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VECTORS AND MATRIXES LEAST SQUARES METHOD: FOUNDATION AND 
APPLICATION EXAMPLES 

Vladimir S. Donchenko, Inna M. Nazaraga, Olga V. Tarasova 

 

Abstract: In this paper the application of the least squares method (LSM) has been substantiated. Case of matrix 
of observations for the arguments and values of the renewable function of the linear relationship between the 
components of observation has been considered. The solution of matrix optimization problem for the evaluation of 
the least squares method explicitly has been submitted, pseudo inverse means have been used. The importance 
of the results on applied problems of prediction media and macroeconomic indicators was illustrated. 
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Introduction 

The Least Squares Method (LSM) is reliable and prevalent means to solve prediction problems in applied 
research and in econometrics particularly. It is used in the case when the function is represented by its 

observations 1( , ), ,i ix y i N . Commonly used statistical form of LSM is called Regression Analysis (RA). It is 

necessary to say, that RA is only statistical shape for representing the link between the components 

Niyx ii ,1,,   in observations 1( , ), ,i ix y i N . So using RA terminology of LSM for solution of function 

estimating problem, and correspondingly, - prediction problem, is only the form for problem discussing. 

It is opportune to note, that the LSM is equivalent to Maximum Likelihood Method for classic normal regression. 
Linear regression (LA) within RA has the advantage of having a closed form solution of parameter estimation 
problem and prediction problem.  

Real valued functions of vector argument are the object of investigation in RA in general and in LA in particular. 
Such suppositions are due to technical capabilities of technique for solving optimization problems in LSM. This 
technique is in the essence an investigation of extremum necessary conditions. This remark is entirely true for yet 
another widely used assumption, namely, full column rank assumption for appropriate matrix, which ensure 
uniqueness of parameter estimation. It’s interesting that another technique: Moore –Penrose pseudo inverse (M-
Ppi) ([Moore, 1920; Penrose, 1955]) provides a comprehensive study and solution of parameter estimation 
problem. 

Below in the article the results developing M-Ppi technique are presented. These ones enable operation with 
matrices as with real valued vectors and in optimization problem of LSM. And, as the consequence, the results 
enable designing of LSM for observations with matrix components. It is interesting to note, that such results would 
require the development of a full arsenal M-Ppi conception for objects in matrix Euclidean spaces. But in the case 
under consideration manage to use M-Ppi results for Euclidean spaces of real valued vectors to solve the 
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problem of LSM estimation for matrixes observations. Correspondent results are also represented below as well 
as illustration of its applications for predicting in macroeconomics of Ukraine and in estimating of TV audience 
performance.  

And the remark in conclusion. Obvious advantage of matrixes LSM, besides the explicit closed estimation form, is 
the fact that matrixes observations preserve relationships between the characteristics of phenomenon under 
consideration. 

Theoretical foundation: the least squares method 

The LSM in its classic version – this is a way to "restore" the numeric functions    ( , ), ,y f x x  from 

parametric function family, when this function is represented by this or that collection observations 
1 ( , ), ,x y x y R . «Restored function»   ˆ ˆˆ ( , ) ( , )y f x f x  is defined by choosing appropriate  ˆ  

(estimation of parameter). The value of parameter ̂  and restored function  ˆˆ ( , )y f x l call by its estimation 

correspondingly.  

In the version of the discrete set of observations, a collection of observations (sample) is discrete: 
1 1  ( , ) : , , ,i i i ix y x y R i N  and parameter is real valued vector: 0 2 1      : ( , ,..., )p T

pR . 

"Recovery" can be understood in different ways:  

 establish the true value of the function when the model observations is 0 01   ( , ), , ,i iy f x i N ; 

 approximation of the observed values 1 1  ( , ) : , , ,i i i ix y x y R i N by  a function from appropriate 

parametric family: by the choice of appropriate  parameters  ˆ . Such choice has to be done in such 

a way that the function  ˆ( , )y f x  were the "best" to conform with the observation 1( , ), ,i ix y i N . 

Two previous versions can be combined in a model of observations, which can be described as a model of 
observations with errors:  

 0 01     ( , ) , , ,i i iy f x i N , 1 , ,i i n  interpreted as errors of observations. 

Last model of observations in the version, when 1 , ,i i N - are the values of independent random variables is 

the subject of statistical theory, called regression analysis. 

Problem "restoration of function" within the first model of observations can be reduced to the solution of 
simultaneous  equations 

 1 ( , ), ,i iy f x i N  (1) 

In the rest two cases the approximation criteria ( ) are to be determined. 

In the method of least squares such criterion is determined by the formula: 

2

1

 


  ( ) ( ( , ))
N

i i
i

y f x , (2) 

Correspondingly,  ˆ  defined as a solution of the optimization problem of LSM: 

2

1 
 

  

  min ( ) min ( ( , ))
n

i i
i

Arg Arg y f x  (3) 
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2

1 
  

  

   ˆ min ( ) min ( ( , ))
n

i i
i

Arg Arg y f x . 

It is easily to check, that the 0  in the first model (the system of equations (1)) belongs to the set of 

optimization solutions: 

2
0

1 
  

  

   min ( ) min ( ( , ))
N

i i
i

Arg Arg y f x . 

Thus, the recovery function problem for the function presented by its observations in both of the forms discussed 
earlier is reduced to solving an optimization problem (3). 

Thus, in all cases of the recovery (estimation) problem for the function, presented by its 

observations 1( , ), ,i ix y i N , through parameter estimation ̂ :  ˆ ˆ( , ) ( , )f x f x , ̂ can be described as a 

solution of the optimization problem from (3) and called LSM estimation for parameter or function 
correspondingly: 

The widespread use of LSM in solving of restoration problem for the function, presented by its observations, is 
determined by its very attractive feature. It is closed form solution for the parameter estimation problem. For a 
family of functions  

1

0

 




 ( , ) ( )
p

j j
j

f x f x , 0 2 1     ( , ,..., )T
p , 

0 1 ( ), ,jf x j p - known function of vector argument x 

Under additional assumption rank X=p. 

Closed formed solution in LR for optimization problem (3) \ is determined by formula 

1 ˆ ( ) ,T TX X X Y  (4) 

where Х – matrix determined by relation 

  1 1 1   ( ) , , , ,j iX f x i N j p , 

Y - vector of observed values of the function: 1 ( ,...., )T
NY y y . 

Constraint rank X=p.is ttechnical, determined only by the solution method for the optimization problem (3) and 
ensure uniqueness Gauss- Markov equation of the extremum necessary conditions for the functional in (2).  

Functional ( ) of LSM for LR turns to the form  

2  || ||Y X . 

Correspondingly, and the optimization problem (3) turns to form of 
2

 
 

 
  min ( ) min || ||Arg Arg Y X

. 
(5) 

Optimization problem (5) is essential element of pseudo inverse definition X   of a matrix X by Penrose 

[Penrose, 1955] (M-Ppi). By this definition pseudo inverse X  for 0Y  is determined as norm minimal solution 

of optimization problem (5): 

2ˆ min|| ||
ˆarg min || ||

Arg Y X
X Y


 






 
 . 

This definition is only one from more than ten or more equivalent definitions of M-Ppi. 
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M-Ppi technique enables comprehensive solution of optimization problem (3) in form (5) (see, for example 
[Кириченко, Донченко, 2005]): 

 2


       


        min || || ( ) : ( ) ,p p

p pArg Y X X Y E XX R X Y E XX R , 

with M-Ppi X for matrix X . 

 

For classical conditions: under condition rankX p  matrix TX X  invertible 

1  ( )T TX X X X , 0    p pXX E E XX , 

and 

   2 1


    


     min || || ( ) ( )p T T

pArg Y X X Y E XX R X Y X X X Y  

Preferential use estimates from (4) and the equation of Gauss - Markov is quite restrictive in applying LSM, while 
advanced M-Ppi technique, as it mentioned above,   enables comprehensive solution of an optimization problem 
(5). Such preferences of LSM users seems to be the results of habit and the fact of  clarity of the source of 
Gauss - Markov equation as well as the fact, that M-Ppi technique require additional efforts for its mastering and 
applying. 

Actually, directly Penrose [Penrose, 1955] pseudo inverse matrix A  tо m n  matrix А defined as 

n m - matrix, which specifies a linear operator  : m nA R R , whose action for arbitrary 0 ,my R y  is 

defined by  

2

2





 


min|| ||

min || ||
nz R

x Arg Az y

A y arg x . 
(6) 

So, by this definition, A y  associated with SLAE (system of linear algebraic equations) Ax y  and defined as 

smallest norm solution of the optimization problem of best quadratic approximation of the right side of SLAE 
values of the left side: 

2 


  min || || , ,

n

m n m

x R

Arg y Ax A R y R . (7) 

The set of all solutions of the optimization problem (7) (see, for example, [Кириченко, Донченко, 2005]) is 
determined by relation  

 2    


        min || || ( ) : ( ) ,

n

n n
n n

x R

Arg y Ax A y E A A R x x A y E A A v v R . (8) 

M-Ppi efficiency owes singular valued decomposition (SVD) in its special tensor product form (will be denoted as 
SVDtp) (see, for example, [Донченко, 2011]): any m n  matrix A is represented by singularities of two matrixes 

,T TA A AA : by orthonormal collections of eigenvectors 1 1   , , , , ,n m
i iv R i r u R i r  of ,T TA A AA  

correspondingly and common collection of correspondent nonzero eigenvalues 
2 2
1 ... 0,r r rankA     : 

1




  ,
r

T
i i i

i

A u v  

1
 

  , , ,
T

i i
i i

i i

Av A u
u u i r . 

For another definitions of SVD see, for example, [Алберт, 1977]. 
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M-Ppi definition by SVDtp among more than a dozen other equivalent, is represented by equality:  

1

1

 



 
r

T
i i i

i

A u v
 

M-Ppi is even more than just a tool for working with only vector objects. It provides a means for the manipulating 
with matrixes. Particularly, M-Ppi technique for real valued vectors enable comprehensive solution of optimization 
problem type of (3) in form (5) for matrix objects:  

2



 


  min || || , ,

n p

m p m n
tr

X R

Arg Y AX Y R A R , (9) 

where the trace norm || ||tr  generated by trace scalar product: 

  
,

( , ) T T
tr ij ij

i j

C D c d trC D sum of the diagonal elements of the matrix C D         

Full solution of the optimization problem (9) is given by the theorem 1 below (see, for example, [Донченко, 
2011]). 

Theorem 1. For any m n  matrix A 

 2



     


        min || || ( ) : ( ) ,

n p

n n n n
tr n n

X R

Arg Y AX X Y E A A R Z Z X Y E A A V V R . (10) 

As in the vector case, the solutions of matrix optimization problem (10) coincide with the set of all solutions of 
matrix algebraic equations relatively X: 

      , , ,AX Y A m n Y m p X n p , 

when such solutions exist. 

Optimization problems and its solutions (8), (10) for, correspondingly,  vector and  matrix  objects, namely,  the 
problem of the  best quadratic approximation of the right part of linear equation by the left one, constitute the 
basis for the least squares method for vector and matrix of observations. “Vectors” or “matrixes” case for   
observations (x,y) means, that both its components:, x, y - are simultaneously the vectors or the matrixes 
correspondingly under supposition that relation between them determined by the components  a m n  matrix A. 

Theorem 2. Let the collection of vector pairs 1  ( , ) : , , ,n m
i i i ix y x R y R i N  or matrix pairs 

1   ( , ) : , , ,n p m p
i i i iX Y X R Y R i N  are an observations of linear operator, defined by m n - 

matrix  : n p m pA R R .  

Then the set of LSM estimation of the operator A, is determined by the set of optimization problem solutions 


min ( )

m nA R

Arg A  

with 

2

1

2

1






   

  





( , ) ,   

( )

( , ) ,  ma  

N

i i i i
i

N

i i i i tr
i

y Ax y Ax vector observations

A

Y AX Y AX trix observations

 

is equivalent to optimization problem of the best quadratic approximation of the right hand part of algebraic 

equation T T TX A Y by it left hand part respectively matrix TA  with matrices ,X Y  defined by the 

components of the observations accordingly  to the relations: 
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1

1

( ... )  

( ... )
N

N

x x vector observation
X

X X matrix observation


  

 
 

, 
(11) 

1

1

( ... )

( ... )
N

N

y y vector observation
Y

Y Y matrix observation


  

 
 

. 
(12) 

Proof. Indeed, It is easy to verify, that simultaneous equations: vectors 1 , ,i iy Ax i N  or matrixes 

1 , ,i iY AX i N  , - in the observations model, are equivalent to matrix equations correspondingly: 

1 1 1      ( ... ) ( ... ) ( ... )N N Ny y Ax Ax A x x , 

1 1 1      ( ... ) ( ... ) ( ... )N N NY Y AX Ax A X X , 

which follows from the definition of matrix algebra operations 

Thus, in the notation (11), (12) observation models for both types of observations are represented by matrix 
equation AX Y  with known matrixes X,Y and unknown matrix A.  

Besides 
2

  
  min ( ) min || ||

m n m n
tr

A R A R

Arg A Arg AX Y  

So, equivalently 
2 2

    
    min ( ) min || || min || ||

m n m n T n m

T T T
tr tr

A R A R A R

Arg A Arg AX Y Arg Y X A , (13) 

which proves the theorem. 

Theorem 2. The set of all solutions for LSM - estimation of the linear operator by its vectors or matrixes 
observations is given by the relation: 

 


  


     min ( ), ( ) : ( ),

m n

m n
n

A R

Arg A A A YX V E XX V R , (14) 

Proof. The proof follows directly from theorem 1, relation (10), that describes the solution of matrix algebraic 
equations through obvious changes in notation and subsequent transposition using commutative property for M-
Ppi for matrix and its transpose. 

General algorithm of LSM with matrix observations  

LSM wit matrixes observation for prediction is implemented in the usual way: by estimation of the function 
(operator) and using of the estimation on the appropriate argument. Observations, necessary for the estimation 
procedure to be applied, should be constructed on the basis of a data available. It is the first step of the algorithm 
proposed. 

Step 1. Constructing the matrices components of observations. This step is performed on the based on 

statistical data by its aggregating firstly in vector and then - in matrixes  1 2, ,..., kR R R . Such two – step 

procedure uses natural elements of phenomenon description. Vector constituents as a rule are a collection of that 
or those characteristics of phenomenon under consideration which corresponds to fix moments of time. These 
vectors constituents which correspond some “time window” are aggregated in matrix. Then the “time window” is 
shifted and new matrix is built, and so on. 

Step 2. Constructing the observations. The matrixes 1 2, ,..., kR R R being built the observation pairs ( , )j jX Y  

are built by consequence elements of 1 2, ,..., kR R R : 1 1 1  ( , ) ( , ), ,j j j jX Y R R j k . 
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Figure 1. Aggregated matrixes and observations 

 

Step 3. Parametrization of the model. The relationship between matrixes elements of observations is 
established by  matrix equation Y AX  with matrix A as a parameter.  

Step 4. LSM – estimation. The essence of this step is constructing the LSM-estimation accordingly to (14) by 
choosing the one with minimal norm: 

Â YX , (15) 

Step 5. Constructing the prediction formula. Prediction problem solution, based on the estimated operator 

Â is standard: for any appropriate matrix argument X* predicted Y* is defined by relation  * *ˆY AX . 

Step 6. Calculations and the accuracy of prediction. The accuracy of prediction in economic research, as a 
rule, is estimated by formal criterion of accuracy called “absolute percentage error (APE)”, defined by the relation 

1


 
ˆ

, ,t t

t

z z
APE t T

z
, where tz  - the actual value of the index at the time t , ˆ

tz  - prognostic value of the 

index at the time t . 

It is generally accepted that the value of APE which is less than 10%, corresponds to high prediction accuracy, 
so, values  from 10 to 20%   is interpreted as good prediction accuracy, values from 20 to 50% are considerd to 
be satisfactory, more than 50% - unsatisfactory prediction accuracy. 

Example 1: prediction economic indicators 

In this example, the statistical data of the State Statistics Service of Ukraine was used [Ukrstat].  

As described in [Хаpазiшвiлi, 2007], the regression methods most often used to predict of economic indicators in 
the normal way. In this example, the theory of matrixes LSM (Sections 1) was used.  

In particular, Table 1 - 3 presents the value of gross domestic product (GDP), wages of employees (WE), final 
consumption expenditure (FCE), exports of goods and services (Е) and imports of goods and services (І) for the 

2007 - 2012 years (quarterly and annual data at current prices).  

 

Table 1. The value of 5 indicators for 2007 - 2008 years (at current prices; mln.UAH) 

  

1 quarter 

2007 

2 quarter 

2007 

3 quarter 

2007 

4 quarter 

2007 

Total 

2007  

1quarter 

2008 

2 quarter 

2008 

3 quarter 

2008 

4 quarter  

2008 

Total 

2008  

GDP 139444 166869 199535 214883 720731 191459 236033 276451 244113 948056 

WE  69078 82021 91922 108915 351936 100492 116441 121522 132009 470464 

X1 Y1 

X* 

R1 R2 R3 

X2 Y2 
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FCE 112494 130245 140935 174907 558581 161565 182154 194262 220921 758902 

Е 67513 79664 88491 87537 323205 88516 116640 132177 107526 444859 

І -76022 -85992 -93895 -108464 -364373 -110802 -135800 -144433 -129553 -520588 

 

Table 2. The value of 5 indicators for 2009 - 2010 years (at current prices; mln.UAH) 

  

1 quarter 

2009 

2 quarter 

2009 

3 quarter 

2009 

4 quarter 

2009 

Total 

2009 

1 quarter 

2010 

2 quarter 

2010 

3 quarter 

2010 

4 quarter 

2010 

Total 

2010 

GDP 189028 214103 250306 259908 913345 217286 256754 301251 307278 1082569 

WE  99206 111616 114251 126270 451343 114062 133690 139108 153791 540651 

FCE 172426 188041 196074 216285 772826 194511 216027 232397 271295 914230 

Е 86994 95390 114962 126218 423564 112105 134553 145563 157144 549365 

І -92892 -96846 -116057 -133065 -438860 -114550 -131242 -156102 -179050 -580944 

 

Table 3. The value of 5 indicators for 2011 - 2012 years (at current prices; mln.UAH) 

  

1 quarter 

2011 

2 quarter 

2011 

3 quarter 

2011 

4 quarter 

2011 

Total 

2011 

1 quarter 

2012 

2 quarter 

2012 

3 quarter 

2012 

4 quarter 

2012 

Total 

2012 

GDP 261878 314620 376019 364083 1316600 296 970 351 777 392 080 378564 1408889 

WE  135831 155367 158186 178727 628111 158094 179159 179228 199638 718159 

FCE 236580 268688 285548 314385 1105201 274401 311112 328 868 356607 1269601 

Е 156545 179626 184258 187524 707953 165458 181021 185597 181657 717347 

І -173046 -187916 -202131 -215935 -779028 -180013 -212142 -215571 -219616 -835394 

 
The use of the algorithm 

1. Based on table 1 obvious way form a matrix of observations  1R , based on table 2 – matrix 2R , based on 

table 3 – matrix 3R . 

2. Pair of input output matrix data 1 1( , )X Y  will have the form  1 2( , )R R .  

3. Мatrix 1Â  (see (15)), obtained from the equation 1 1 1 :Y A X   

1

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

,472791 4,27 925 ,44387 2,83749 4,41 361

,53 49 3,94 514 ,71641 2,13 856 2,325999
ˆ ,79734 5,886174 ,49137 3,7 521 4,549 89

, 71931 ,956233 ,215418 ,572184 ,742387

,34424 2, 97631 1,975 2 ,54289 ,958

A


 

  

    84

 
 
 
 
 
 
 
 

 

4. From the equation * *ˆY AX  calculate matrix predictive indicators  
*Y ,  2*X X .  

0 00 0 0 0 0

0 0 0 0

0 0 0

273694, 338 5,3 333617,9 337446,1 1282763,3 316432,6 39945 ,3 35796 ,9 3379 6,6 141175 ,4

136422,5 169529,1 151972,4 164184,7 6221 8,7 167281,7 217282,3 168935,4 167 3 ,4 72 529,8

248255,2 3 6758,3 27458 ,8 292 74,4 112166 0

0 0 00 0 0

0 0 0 00        

8,7 296834,3 377567,3 293639,5 294664,7 12627 5,8

126419,3 145322,3 149113,3 159464,7 58 319,6 1457 4,8 1724 , 172152, 184595,4 674852,2

155678,3 169885,3 184891,2 1927 5,1 7 3159,9 17 727,7 181818,3 2 242,7 232 0

 
 
 
 
 
 
  626, 785414,8
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5. For matrices predictive indicators 
*Y  and actual indicators 2011 - 2012 years 2Y  calculate the matrix APE: 

0 0

0

0 0

0 0

4,51% 7,43% 11,28% 7,32% , % 6,55% 13,55% 8,7 % 1 ,74% , %

,44% 9,12% 3,93% 8,14% , % 5,81% 21,28% 5,74% 16,33% , %

4,93% 14,17% 3,84% 7,1 % , % 8,18% 21,36% 1 ,71% 17,37% , %

19,24% 19,1 % 19, 7% 14,96% , % 11,94% 4,76%

2 57 0 20

0 96 0 33

1 49 0 54

18 03

0 0 0 0

7,24% 1,62% , %

1 , 4% 9,6 % 8,53% 1 ,76% , % 5,16% 14,29% 7,11% 5,92% , %

 
 
 
 
 
 
 
 

5 92

9 74 5 98

 
In accordance with the submitted values matrix APE, error prediction GDP in 2011 (as a whole) was 2,57%, 
WE - 0,96%, FCE - 1,49%, Е - 18,03%, І - 9,74%, error prediction GDP in 2012 (as a whole) was 0,20%, 
WE - 0,33%, FCE - 0,54%, Е - 5,92%, І - 5,98%, and excess error 20% for some mentioned quarterly indicators 
can be explained by the fact that prediction is used, in particular, data the years of crisis 2008 - 2009.  

In general, comparing the results with the values of the relevant indicators the consensus prediction [Me], it can 
be argued about the competitiveness of the proposed article approach for forecasting macroeconomic indicators. 

Example 2: prediction of TV audience performance 

TV advertising market players use predictive performance television audience for programs, films, serials and 
advertising media planning on Ukrainian TV. The specificity of this approach consists in dependence on the 
accuracy of the forecast TV indicators of all TV market players. Each year there is a necessity forecasting basic 
TV performance on the subsequent estimated year in monthly terms based on similar data of prior periods. 

In practice, usually following basic TV performance are forecast:  

 share of TV channel audience (share of the channel - sc) – this index determines the amount of viewers 
who watched TV from the total number of viewers at the investigated time period;  

 rating of TV channel audience (ratings of the channel - rc) - this index determines the amount of TV 
audience, it takes into account the duration of watching TV every spectator in the analyzed period of 
time; 

 TotalTV rating (rt) - this index determines the total size of the television audience, it takes into account 
individual TV time watching by every spectator in the analyzed time period; 

 advertising TV audience rating of the channel (an advertisement rating - ra) - this index determines the 
size of TV advertising audience it takes into account the duration of advertisement  viewing by every TV 
viewers.  

As described in [Taрaсoвa, 2012], the approximation by the least squares method is most often used to predict 
television performance in the standard way. In this example, the theory of pseudo inverse is used for forecasting 
TV performance.  

Description of the main data  
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In Ukraine TV Viewing performance data from 2003 are stored in a 
special database, which is the result of regular measurement of 
television audience. For example, we used four indicators data for years 
2010-2012 by months which described above. 

The result of observations for this period of four television performance 
(audience share of channel sc, rating of channel rc, TotalTV rating  rt, 
ratings of channel advertising ra) forms the matrix of monthly 

observations 

1

2

3

4

1 36

 
 
  
 
 
 

( )

( )
( ) , ,

( )

( )

r i

r i
r i i

r i

r i

.  

Respectively 1 1 36( ) , ,r i i  — is the row-vector of monthly channel 

audience share data; 2 1 36( ) , ,r i i  — is the row-vector of monthly 

channel rating data; 3 1 36( ) , ,r i i — is the row-vector of monthly 

TotalTV data; 4 1 36( ) , ,r i i  — is the row-vector of monthly 

advertising raiting data. 

These monthly data vectors for a given period (in our case - three 

years) naturally organizing the matrix of observations  R(i),i =1,36 .  

To apply the theory of pseudoinverse we use the signs of Sections 1 
and construct from the observations matrix the matrix pairs of input and 
output data of our model. We grouped the observational data matrix 

R(i),i =1,36  in the matrix 1 2 3R ,R ,R  as follows 

 
 
 

1

2

3

1 12

13 24

25 36







 

 

 

( ) ... ( ) ,

( ) ... ( ) ,

( ) ... ( ) .

R r r

R r r

R r r

 

Then the matrix pair 1 1(X ,Y ) , on which evaluation matrix of the model 

parameters Â  will be calculated from the matrix equation Y = AX , is 

as follows 1 1 1 2(X ,Y )= (R ,R ) . The matrix pair 2 2(X ,Y )  is used to 

construct the forecast indicators matrix *Y  from the matrix equation 
ˆ*

2Y = AX  and accuracy estimation of prediction *Y  by the criterion of 

accuracy 
*

2

2

Y - Y
APE =

Y
, де 2 2 2 3(X ,Y ) = (R ,R ) . 

The use of the algorithm 

1. We constructed the matrix of annual monthly observations 

1 2 3, ,R R R  on the basis of the matrix of observations 1 36( ), ,r i i  (four basic monthly indicators in 2010-2012 

(Table 4)) by grouping data. 

2. A pair of input-output data matrices 1 1( , )X Y  takes the form 1 2( , )R R .  

Table 4. TV data performance by month 

period sc rc rt ra 

Jan.10 10,19 1,53 15,06 1,32 

Feb.10 9,52 1,33 13,92 1,03 

Mar.10 8,81 1,19 13,45 0,91 

Apr.10 8,79 1,09 12,40 0,94 

May.10 9,34 1,13 12,09 0,99 

Jun.10 9,06 1,00 11,07 0,81 

Jul.10 8,87 0,95 10,66 0,77 

Aug.10 10,22 1,13 11,06 1,01 

Sept.10 9,25 1,13 12,24 0,96 

Oct.10 8,70 1,17 13,41 1,02 

Nov.10 9,19 1,27 13,79 1,12 

Dec.10 9,47 1,38 14,53 1,17 

Jan.11 9,65 1,48 15,36 1,30 

Feb.11 9,07 1,32 14,52 1,14 

Mar.11 8,66 1,23 14,17 1,08 

Apr.11 8,90 1,17 13,16 1,03 

May.11 8,59 1,08 12,54 0,91 

Jun.11 9,69 1,14 11,77 1,02 

Jul.11 10,19 1,14 11,15 1,06 

Aug.11 10,56 1,21 11,51 1,15 

Sept.11 9,12 1,13 12,39 1,05 

Oct.11 8,67 1,19 13,67 1,10 

Nov.11 9,30 1,33 14,34 1,21 

Dec.11 8,82 1,30 14,79 1,17 

Jan.12 8,95 1,39 15,56 1,25 

Feb.12 8,71 1,31 15,04 1,18 

Mar.12 9,37 1,37 14,63 1,25 

Apr.12 9,23 1,21 13,16 1,12 

May.12 9,15 1,16 12,62 1,03 

Jun.12 8,60 1,03 11,97 0,90 

Jul.12 9,56 1,02 10,68 0,88 

Aug.12 9,65 1,05 10,88 0,96 

Sept.12 8,47 0,99 11,74 0,89 

Oct.12 8,41 1,05 12,53 0,94 

Nov.12 8,45 1,13 13,40 1,00 

Dec.12 9,10 1,29 14,23 1,13 
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3. Then the matrix of estimates of the model parameters Â , that obtained from the equation 

1 1   Y AX Y AX   

 
 
 
 
 
 

1,371 -3,443 0,110 -0,763

0,055 0,513 0,023 -0,193ˆ
0,089 0,247 1,079 -1,657

0,062 0,054 0,026 0,127

A  

4. From the equation * *ˆY AX  calculate predictive indicators matrix 
*Y , 2*X X .  

*

8,82 8,63 8,38 8,83 8,74 9,87 10,47 10,68 9,17 8,46 8,80 8,33

1,40 1,29 1,23 1,20 1,14 1,20 1,20 1,25 1,17 1,19 1,30 1,27

15,65 14,92 14,59 13,58 13,06 12,16 11,48 11,77 12,72 14,00 14,62 15,13

1,24 1,16 1,11 1,09 1,03 1,10 1,12 1,17 1,08 1,1

Y

 
 
 
 
 
 0 1,18 1,15

5. A comparison of the predictive indicators matrix 
*Y  and actual performance matrix 2012 2Y  gives a matrix of 

errors APE: 

5 0 9 5 7 2 9 7 6 6 2

5 2 3 4 0 4 9

2

1, % 1, % 11, % 4. % 4, % 1 , % 8, % 9, % 7, % 0,6% 4,0% 9, %

0, % 1, % 11,6% 1. % 1,2% 1 , % 1 , % 16,1% 14,8% 11,6% 12,6% 1,7%

0,6% 0,8% 0,3% 3,1% 3,3% 1,5% 6,9% 7,6% 7,7% 10,5% 8,4% 6,0%

0,8% 2,2% 12,8% 2,6% 0,2% 18,4% 1,3% 17,3% 17,5% 14,2%

 
 
 
 
 
 15,2% 1,8%

 

As the errors table shows АРЕ, the average annual forecast indicators error for 2012 is: 6,3% (max 12,9%) – for 
TV channel audience share, 8,4% (max 16,1%) – for TV channel audience rating, 4,7% (max 10.5%) – for 
TotalTV rating, 10,4% (max 21,3%) – for TV channel advertising rating. The average prediction accuracy for all 
four indicators is acceptable for monthly year forecasts. However, exceeding the 10% threshold accuracy in some 
months is critical and shows the necessity of expert correction. Specifically our example, consideration of UEFA 
EURO 2012 effect in 6-7 months. 

Conclusion  

In the article case of matrix of observations for the arguments and values of the renewable function of the linear 
relationship between the components of observation has been considered. 

Based on the matrixes least squares method, approach to prediction of indicators was proposed. 

Testing approach with the use of statistical data of the economic and media indicators was made. 

Results of prediction with available statistics was compared. The proposed approach for finding predictive values 
indicators is competitive. 
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