                                        167030,4
                                                                                                   720529,8
                                292074,4
                                                       296834,3
248255,2
                                                                                                   1262705,8
           306758,3
                     274580,8
                                           1121668,7
                                                                  377567,3
                                                                             293639,5
                                                                                        294664,7
                                 159464,7
                                                                                                    674852,2
126419,3
           145322,3
                      149113,3
                                            580319,6
                                                       145704,8
                                                                  172400,0
                                                                             172152,0
                                                                                        184595,4
-155678,3 -169885,3 -184891,2 -192705,1 -703159,9 -170727,7 -181818,3 -200242,7 -232626,0
                                                                                                  -785414,8
```

ļ	5. For matri	ces predictiv	ve indicators	Y^* and a	ctual indicat	tors 2011 -	2012 years	Y ₂ calcula	te the matri	x APE:
	(4,51%	7,43%	11,28%	7,32%	2,57%	6,55%	13,55%	8,70%	10,74%	0,20%
	0,44%	9,12%	3,93%	8,14%	0,96%	5,81%	21,28%	5,74%	16,33%	0,33%
	4,93%	14,17%	3,84%	7,10%	1,49%	8,18%	21,36%	10,71%	17,37%	0,54%
	19,24%	19,10%	19,07%	14,96%	18,03%	11,94%	4,76%	7,24%	1,62%	5,92%
	10 04%	9 60%	8 53%	10 76%	9 74%	5 16%	14 29%	7 11%	5 92%	5 98%

In accordance with the submitted values matrix APE, error prediction GDP in 2011 (as a whole) was 2,57%, WE - 0,96%, FCE - 1,49%, E - 18,03%, I - 9,74%, error prediction GDP in 2012 (as a whole) was 0,20%, WE - 0,33%, FCE - 0,54%, E - 5,92%, I - 5,98%, and excess error 20% for some mentioned quarterly indicators can be explained by the fact that prediction is used, in particular, data the years of crisis 2008 - 2009.

In general, comparing the results with the values of the relevant indicators the consensus prediction [Me], it can be argued about the competitiveness of the proposed article approach for forecasting macroeconomic indicators.

Example 2: prediction of TV audience performance

TV advertising market players use predictive performance television audience for programs, films, serials and advertising media planning on Ukrainian TV. The specificity of this approach consists in dependence on the accuracy of the forecast TV indicators of all TV market players. Each year there is a necessity forecasting basic TV performance on the subsequent estimated year in monthly terms based on similar data of prior periods.

In practice, usually following basic TV performance are forecast:

- share of TV channel audience (share of the channel sc) this index determines the amount of viewers who watched TV from the total number of viewers at the investigated time period;
- rating of TV channel audience (ratings of the channel rc) this index determines the amount of TV audience, it takes into account the duration of watching TV every spectator in the analyzed period of time;
- TotalTV rating (rt) this index determines the total size of the television audience, it takes into account individual TV time watching by every spectator in the analyzed time period;
- advertising TV audience rating of the channel (an advertisement rating ra) this index determines the size of TV advertising audience it takes into account the duration of advertisement viewing by every TV viewers.

As described in [Tapacoba, 2012], the approximation by the least squares method is most often used to predict television performance in the standard way. In this example, the theory of pseudo inverse is used for forecasting TV performance.

Description of the main data

Table 4. TV data performance by month

Table 4. TV data performance by month										
period	sc	rc	rt	ra						
Jan.10	10,19	1,53	15,06	1,32						
Feb.10	9,52	1,33	13,92	1,03						
Mar.10	8,81	1,19	13,45	0,91						
Apr.10	8,79	1,09	12,40	0,94						
May.10	9,34	1,13	12,09	0,99						
Jun.10	9,06	1,00	11,07	0,81						
Jul.10	8,87	0,95	10,66	0,77						
Aug.10	10,22	1,13	11,06	1,01						
Sept.10	9,25	1,13	12,24	0,96						
Oct.10	8,70	1,17	13,41	1,02						
Nov.10	9,19	1,27	13,79	1,12						
Dec.10	9,47	1,38	14,53	1,17						
Jan.11	9,65	1,48	15,36	1,30						
Feb.11	9,07	1,32	14,52	1,14						
Mar.11	8,66	1,23	14,17	1,08						
Apr.11	8,90	1,17	13,16	1,03						
May.11	8,59	1,08	12,54	0,91						
Jun.11	9,69	1,14	11,77	1,02						
Jul.11	10,19	1,14	11,15	1,06						
Aug.11	10,56	1,21	11,51	1,15						
Sept.11	9,12	1,13	12,39	1,05						
Oct.11	8,67	1,19	13,67	1,10						
Nov.11	9,30	1,33	14,34	1,21						
Dec.11	8,82	1,30	14,79	1,17						
Jan.12	8,95	1,39	15,56	1,25						
Feb.12	8,71	1,31	15,04	1,18						
Mar.12	9,37	1,37	14,63	1,25						
Apr.12	9,23	1,21	13,16	1,12						
May.12	9,15	1,16	12,62	1,03						
Jun.12	8,60	1,03	11,97	0,90						
Jul.12	9,56	1,02	10,68	0,88						
Aug.12	9,65	1,05	10,88	0,96						
Sept.12	8,47	0,99	11,74	0,89						
Oct.12	8,41	1,05	12,53	0,94						
Nov.12	8,45	1,13	13,40	1,00						
Dec.12	9,10	1,29	14,23	1,13						

In Ukraine TV Viewing performance data from 2003 are stored in a special database, which is the result of regular measurement of television audience. For example, we used four indicators data for years 2010-2012 by months which described above.

The result of observations for this period of four television performance (audience share of channel sc, rating of channel rc, TotalTV rating rt, ratings of channel advertising ra) forms the matrix of monthly

observations
$$r(i) = \begin{pmatrix} r(i)_1 \\ r(i)_2 \\ r(i)_3 \\ r(i)_4 \end{pmatrix}, i = \overline{1,36}$$
.

Respectively $r(i)_1, i=1,36$ — is the row-vector of monthly channel audience share data; $r(i)_2, i=\overline{1,36}$ — is the row-vector of monthly channel rating data; $r(i)_3, i=\overline{1,36}$ — is the row-vector of monthly TotalTV data; $r(i)_4, i=\overline{1,36}$ — is the row-vector of monthly advertising raiting data.

These monthly data vectors for a given period (in our case - three years) naturally organizing the matrix of observations R(i), $i = \overline{1,36}$.

To apply the theory of pseudoinverse we use the signs of Sections 1 and construct from the observations matrix the matrix pairs of input and output data of our model. We grouped the observational data matrix R(i), $i = \overline{1,36}$ in the matrix R_1 , R_2 , R_3 as follows $R_1 = (r(1):...:r(12))$, $R_2 = (r(13):...:r(24))$,

$$R_3 = (r(25):...:r(36)).$$

Then the matrix pair (X_1,Y_1) , on which evaluation matrix of the model parameters \hat{A} will be calculated from the matrix equation Y=AX, is as follows $(X_1,Y_1)=(R_1,R_2)$. The matrix pair (X_2,Y_2) is used to construct the forecast indicators matrix Y^* from the matrix equation $Y^*=\hat{A}X_2$ and accuracy estimation of prediction Y^* by the criterion of

ассигасу
$$APE = \left| \frac{Y_2 - Y^*}{Y_2} \right|$$
, де $(X_2, Y_2) = (R_2, R_3)$.

The use of the algorithm

1. We constructed the matrix of annual monthly observations

 R_1, R_2, R_3 on the basis of the matrix of observations $r(i), i = \overline{1,36}$ (four basic monthly indicators in 2010-2012 (Table 4)) by grouping data.

2. A pair of input-output data matrices (X_1, Y_1) takes the form (R_1, R_2) .

3. Then the matrix of estimates of the model parameters \hat{A} , that obtained from the equation $Y = AX \Rightarrow Y_1 = AX_1 \Rightarrow$

$$\hat{A} = \begin{pmatrix} 1,371 & -3,443 & 0,110 & -0,763 \\ 0,055 & 0,513 & 0,023 & -0,193 \\ 0,089 & 0,247 & 1,079 & -1,657 \\ 0,062 & 0,054 & 0,026 & 0,127 \end{pmatrix}$$

4. From the equation $\mathbf{Y}^* = \hat{A}\mathbf{X}^*$ calculate predictive indicators matrix \mathbf{Y}^* , $\mathbf{X}^* = \mathbf{X}_2$.

$$\mathbf{Y}^{\star} = \begin{pmatrix} 8,82 & 8,63 & 8,38 & 8,38 & 8,83 & 8,74 & 9,87 & 10,47 & 10,68 & 9,17 & 8,46 & 8,80 & 8,33 \\ 1,40 & 1,29 & 1,23 & 1,20 & 1,14 & 1,20 & 1,25 & 1,17 & 1,19 & 1,30 & 1,27 \\ 15,65 & 14,92 & 14,59 & 13,58 & 13,06 & 12,16 & 11,48 & 11,77 & 12,72 & 14,00 & 14,62 & 15,13 \\ 1,24 & 1,16 & 1,11 & 1,09 & 1,03 & 1,10 & 1,12 & 1,17 & 1,08 & 1,10 & 1,18 & 1,15 \end{pmatrix}$$

5. A comparison of the predictive indicators matrix Y^* and actual performance matrix 2012 Y_2 gives a matrix of errors APE:

As the errors table shows *APE*, the average annual forecast indicators error for 2012 is: 6,3% (max 12,9%) – for TV channel audience share, 8,4% (max 16,1%) – for TV channel audience rating, 4,7% (max 10.5%) – for TotalTV rating, 10,4% (max 21,3%) – for TV channel advertising rating. The average prediction accuracy for all four indicators is acceptable for monthly year forecasts. However, exceeding the 10% threshold accuracy in some months is critical and shows the necessity of expert correction. Specifically our example, consideration of UEFA EURO 2012 effect in 6-7 months.

Conclusion

In the article case of matrix of observations for the arguments and values of the renewable function of the linear relationship between the components of observation has been considered.

Based on the matrixes least squares method, approach to prediction of indicators was proposed.

Testing approach with the use of statistical data of the economic and media indicators was made.

Results of prediction with available statistics was compared. The proposed approach for finding predictive values indicators is competitive.

Bibliography

[Me] Official web-site of the Ministry of Economic Development and Trade of Ukraine [Electronic resource] – Mode of access: http://www.me.gov.ua/ control/uk/ publish/category/main?cat_id=73499. – Title from the screen.

[Moore,1920] Moore E.H. On the reciprocal of the general algebraic matrix // Bulletin of the American Mathematical Society. – 26, 1920. – P.394 -395 .

[Penrose, 1955] Penrose R. A generalized inverse for matrices // Proceedings of the Cambridge Philosophical Society 51, 1955. — P.406-413.

- [Ukrstat] Official web-site of the State Statistics Service of Ukraine [Electronic resource] Mode of access: http://www.ukrstat.gov.ua. Title from the screen.
- [Ukrstat] Офіційний сайт Державного комітету статистики України [Електронний ресурс] Режим доступу: http://www.ukrstat.gov.ua. Назва з екрану.
- [Алберт, 1977] Алберт А. Регрессия, псевдоинверсия, рекуррентное оценивание.— М.: Наука.—1977.— 305 с.
- [Донченко, 2011] Владимир Донченко. Евклидовы пространства числовых векторов и матриц: конструткивные методы описания базовых структур и их использование.// International Journal "Information technologies & Knowledge".- 2011.- Vol. 5.- Number 3.-P.203 216.
- [Кириченко, Донченко, 2005] Кириченко М.Ф., Донченко В.С. Задача термінального спостереження динамічної системи: множинність розв'язків та оптимізація//Журнал обчислювальної та прикладної математики. 2005. –№5— С.63-78.
- [Кириченко, Донченко, 2007] Кириченко Н.Ф., Донченко. В.С. Псевдообращение в задачах кластеризации// Киб. и СА.-№4, 2007— С.98-122.
- [Тарасова, 2012] Тарасова О.В. Про моделювання телемедійних показників // Вісник Державного університету інформаційно-комунікаційних технологій. Т.10, №4. 2012. С.120-127.
- [Харазішвілі, 2007] Харазішвілі Ю.М. Теоретичні основи системного моделювання соціально-економічного розвитку України: Моногр. К.: ПоліграфКонсалтинг, 2007. 324 с.

Authors' Information

Vladimir S. Donchenko - Professor, Kyiv Taras Shevchenko National University, Faculty of Cybernetics, Ukraine, e-mail: voldon@unicyb.kiev.ua;

Inna M. Nazaraga – Younger Researcher; Kyiv Taras Shevchenko National University, Faculty of Cybernetics, Ukraine, e-mail: inna_na@ukr.net;

Olga V. Tarasova – postgraduate student; Kyiv Taras Shevchenko National University, Faculty of Cybernetics, Ukraine, e-mail: olga_ta@bigmir.net.