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Abstract: This paper contains analysis of creation of sets and multisets as an approach for modeling of some 

aspects of human thinking. The creation of sets is considered within constructive object-oriented version of set 

theory (COOST), from different sides, in particular classical set theory, object-oriented programming (OOP) and 

development of intelligent information systems (IIS). The main feature of COOST in contrast to other versions of 

set theory is an opportunity to describe essences of objects more precisely, using their properties and methods, 

which can be applied to them. That is why this version of set theory is object-oriented and close to OOP. Within 

COOST, the author proposes universal constructor of multisets of objects that gives us a possibility to create 

arbitrary multisets of objects. In addition, a few determined constructors of multisets of objects, which allow 

creating multisets, using strictly defined schemas, also are proposed in the paper. Such constructors are very 

useful in cases of very big cardinalities of multisets, because they give us an opportunity to calculate a multiplicity 

of each object and cardinality of multiset before its creation. The proposed constructors of multisets of objects 

allow us to model in a sense corresponding processes of human thought, that in turn give us an opportunity to 

develop IIS, using these tools. 

Keywords: constructive object-oriented set theory, class of objects, homogeneous class of objects, 

inhomogeneous class of objects, set of objects, multiset of objects. 

ACM Classification Keywords: I.2.0 General – Cognitive simulation, F.4.1 Mathematical Logic – Set theory, 

D.1.5 Object-oriented Programming, D.3.3 Language Constructs and Features – Abstract data types, Classes 

and objects, Data types and structures, E.2 Data Storage Representations – Object representation. 

Introduction 

Nowadays there are different versions of set theory, such as naive set theory of Cantor [Cantor, 1915], type 

theory of Russell [Wang, Mc Naughton, 1953], Zermelo-Fraenkel set theory [Fraenkel, Bar-Hillel, 1958; Wang, Mc 

Naughton, 1953], Von Neumann-Bernays-Gedel set theory [Wang, Mc Naughton, 1953], systems of Quine's set 

theory [Wang, Mc Naughton, 1953], constructible sets of Mostowski [Mostowski, 1969], alternative set theory of 

Vopenka [Vopenka, 1979], etc. where definition of set is introduced in different ways. Nevertheless, these 

definitions just describe the concept of set, and do not explain the origin of particular sets. It means they just 

declare a fact of existence of sets. That is why questions about the origin of specific sets are arising. Of course, 

we can conclude that the “new” set can be obtained by set-theoretic operations over “existing” sets, and it is really 

so. However, the questions about origin of these so-called “existing” sets do not disappear, because if they exist, 

it means that someone, using some methods (algorithms), created them earlier. 

Apart from this, concept of set has important place in human thinking activity during perception, analysis, 

comparison, retrieval, classification and so on. Really, let us consider situation, when you have bunch of keys and 

need to open certain lock. If you know how exactly corresponding key looks, you can imagine and distinguish it 

from other keys from this bunch. In this case, it will be easy and fast. However, into another case you need to 



International Journal “Information Theories and Applications”, Vol. 21, Number 4, 2014 

 

340

check the keys. It means, you perform certain exhaustive search, and at the same time, you create set of keys, 

which you have checked. Let us imagine another situation, when you need to count money, which you have in 

your wallet. During counting, you create at least two sets, set of banknotes and set of coins. In addition, we can 

consider situation when you want to play chess or checkers, and before starting, you need to make initial 

arrangement of figures on the chessboard. During figures placement, you create set of white and set of black 

figures from set of all figures. During the game, you create set of beaten figures and set of unbeaten figures from 

the set of all figures. These are just a few simple examples from our daily activity. Usually we pay little attention to 

how do we think, and what concepts do we use during this activity. However, we operate with sets of objects 

permanently, sometimes it happening consciously sometimes not, but it is so. These facts give as an opportunity 

to conclude that set is the one of basic constructions of human thinking. 

Today, we have an opportunity to use sets in programming, in particular in OOP. As a proof, there are 

appropriate tools within some OOP-languages for working with such data structure, in particular set in STL for 

C++ [Musser, Derge, Saini, 2001], HashSet, SortedSet and ISet in C# [Mukherjee, 2012], HashSet in Java [Eckel, 

2006], set and frozenset in Python [Summerfield, 2010]. These tools allow sets creation, executing basic set-

theoretic operations, membership checking, adding and removing of elements and checking of equivalence 

between sets, etc. 

As we can see, concept of set is very important for mathematics and has some applications in programming, in 

particular OOP, as practical implementation of some aspects of mathematical set theory. However, set theory and 

OOP are developed separately, and opportunity to work with sets within OOP is just additional functionality of 

OOP. It means programmers do not develop set theory, and mathematicians do not develop implementation of 

set theory within programming languages, very often, these two communities have different interests. Despite 

this, our target is development of IIS, based on human mechanisms of information analysis, in particular, on 

manipulation with sets of objects, using OOP. That is why we will try to combine some ideas of set theory and 

OOP during design and development of such systems. We will consider some constructive version of set theory 

described in [Terletskyi, 2014], which is close to OOP’s paradigm, and show its application for simulation of some 

aspects of human thinking, in particular creation of sets and multisets of objects. 

Objects and Classes 

We know that each set consists of elements, which form it. Everything, phenomena of our imagination or of our 

world can be the elements of the set [Cantor, 1915]. From other hand, one of the main postulates of OOP is that 

real world is created by objects [Pecinovsky, 2013]. Combining these two ideas, we will call elements of sets – 

objects. Let us consider such object as natural number. It is clear that every natural number must be integer and 

positive. These are characteristic properties of natural numbers. It is obvious, that 2 is really a natural number, 

but −12 and 3.62, for example, are not natural numbers. 

Let us consider another object, for instance triangle. We know that triangle is geometrical figure, which has three 

sides for which the triangle inequality must be satisfied. According to this, geometrical figure, which has sides 3 

cm, 5 cm and 7 cm is really a triangle, but figure with sides 2 cm, 4 cm and 7 cm does not triangle. We can 

conclude that each object has certain properties, which define it as some essence while analyzing these facts. 

Furthermore, objects and their properties cannot exist separately, because if we assume the opposite, we will 

have contradiction. On the one hand, object cannot exist separately from its properties, because without 

properties we cannot imagine and cannot describe it. On the other hand, object's properties cannot exist 
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separately from object, because without object we cannot see and cannot perceive them. That is why, we cannot 

consider them separately, and there are few variants of the definitions order. It means that we cannot introduce 

definition of object without definition of its properties and vice versa. Therefore, we decided to introduce concept 

of object's properties firstly. 

Globally we can divide properties of objects into two types – quantitative and qualitative. We will define these two 

types of object's properties formally, but their semantics has intuitive nature. 

 

Definition 1. Quantitative property of object A  is a tuple ( ) ( ( ( )), ( ( )))i i ip A v p A u p A , where 1,i n , 

( ( ))iv p A  is an quantitative value of ( )ip A , and ( ( ))iu p A  are units of measure of quantitative value of ( )ip A  

Example 1. Suppose we have an apple, and one of its properties is weight. We can present this property as 

follows ( ) ( ( ( )), ( ( )))w w wp A v p A u p A , and if weight of our apple is 0.2 kg, then property ( )wp A  will be the 

following 0 2( ) ( . , )wp A kg . ♠ 

 

Definition 2. Two quantitative properties ( )ip A  and ( )jp B , where 1,i n , 1,j m , are equivalent, i.e. 

1( ( ), ( ))i jEq p A p B  , if and only if ( ( )) ( ( ))i ju p A u p B . 

 

Definition 3. Qualitative property of object A  is a verification function ( ) ( )i ip A vf A , 1,i n , which defines 

as a mapping 0 1( ) : ( ) [ , ]i ivf A p A  . 

Example 2. Let us consider such object as a triangle. One of its properties is triangle inequality, which must be 

satisfied for its sides. We can present this property as follows ( ) ( )ti tip T vf T , where ( )tivf T  is verification 

function of property ( )tip T . In this case, function 0 1( ) : ( ) { , }ti tivf T p T  , and it is a particular case of 

verification function – predicate or Boolean-valued function. ♠ 

We can conclude that, such approach gives an opportunity to combine description of property and its verification 

in the one function, i.e. verification function is a verification function and a description of property at the same 

time. Therefore, different algorithms can be verifiers and descriptors of properties simultaneously. 

 

Definition 4. Two qualitative properties ( )ip A  and ( )jp B , where 1,i n , 1,j m , are equivalent, i.e. 

1( ( ), ( ))i jEq p A p B  , if and only if ( ( ) ( )) ( ( ) ( ))i j i jvf A vf A vf B vf B   . 

 

Definition 5. Specification of object A  is a vector 1( ) ( ( ),..., ( ))nP A p A p A , where ( )ip A , 1,i n  is 

quantitative or qualitative property of object A . 

 

Definition 6. Dimension of object A  is number of properties of object A , i.e. ( ) ( )D A P A . 

Now, we can formulate the definition of object. 
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Definition 7. Object is a pair / ( )A P A , where A  is object’s identifier and ( )P A  – specification of object. 

Essentially, object is a carrier of some properties, which define it as some essence. 

 

Definition 8. Two objects A and B  are similar, if and only if ( ) ( )P A P B . 

In general, we can divide objects on concrete and abstract, and does not matter when or how someone created 

each particular object. It is material implementation of its abstract image – a prototype. This prototype is 

essentially an abstract specification for creation the future real objects. Besides properties of objects, we should 

allocate operations (methods) which we can apply to objects, considering the features of their specifications. 

Really, we can apply some operations (methods) to objects for their changing and for operating with them. That is 

why, it will be useful to define concept of object's operation (method). 

 

Definition 9. Operation (method) of object A  is a function ( )f A , which we can apply to object A  considering 

the features of its specification. 

Example 3. For such objects as natural numbers n , m  we can define operations " "  and " " . ♠ 

In OOP, programmers consider specifications and methods of objects without objects, and they call it a type or a 

class of objects, which consists of fields and methods [Weisfeld, 2008; Pecinovsky, 2013]. Fields of class, 

essentially, are specification of class. Methods are functions, which we can apply to objects of this class for their 

changing and for operating with them. For convenience, we will also use word “signature” for methods of class. 

Let us define concept of object’s signature. 

 

Definition 10. Signature of object A  is a vector 1( ) ( ( ),..., ( ))mF A f A f A , where ( )if A , 1,i m  is an 

operation (method) of object A . 

Generally, signature of particular object can consist of different quantity of operations, but in practice, especially 

in programming, usually we are considering finite signatures of objects. 

According to definition of object, every object has some specification, which defines it as some essence. There 

are some objects, which have similar specifications. It means that we can apply the same methods to them. Let 

us define similar objects. 

 

Definition 11. Objects A  and B  are similar objects, if and only if, they have the same dimension and equivalent 

specifications. 

If certain two objects are similar, we can conclude that these objects have the same type or class. Now we can 

introduce concept of object’s class. 

 

Definition 12. Object’s class T  is a tuple ( ( ), ( ))T P T F T , where ( )P T  is abstract specification of some 

quantity of objects, and ( )F T  is their signature. 
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When we talk about class of objects, we mean properties of these objects and methods, which we can apply to 

them. Class of objects is a generalized form of consideration of objects and operations on them, without these 

objects. 

Example 4. Let us describe type Int  in programming language C++, using concept of similar objects and 

object’s class. Let us set the next specification for the class 1 2( ) ( ( ), ( ))P Int p Int p Int , where property 

1( )p Int  means “integer number”, property 2( )p Int  means “number not bigger then 2147336147 and not smaller 

than -2147336148”. It is obvious, that all numbers which have properties 1( )p Int  and 2( )p Int  are objects of 

class Int. Let define the methods of class Int  in the following way 1 2( ) ( ( ), ( ))F Int f Int f Int , where 

1( ) " "f Int    and 2 ( ) "* "f Int  . ♠ 

As we know, in OOP, every particular object has the same fields and behavior as its class, i.e. it has the same 

specification and signature. It means that every class of OOP is homogeneous in a sense. That is why, let us 

define concept of homogeneous class of objects. 

 

Definition 13. Homogeneous class of objects T  is a class of objects, which contains only similar objects. 

The simplest examples of homogeneous classes of objects are class of natural numbers, class of letters of 

English alphabet, class of colors of the rainbow, etc. 

Clearly, that every object is a member of at least one class of objects. Furthermore, some objects are members of 

few classes simultaneously. For example, such objects as natural numbers 1,..., mn n  are members of such 

classes as natural numbers N , integer numbers Z , rational numbers Q  and real numbers R . It is obvious 

that, class R  has the biggest cardinality. Furthermore, it consists of groups of objects of different types. It 

contradicts concept of OO-class, because different objects from one OO-class cannot have different 

specifications and signatures. According to this, we cannot describe such classes of objects using concept of 

homogeneous class. That is why we will define concept of inhomogeneous class of objects. 

 

Definition 14. Inhomogeneous class of objects T  is a tuple  

 

1 1( ( ), ( ),..., ( ))n nT Core T pr A pr A , 

where ( ) ( ( ), ( ))Core T P T F T  is the core of class T , which includes properties and methods similar to 

specifications 1( ),..., ( )nP A P A  and signatures 1( ),..., ( )nF A F A  respectively and ( ) ( ( ), ( ))i i i ipr A P A F A , 

1,i n  is projection of object iA , which consists of properties and methods typical only for this object. 

The simplest examples of inhomogeneous classes of objects are class of polygons, cars, birds, etc. 

 

Definition 15. Two classes of objects 1T  and 2T  are equivalent, i.e. 1 2 1( , )Eq T T  , if and only if 

1 2 1 2( ( ) ( )) ( ( ) ( ))P T P T F T F T   . 
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Sets and Multisets of Objects 

According to Naive set theory, a set is a gathering together into a whole of definite, distinct objects of our 

perception or of our thought, which are called elements of the set [Cantor, 1915]. As we can see, this definition 

just describes concept of set, and does not explain how to gather these objects together. That is why we are 

going to define union operation on objects, as a method of set creation. 

 

Definition 16. Union   of 2n   arbitrary objects is a new set of objects S , which is obtained in the following 

way  

1 1 1/ ( ) ... / ( ) { ,..., } / ( )n n nS A T A A T A A A T S    , 

where ,i jA A S  , 1, ,i j n  and i j , 0( , )i jEq A A  ; ( )iT A , 1,i n  is a class of object iA  and ( )T S  

is a class of new set of objects S  and n  is its cardinality. 

Example 5. Let us consider such geometrical objects as triangle, square and trapeze. It is obvious that these 

objects belong to different classes of polygons. Let us denote triangle as A , square as B , trapeze as C , and 

describe their classes as follows 

1 5 1 2( ) (( ( ),..., ( )),( ( ), ( )))T A p A p A f A f A ; 1 4 1 2( ) (( ( ),..., ( )),( ( ), ( )))T B p B p B f B f B ; 

1 5 1 2( ) (( ( ),..., ( )),( ( ), ( )))T C p C p C f C f C . 

Properties 1( )p A , 1( )p B , 1( )p C  are quantities of sides of figures, properties 2 ( )p A , 2( )p B , 2 ( )p C , are sizes 

of sides of figures, properties 3( )p A , 3( )p B , 3( )p C  are quantities of angles of figures, properties 4 ( )p A , 

4( )p B , 4 ( )p C  are sizes of angles of figures, property 5( )p A  is triangle inequality and property 5( )p C  is 

parallelism of two sides of figure. Methods 1( )f A , 1( )f B , 1( )f C  are functions of perimeter calculation of figures, 

and methods 2 ( )f A , 2 ( )f B , 2 ( )f C  are functions of area calculation of figures.  

Of course, specifications and signatures of these objects can include more properties and methods, than we have 

presented in this example, but everything depends on level of detail. Let us define specifications and signatures 

of these objects (see Table 1).  

 

Table 1. Specifications and signatures of triangle A , square B  and trapeze C  

 1p

 
2p  

3p  4p  
5p  1f  2f  

A  3 3.6 cm, 3.6 cm, 

5.9 cm 

3 35°, 35°, 

110° 

1 3

1
i

i

P a


  ( )( )( )S p p a p b p c     

B  4 2 cm, 2 cm, 

2 cm, 2 cm 

4 90°, 90°, 

90°, 90° 

  4

1
i

i

P a


  
2S a  

C  4 3.6 cm, 5.9 cm, 

3.6 cm, 11.8 cm 

4 35°, 145°, 

145°, 35° 

1 4

1
i

i

P a


  
2

( )a b
S h

  

 



International Journal “Information Theories and Applications”, Vol. 21, Number 4, 2014 

 

345

Analyzing Table 1, we can see that property 5p  specified as just value of verification function for particular object. 

All these functions can be simply implemented using OOP language. Furthermore, there are variety of their 

implementations that is why we will not consider them within this example. 

Now, let us apply the union operation to these objects and create a new set of objects. 

/ ( ) / ( ) / ( ) { , , } / ( )S A T A B T B C T C A B C T S     

We have obtained a new set of objects S  and a new class of objects 

1 2 3( ) ( ( ), ( ), ( ), ( ))T S Core S pr A pr B pr C , 

Where 1 2 3 4 1( ) ( ( ), ( ), ( ), ( ), ( ))Core S p S p S p S p S f S , property 1( )p S  is quantity of sides of figures, property 

2( )p S  means sizes of sides of figures, property 3( )p S  is quantity of angles of figures, property 4( )p S  means 

sizes of angles of figures, method 1( )f S  is a function of perimeter calculation of figures, 

1 5 2( ) ( ( ), ( ))pr A p A f A , 2 2( ) ( ( ))pr B f B , 3 5 2( ) ( ( ), ( ))pr C p C f C . 

Essentially, the set of objects S  is the set of triangles of class ( )T A , squares of class ( )T B  and trapezes of 

class ( )T C  and class of set of objects ( )T S  describes these three types of geometrical figures. ♠ 

Therefore, we can create sets of object, applying union operation to objects and not only. According to classical 

set theory, we can do it, applying union operation to sets of objects. However, this operation does not consider 

concept of class of objects that is why we need to redefine it. 

 

Definition 17. Union   of 2m   arbitrary sets of objects is a new set of objects S , which is obtained in the 

following way  

1 1 1/ ( ) ... / ( ) { ,..., } / ( )m m nS S T S S T S A A T S    , 

where ,i jA A S  , 1, ,i j n  and i j , 0( , )i jEq A A  ; ( )iT S , 1,i m  is a class of set of objects iS  and 

( )T S  is a class of a new set of objects S  and n  is its cardinality. 

Example 6. Let us consider such objects as triangle A , square B  and trapeze C , which belong to classes 

( )T A , ( )T B  and ( )T C , described in the Example 5, respectively. Let us create two sets of objects 1S  and 

2S  using Definition 16, i.e. 

1 1/ ( ) / ( ) { , } / ( )S A T A B T B A B T S   ; 2 2/ ( ) / ( ) { , } / ( )S A T A C T C A C T S   . 

As the result we have obtain new sets of objects 1S , 2S  and new classes of objects 1( )T S , 2( )T S , that have 

following structures 

1 1 1 2( ) ( ( ), ( ), ( ))T S Core S pr A pr B ; 2 2 1 2( ) ( ( ), ( ), ( ))T S Core S pr A pr C . 

In the case cores of both classes are the same, it means  

1 2 1 2 3 4 1( ) ( ) ( ( ), ( ), ( ), ( ), ( ))Core S Core S p S p S p S p S f S  , 

where property 1( )p S  is quantity of sides of figures, property 2( )p S  means sizes of sides of figures, property 

3( )p S  is quantity of angles of figures, property 4( )p S  means sizes of angles of figures, method 1( )f S  is a 



International Journal “Information Theories and Applications”, Vol. 21, Number 4, 2014 

 

346

function of perimeter calculation of figures. Concerning projections of these classes, then they have following 

structures 1 1 2( ) ( ( ), ( ))pr A p A f A , 2 2( ) ( ( ))pr B f B , 2 5 2( ) ( ( ), ( ))pr C p C f C . 

Now, let us calculate union of 1S  and 2S . 

1 1 2 2 1 2/ ( ) / ( ) { , } / ( ) { , } / ( ) { , , } / ( )S S T S S T S A B T S A C T S A B C T S      

As we can see, we have obtained the same result, as in the case of union of objects A , B  and C , which we 

considered in the previous example. ♠ 

Consequently, we have considered two ways of set creation, however we can also obtain a set of objects, 

combining these two approaches. 

 

Definition 18. Union   of 1n   arbitrary objects and 1m   arbitrary sets of objects is a new set of objects S , 

which is obtained in the following way  

1 1 1 1 1/ ( ) ... / ( ) / ( ) ... / ( ) { ,..., } / ( )n n m m kS A T A A T A S T S S T S A A T S       , 

where ,i jA A S  , 1, ,i j k  and i j , 0( , )i jEq A A  ; ( )vT A , 1,v n  is a class of object vA , ( )wT S , 

1,w m  is a class of set of objects wS  and ( )T S  is a class of new set of objects S  and k  is its cardinality. 

Example7. Let us consider objects A , B , C  and sets of objects 1S , 2S  which were described above, and 

calculate their union. 

1 1 2 2/ ( ) / ( ) / ( ) / ( ) / ( )S A T A B T B C T C S T S S T S       

1 2/ ( ) / ( ) / ( ) { , } / ( ) { , } / ( ) { , , } / ( )A T A B T B C T C A B T S A C T S A B C T S      . 

As we can see, we have obtained the same result, as in the previous example. ♠ 

Let us define a concept of set of objects based on methods of set creation, which were considered above. 

 

Definition 19. The set of objects S  is a union, which satisfies one of the following schemes: 

1 11 : / ( ) ... / ( ) / ( )n nS O T O O T O S T S   ; 

1 12 : / ( ) ... / ( ) / ( )m mS S T S S T S S T S   ; 

1 1 1 13 : / ( ) ... / ( ) / ( ) ... / ( ) / ( )n n m mS O T O O T O S T S S T S S T S      ; 

where 1,..., nO O  are arbitrary objects, 1,..., mS S  are arbitrary sets of objects, and ( )T S  is a class of a new set 

of objects S . 

According to types of objects, which form a set of objects, we can obtain different types of sets of objects, in 

particular set of objects, which consists of only objects, that belong to the same class of objects.  

Let us define concept of homogeneous set of objects, based on concept of homogeneous class of objects. 

 

Definition 20. Set of objects 1{ ,..., }nS A A  is homogeneous, if and only if ,i jA A S  , 1, ,i j n  and 

i j , 1( ( ), ( ))i jEq T A T A  . 
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As we know, multiset is a generalization of the notion of set in which members are allowed to appear more than 

once [Syropoulos, 2001]. Formally multiset can be defined as a 2-tuple ( , )A m , where A  is the set, and m  is 

the function that puts a natural number, which is called the multiplicity of the element, in accordance to each 

element of the set A  i.e. :m A N . However, this definition does not explain how to create a multiset of 

objects that is why we are going to define multiset of objects using concept of set of objects. 

 

Definition 21. The multiset of objects is a set of objects 1{ ,..., }nS A A , such that ,i jA A S  , where 

1, ,i j n  and i j , 1( , )i jEq A A  . 

We can obtain a multiset of objects in the same way as a set of objects. 

Example 8. Let us consider objects A , B , C  and sets of objects 1S , 2S  from Example 5 and Example 6. 

Union of objects. 

/ ( ) / ( ) / ( ) / ( ) / ( ) { , , , , } / ( )S A T A A T A B T B B T B C T C A A B B C T S       

Union of sets of objects. 

1 1 2 2 1 2/ ( ) / ( ) { , } / ( ) { , } / ( ) { , , , } / ( )S S T S S T S A B T S A C T S A A B C T S      

Union of objects and sets of objects. 

2 2 2/ ( ) / ( ) / ( ) { , } / ( ) { , , } / ( )S A T A S T S A T A A C T S A A C T S      

Using three different ways of creation, we have obtained three different multisets of objects. ♠ 

Let us define some auxiliary definitions connected with multisets of objects. 

 

Definition 22. Cardinality of multiset of objects 1{ ,..., }nS A A  is a quantity of objects, which it contains, i.e. 

S n . 

 

Definition 23. Basic set of multiset of objects 1{ ,..., }nS A A  is a set of objects bS , which is defining as 

follows 

1( ) { ,..., }b mS bs S A A  , 

where m n , ,i j bA A S  , 1, ,i j m , i j , 0( , )i jEq A A   and wA S  , w bA S . 

Example 9. If we have set of objects { , , , , , , , }S A A B B B C D D , then ( ) { , , , }bbs S S A B C D  . ♠ 

Universal Constructor of Multisets of Objects 

As we can see, a multiset of objects can be obtained similarly to sets of objects. However, sometimes we need to 

recognize or identify particular copy of some elements, which have multiplicity 2m  . That is why, we will 

consider universal constructor of multisets of objects, which was presented in [Terletskyi, 2014]. After that, we will 

show its generality, i.e. we can create arbitrary multiset of object, using this constructor. However, firstly we are 

going to define cloning operation on objects. 
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Definition 24. Clone of the arbitrary object A  is the object ( ) / ( )k i k iClone A A P A , where ( )P A  is a 

specification of object A , i  is a number of its copy and k  is a clone’s number of iA . If the object A  is not a 

clone, then 0i  . 

The main idea of universal constructor of multisets of objects is superposition of union and cloning operation of 

objects. 

Example 10. Let us consider triangle A  from previous section. Using cloning operation, we can create the 

clones of A , for example 

1 1 1 5( ) / ( ( ),..., ( ))Clone A A p A p A ; 2 2 1 5( ) / ( ( ),..., ( ))Clone A A p A p A ; 

Clearly, that triangle A  and its clones 1A , 2A  are similar triangles. After this, we can apply union operation to 

them, and in such a way to create the multiset of triangles S , i.e. 

1 2 1 2/ ( ) / ( ) / ( ) { , , } / ( )S A T A A T A A T A A A A T S    . 

Thus, when we have done it, we have also created a new class of multiset of objects ( )T S , but in this case, it is 

equivalent to class ( )T A , i.e. 1 5( ) ( ) ( ( ),..., ( ))P S P A p A p A   and 1 2( ) ( ) ( ( ), ( ))F S F A f A f A  . That is 

why, S  is a homogeneous multiset of objects. ♠ 

Considering this example, we can conclude that 

2

1

( )i
i

S A Clone A


    
 
 . 

It means that we can create any multisets of objects, using arbitrary superposition of union and cloning operations 

of objects. According to this, we can define our universal constructor of multisets of objects (UCM) as follows 

1

( , ) ( )
m

i
i

UCM A m A Clone A


    
 
 , 

where m  is a multiplicity of object A . 

Example 11. Let us extend this constructor to inhomogeneous objects and consider for it the square B  and the 

trapeze C , which were defined in the previous section. Using cloning operation, we can create the clones of 

object B  and of object C , for example 

 

1 1 1 4( ) / ( ( ),..., ( ))Clone B B p B p B ; 1 1 1 5( ) / ( ( ),..., ( ))Clone C C p C p C ; 

2 2 1 5( ) / ( ( ),..., ( ))Clone C C p C p C . 

Clearly, that object B  and its clone 1B  are similar squares. We have the same situation in case of trapeze C  

and its clones 1C , 2C . After this, we can apply union operation to objects B , C  and their clones 1B , 1C , 2C , 

and in such a way to create a multiset of squares and trapezes S , i.e. 

1 1 2 1 1 2/ ( ) / ( ) / ( ) / ( ) / ( ) { , , , , } / ( )S B T B B T B C T C C T C C T C B B C C C T S      . 

Thus, when we have done it, we have also created a new class ( )T S  with the following specification 

1 2 1 2 3 5 1 2 5 2( ) ( ( ), ( ), ( )) (( ( ), ( ), ( ), ( ), ( )),( ( )),( ( ), ( )))T S Core S pr B pr C p S p S p S p S f S f B p C f C  . 
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Clearly, that S  is the inhomogeneous multiset of objects, because 1B B  and 1 2C C C  , but B  and C  

are objects of different classes. ♠ 

Considering this example, we can conclude that 

 

1
1 1

(( , ),...,( , )) ( )
imn

n n i j i
i j

UCM A m A m A Clone A
 

  
      
  , 

where 1,..., nm m  are multiplicities of objects 1,..., nA A  respectively. 

 

Theorem 1. Any multiset of objects can be created using UCM. 

Proof. Our proof consists of two parts, in which we are going to prove that any multiset of objects can be created 

using UCM(1) and arbitrary multiset of objects can be reduced to input data of UCM (2). 

First condition follows from UCM’s definition. Really, superposition of union and cloning operation in UCM 

guarantees multisets of objects in the result. Type of resultant multiset of objects depends on types of objects, 

which are parameters for UCM and their multiplicities. 

Second condition follows from that fact, that every multiset of object can be presented in accordance with the 

formal definition of multiset, i.e. if 1{ ,..., }kS A A  is multiset of objects, then it can be presented as follows 

1 1(( , ),...,( , ))n nS A m A m , where 1 ... nm m k   , what is an input data for UCM. It means that we can 

create exactly the same multiset of objects, using tuple form of presentation of multiset as an input data for UCM, 

i.e. 1 1 1(( , ),...,( , )) { ,..., }n n kUCM A m A m A A S  .□ 

As we can see, this constructor is quite general and gives us an opportunity to create different types of multisets 

of objects, in particular homogeneous and inhomogeneous. Clearly that this constructor is determined if and only 

if 1,..., nm m  are strictly defined. In addition, we are going to define a few other determined constructors of 

multisets of objects, which strictly define the multiplicity of each element, using for it their own schema. 

CP Constructor 

This constructor of multisets of objects based on the idea of Cartesian product of two arbitrary sets, that is why 

we call it CP constructor. We use the idea of Cartesian product of sets. However, in contrast to classical definition 

of CP we define pairs of CP as sets of objects. 

Example 12. Let us consider situation that we need to construct electric garland, and we have green, yellow, 

orange, blue, purple and rosy light bulbs for it. Before we will make our garland, we need to create color scheme 

for it. It means we need to decide which colors and how many light bulbs of every color we want to use. It is 

convenient for us to denote every type of light bulbs according to first letter of its color. Let us assume that we 

want to use all colors, which we have, and each of them can be used more than once. Let us randomly divide all 

colors on two sets, for instance 1 { , , }S G Y O , 2 { , , }S B P R , and build all possible sets of objects which 

consist of elements of Cartesian product pairs, i.e. 

1 { , }S G B , 2 { , }S G P , 3 { , }S G R , 4 { , }S Y B , 5 { , }S Y P , 
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6 { , }S Y R , 7 { , }S O B , 8 { , }S O P , 9 { , }S O R . 

Let us apply union operation to these sets of objects, i.e. 

1 2 3 4 5{ , } / ( ) { , } / ( ) { , } / ( ) { , } / ( ) { , } / ( )S G B T S G P T S G R T S Y B T S Y P T S     

6 7 8 9{ , } / ( ) { , } / ( ) { , } / ( ) { , } / ( )Y R T S O B T S O P T S O R T S      

{ , , , , , , , , , , , , , , , , , } / ( )G B G P G R Y B Y P Y R O B O P O R T S , 

where S  is multiset of objects and ( )T S  is its class. Clearly, that all objects are similar, that is why class ( )T S  

is homogeneous. As the result, we have obtained multiset of objects, which consists of six objects G , Y , O , 

B , P , R  and we can consider S  as one of possible projects of future electric garland. ♠ 

Generally we can represent this scheme as follows 3 3 3 3 3 3{( , ),( , ),( , ),( , ),( , ),( , )}S G Y O B P R , because S  

is a multiset of colors. Such form of presentation gives us quantity of each type of light bulbs. However, order of 

colors is very important aspects of garland’s creation. It is obvious that different orders of the same quantity of 

colors and placement of particular light bulbs give us different perception of garland. According to it, we can vary 

different combinations of light bulbs for finding needed combination. 

Sometimes we need to identify each light bulb of each color, for example for substitute. That is why we are going 

to improve our constructor in this aspect, via indexation operation. 

 

Definition25. Indexation of object iA  is a redefining of its index i , i.e. 1( ) / ( ( ),..., ( ))i i w nInd A A p A p A , 

where i  is an index of object A  and w  is its increase. 

According to this, the result of the Example 12 is the following 

1 1 1 2 1 2 3 1 3 1 2 4 2 2 5{ , } / ( ) { , } / ( ) { , } / ( ) { , } / ( ) { , } / ( )S G B T S G P T S G R T S Y B T S Y P T S     

3 2 6 1 3 7 2 3 8 3 3 9{ , } / ( ) { , } / ( ) { , } / ( ) { , } / ( )Y R T S O B T S O P T S O R T S      

1 1 2 1 3 1 1 2 2 2 3 2 1 3 2 3 3 3{ , , , , , , , , , , , , , , , , , } / ( )G B G P G R Y B Y P Y R O B O P O R T S , 

where S  is a multiset of objects and ( )T S  is its class. According to this, we can represent our CP constructor 

as follows 

1 2
1 1

( , ) ( ( ) ( ))
n m

j i i j
i j

CP S S Ind A Ind B
 

  , 

where 1S , 2S  are basic sets of objects for multiset of objects S , 1iA S , 2jB S , 1n S  and 2m S . 

As we can see, CP constructor gives us determined scheme for creation of multiset of objects. We also can 

calculate multiplicity of each object and cardinality of multiset before its creation. As a proof of these facts, we can 

formulate and prove following two theorems. 

 

Theorem 2. Cardinality of each multiset of objects S , which is obtained using CP constructor, can be calculated 

by the following formula 

2S nm , 
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where 1n S , 2m S . 

Proof. As we know, cardinality of Cartesian product of two sets can be calculated as follows  

1 2 1 2S S S S nm    . 

According to the fact, that elements of Cartesian product are pairs, we can conclude that 1 2 2( , )CP S S nm .□ 

 

Theorem 3. Multiplicity of each object iA  from multiset of objects S , which is obtained using CP constructor, 

can be calculated by the following formula 

2 1

1 2

, | ;
( )

, | ;
j i j

i
k i k

S B S A B
m A

S C S A C

       
 

where 1 2,i nm , 1,j n , 1,k m  and 1S , 2S  are basic sets of objects for multisets of objects S . 

Proof. Proof follows from the definition of Cartesian product of sets.□ 

RCL Constructor 

The basic principle of this constructor is recursive cloning of set of objects that is why we call this constructor RCL 

constructor. We will combine the idea of object’s cloning with the idea of direct recursion, within RCL constructor, 

but firstly we need to define cloning operation for set of objects. 

 

Definition 26. Clone of the arbitrary set of objects 1{ ,..., } / ( )nS A A T S  is the set of objects  

1( ) { ,..., } / ( )i i n iClone S A A T S  , 

where ( )T S  is a class of set of objects S  and i  is a number of its clone. 

Example 13. Let us consider Example 12 and imagine that we have only green, yellow and red light bulbs. It 

means, that we have set of colors 1 { , , }S G Y R . Let us clone it once, and apply union operation to it and to the 

result of its cloning, i.e. 

2 1 1 1 1 1 1 1 1 1 1/ ( ) ( / ( )) { , , } / ( ) { , , } / ( )S S T S Clone S T S G Y R T S G Y R T S      

1 1 1 1{ , , , , , } / ( )G Y R G Y R T S . 

As the result, we have obtained the multiset of colors 2S . Let us repeat the same procedure for it. 

3 2 1 1 2 1 1 1 1 1 2 2 2 3 3 3 1/ ( ) ( / ( )) { , , , , , } / ( ) { , , , , , } / ( )S S T S Clone S T S G Y R G Y R T S G Y R G Y R T S      

1 1 1 2 2 2 3 3 3 1{ , , , , , , , , , , , } / ( )GY R G Y R G Y R G Y R T S . 

where 3S  is a multiset of objects, and 1( )T S  is its class. As the result we have obtained multiset of objects 

which consists of three objects G , Y , R  and their copies, that can be accurately identified and we can 

consider S  as one of possible projects of future electric garland. ♠ 

Using a scheme of creation of multiset of objects from Example 12, we can represent our RCL constructor as 

follows 



International Journal “Information Theories and Applications”, Vol. 21, Number 4, 2014 

 

352

1

1

2

1 1

2

0

1

2

, ;
( ) ( ), ;

( ) ( ( )), .
n

n

n

n n

S n

RCL S S Clone S n

RCL S Clone RCL S n




 

 
  
  

 

where S  is a basic set of objects for multiset of objects ( )nRCL S  and n  is a recursion depth. 

As we can see, RCL constructor gives us defined order of colors. We also can calculate cardinality of garland and 

quantity of light bulbs of each color before garland’s creation. As a proof of these facts, we can formulate and 

prove following two theorems. 

 

Theorem4. Cardinality of each multiset of objects S , which is obtained using RCL constructor, can be calculated 

by the following formula 

2iS n , 

where n  is a cardinality of basic set of objects and i  is recursion depth. 

Proof. According to the scheme of RCL constructor, on each step we will make a union of two sets of objects, 

which have equal cardinality. It means, if bS n , then on the step 1i   we have a multiset of objects which 

cardinality is calculated as follows 12 2n n n n   . On the step 2i   we have a multiset of object with 

cardinality 2 2 4n n n  , i.e. 1 1 22 2 2n n n  , on the step 3i   we have 4 4 8n n n  , i.e. 
2 2 32 2 2n n n  , etc. It means that on the step i k  we will have 1 12 2 2k k kn n n   , that is why we can 

conclude that cardinality of resultant multiset of objects will be equal 2in , where i  is recursion depth (step).□ 

 

Theorem 5. Multiplicity of each object jA  from multiset of objects S , which is obtained using RCL constructor, 

can be calculated by the following formula 

2( ) i
jm A  , 

where i  is a recursion depth of RCL constructor. 

Proof. We know, that on each step i  RCL constructor will equally increase the multiplicity of all objects from set 

of objects iS , it follows from the scheme of RCL constructor. According to Theorem 4, cardinality of resultant 

multiset of objects 2iS n , where i  is recursion depth of RCL constructor. Combining these two facts, we can 

conclude that 2 2( ) /i i
jm A n n  .□ 

PS Constructor 

First version of this constructor was presented in [Terletskyi, 2014] and now we are going to introduce its 

extension, which give us new abilities of its application. This constructor of multisets of objects is based on the 

idea of powerset of some set, which is why we will call it PS constructor. 

Example 14. Let us consider again Example 12 and build all possible subsets of colors according to Definition 19 

for set of colors { , , }S G Y R , i.e. 
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1 { , }S G Y , 2 { , }S G R , 3 { , }S Y R , 4 { , , }S G Y R . 

Let us apply union operation to sets of objects 1 4,...,S S , i.e. 

1 2 3 4{ , } / ( ) { , } / ( ) { , } / ( ) { , , } / ( )S G Y T S G R T S Y R T S G Y R T S      

{ , , , , , , , , } / ( )G Y G R Y R G Y R T S , 

where S  is a multiset of objects, and ( )T S  is its class. However, such form of PS constructor does not provide 

indexation of light bulbs of the same color that is why we will improve it in this direction. As we can see, PS 

constructor consists of two parts, first of them is selection of subsets from basic set of objects, and second one is 

union of these subsets. Clearly, that we need to select all possible subsets of objects from basic set of objects in 

such way, that all copies of each object have unique index. That is why, we will organize selection procedure of 

subsets marking a choice of every object from set of objects S , during selection of every its subset using 

increase indexation of chosen objects from set of objects S  i.e. 

1 { , }S G R , 1 1 1 1{ ( ), ( ), } { , , }S Ind G Ind Y R G Y R  ; 

2 1{ , }S G R , 1 1 1 1 2 1 1{ ( ), , ( )} { , , }S Ind G Y Ind R G Y R  ; 

3 1 1{ , }S Y R , 2 1 1 1 1 2 2 2{ , ( ), ( )} { , , }S G Ind Y Ind R G Y R  ; 

4 2 2 2{ , , }S G Y R , 1 2 1 2 1 2 3 3 3{ ( ), ( ), ( )} { , , }S Ind G Ind Y Ind R G Y R  . 

Let us apply union operation to 1 4,...,S S  and create new multiset of objects S , i.e. 

1 1 2 1 1 3 2 2 2 4{ , } / ( ) { , } / ( ) { , } / ( ) { , , } / ( )S G Y T S G R T S Y R T S G Y R T S      

1 1 1 2 2 2{ , , , , , , , , } / ( )G Y G R Y R G Y R T S , 

where S  is a multiset of objects, and ( )T S  is its class. As the result we have obtained a multiset of objects, 

which consists of three objects G , Y , R  and their copies, which can be accurately identified and we can 

consider S  as one of possible projects of future electric garland. ♠ 

Now we can formulate and prove the following proposition. 

 

Proposition 1. The quantity of all possible subsets of sets of objects S  can be calculated by the following 

formula 

2 1( ) n
wq S n   , 

where n S . 

Proof. As we know, powerset of any set A  is the set of all subsets of A , including the empty set   and A  

itself, and it is denoted like 

( ) { | }P A P P A  . 

I.e. for the set { , , }A a b c  

( ) {{ }, { }, { }, { }, { , }, { , }, { , }, { , , }}P A a b c a b a c b c a b c  . 
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We also know that cardinality of powerset ( )P A  of a set A  can be calculated using the following formula 

2( ) nP A  , 

where n A . However, according to the Definition 19, { } , { }a , { }b , { }c  are not sets and set cannot be an 

element of another set. That is why in case of sets of objects previous formula can be rewritten as follows 

2 1( ) n
wq S n   , 

where wS S , ( )wq S  is a quantity of all possible wS .□ 

Using Proposition 1 and scheme of creation of multiset of objects from Example 14, we can represent our PS 

constructor as follows 

2 1

1

( )
n n

w
w

PS S S
 



  , 

where S  is a basic set of objects for multiset of objects ( )PS S  and wS S . 

As we can see, PS constructor gives us determined scheme for creation of multiset of objects. We also can 

calculate multiplicity of every object and cardinality of multiset before its creation. As a proof of these facts, we 

can formulate and prove two following theorems. 

 

Theorem 6. The cardinality of each multiset of objects S , which is obtained using PS Constructor, can be 

calculated by the following formula 

2

2

nn
S n  , 

where bn S . 

Proof. Let us consider the set 1 { , , }S A B C  and build a powerset for it, i.e. 

1( ) {{ }, { }, { }, { }, { , }, { , }, { , }, { , , }}P S A B C A B A C B C A B C  . 

Let us create the multiset 1M  as a union of all elements of 1( )P S , i.e. 

1 { } { } { } { } { , } { , } { , } { , , } { , , , , , , , , , , , }M A B C A B A C B C A B C A B C A B A C B C A B C          . 

Clearly that 1 12M  . Let us consider the set 2 { , , , }S A B C D  and build a powerset for it, i.e. 

2( ) {{ }, { }, { }, { }, { }, { , }, { , }, { , }, { , }, { , }, { , },P S A B C D A B A C A D B C B D C D   

{ , , }, { , , }, { , , }, { , , }, { , , , }}A B C A B D A C D B C D A B C D . 

Let us create the multiset 2M  as a union of all elements of 2( )P S , i.e. 

2 { } { } { } { } { } { , } { , } { , } { , } { , } { , }M A B C D A B A C A D B C B D C D              

{ , , } { , , } { , , } { , , } { , , , }A B C A B D A C D B C D A B C D       

{ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , }A B C D A B AC A D B C B D C D A B C A B D A C D B C D A B C D . 
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As you can see 2 32M  . We know that 2( ) nP S  , where n S . Clearly that in the case of 1S , 

3
1 2 8( )P S    and we can put  

3

1

3 2
12

2
M

  , 

as it is really so. In the case of 2S , 4
2 2 16( )P S    and similar to the previous case we can put  

4

2

4 2
32

2
M

  , 

as we can see it is also true. Based on principle of mathematical induction we can conclude that for ( )nP S ,  

2

2

n

n

n
M  . 

Let us consider the set of objects { , , }kS A B C  and build for it all possible subsets of objects considering 

Definition 19, i.e. 

1 { , }S A B , 2 { , }S A C , 3 { , }S B C , 4 { , , }S A B C . 

Let us create the multiset of objects kM  as a union of all subset of kS , i.e. 

1 2 3 4{ , } / ( ) { , } / ( ) { , } / ( ) { , , } / ( )kM A B T S A C T S B C T S A B C T S      

{ , , , , , , , , } / ( )kA B A C B C A B C T M . 

Clearly that in the case of kM , the formula which was used for calculation nM  will be changed to 

2

2

k

k

k
M k  , 

where kk M .□ 

 

Theorem 7. The multiplicity of each object iA  from the multiset of objects S, which is obtained using PS 

constructor, can be calculated by the following formula 

12 1( ) n
im A   , 

where bn S . 

Proof. We know that generating of possible subsets of objects 1,..., wS S  for set of objects bS  can be 

represented as a combination of 2,k n  different elements from the set of n  elements, i.e. k
nC . During 

creation of subsets of cardinality 2 , we need to combine every object iA  with every object from the set of objects 

\b iS A . Clearly, we can create only 1n   such subsets, i.e. 1
1nC  . In the case of subsets of cardinality 3 , we 

will have 2
1nC  , and finally, in the case of subsets of cardinality k  we will have 1

1
k
nC

 . 

According to the scheme of PC constructor, we can conclude that multiplicity of every object iA  from multiset of 

objects S  consists of multiplicities of object iA  in every subset of objects, i.e. 
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2 1

1

( ) ( )
n n

i w i
w

m A m A
 



  , 

where ( )w im A  is the multiplicity of object iA  in the subset of objects w bS S . It follows from 1 ... wS S  , 

where 2 1nw n   . Using this fact, we can conclude that 

1 1
1 1( ) ... n

i n nm A C C 
    , 

where bn S . It means that every object iA S  has the same multiplicity. Using this fact, we can conclude 

that 

1

2
2 1 2 22 1 2 1
2 2 2

( )

n

n n n
n

i
b

n
nS n n n

m A n
S n n n n


  

          
 

, 

where bn S .□ 

Let us consider proof of Theorem 7. It shows that multiplicity of every object iA  from multiset of objects S  can 

be calculated as a sum of appropriate binomial coefficients. Using this fact, we can build a part of Pascal’s 

triangle. However, in contrast to original Pascal’s triangle, we will combine its part with results of Theorem 6 and 

Theorem 7. It is convenient to formulate it as a following corollary. 

 

Corollary 7.1. We can calculate cardinality, multiplicity of every object from the multiset of objects, which was 

created using PS constructor, and quantity of subsets of objects which were used for its creation, using the 

following matrix 

2 3 4 5 6

1 2 1 2 1

3 9 4 3 3 1

7 28 11 4 6 4 1

15 75 26 5 10 10 5 1

31 186 57 6 15 20 15 6 1

( ) ( ) ...

... ... ... ... ... ... ... ... ... ...

k w bm A S q S S

, 

where column ( )km A  reflects multiplicity of object kA  in multiset of objects S ; column S  reflects cardinality 

of multiset of objects S ; column ( )wq S  reflects quantity of w bS S  that was used for establishing S ; column 

bS  reflects cardinality of basic sets of objects; first row starting with 5-th column reflects quantity of subsets of 

objects of certain cardinality, where cardinality coincides with the value of 1 5, ja  . 

The elements of column ( )km A  can be calculated using Theorem 7 or using the following formula 

2 1
1

2 4

1 2

2, ,
,

, ;
, .i

i j
i j

i
a a i 

 

  

  

The elements of column S  can be calculated using Theorem 6 or using the following formula 
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2 2 1
2 5

, , ,
,

i i j j
i j

a a a
 

  . 

The elements of column ( )wq S  can be calculated using Proposition 1 or using the following formula 

2 3
2 5

, ,
,

i i j
i j

a a
 

  . 

The element 2 5,i ja    of the matrix can be calculated in such a way 

2 5
1 1 1

1 1

3,
, ,

, ;
, .i j

i j i j

j i
a

a a j i 
  

     
 

or using the following formula 

4
2 5

1 4 1

,
,

, , ,

!
!( )!

i
i j

j i j

a
a

a a a  


. 

D2 Constructor 

Similarly, to PS constructor, the first version of this constructor was also presented in [Terletskyi, 2014] and now 

we introduce its extension, which give us new abilities of its application. This constructor of multisets of objects is 

based on decomposition of basic set of objects on two disjoint subsets such, that in the result of their union we 

will obtain initial (basic) set of objects. That is why we call this constructor as D2 constructor. 

Example15. Let us consider Example 12 and imagine that we have light bulbs of green, yellow, red and blue 

colors, it means that we have set of colors { , , , }S G Y R B . Let us perform D2 decomposition of it and find all 

possible variants of such decomposition, i.e. 

1 { , }S G Y , 2 { , }S R B ; 3 { , }S G R , 4 { , }S Y B ; 5 { , }S G B , 6 { , }S Y R . 

Let us apply union operation to these sets of objects, i.e. 

1 2 3 4{ , } / ( ) { , } / ( ) { , } / ( ) { , } / ( )S GY T S R B T S G R T S Y B T S      

5 6{ , } / ( ) { , } / ( ) { , , , , , , , , , , , } / ( )G B T S Y R T S G Y R B G R Y B G B Y R T S   , 

where S  is a multiset of objects, and ( )T S  is its class. However, such form of D2 constructor does not provide 

indexation of light bulbs of same color that is why we will improve it in this direction. 

As we can see, as the result of D2 decomposition of set of objects, we have obtained sets of objects 1 6,...,S S . It 

means that in this case, there are three possible variants of such decomposition. Each variant of decomposition 

consists of pair of sets of objects. Let us change indexes of objects of these sets into accordance with number of 

decomposition’s variant, using indexation operation, i.e. 

1 1 1 1 1{ ( ), ( )} { , }S Ind G Ind Y G Y  , 2 1 1 1 1{ ( ), ( )} { , }S Ind R Ind B R B  , 

3 2 2 2 2{ ( ), ( )} { , }S Ind G Ind R G R  , 4 2 2 2 2{ ( ), ( )} { , }S Ind Y Ind B Y B  , 

5 3 3 3 3{ ( ), ( )} { , }S Ind G Ind B G B  , 6 3 3 3 3{ ( ), ( )} { , }S Ind Y Ind R Y R  . 

Now, let us apply union operation to these sets and create new multiset of objects S , i.e. 
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1 1 1 1 1 2 2 2 3 2 2 4 3 3 5{ , } / ( ) { , } / ( ) { , } / ( ) { , } / ( ) { , } / ( )S G Y T S R B T S G R T S Y B T S G B T S       

3 3 6 1 1 1 1 2 2 2 2 3 3 3 3{ , } / ( ) { , , , , , , , , , , , } / ( )Y R T S G Y R B G R Y B G B Y R T S  , 

where S  is a multiset of objects, and ( )T S  is its class. As the result we obtained multiset of objects S  which 

consists of four objects G , Y , R , B  and their copies, which can be accurately identified. We can consider S  

as one of possible projects of future electric garland. ♠ 

Now we can formulate and prove the following proposition. 

 

Proposition2. The quantity of all possible subsets of sets of objects S , which were obtained using D2 

decomposition, can be calculated by the following formula 

 

2 2 2( ) n
wq S n   , 

where n S . 

Proof. From the previous section, we know that the quantity of all possible subsets of set of objects can be 

calculated as 2 1( ) n
wq S n   , where n S . However, we can observe that the result of D2 

decomposition of set of objects { , , , }S G Y R B  does not contain subsets of cardinality 3  and 4 , i.e. 1n   

and n . It is true for any set of objects, because only sets of cardinality n  and 1n   cannot be divided according 

to principle of D2 decomposition. Clearly, that for each set of objects S  of cardinality n , only one subset of 

cardinality n  exists. Concerning subsets of cardinality 1n  , their quantity can be calculated as 

 

1

1 1 1 1 1

! ! !
( )!( ( ))! ( )! ! ( )!

n
n

n n n
C n

n n n n n
    

    
, 

it follows from the proof of Theorem 7. Considering all these facts, we can conclude that 

 

2 1 1 2 2 2( ) n n
wq S n n n        , 

where n S .□ 

Using Proposition 2 and the scheme of creation of multiset of objects from Example 15, we can represent our D2 

constructor as follows 

2 2 2

1 2
1

2( ) ( )
n n

w

D S S S
 



  , 

where n S  and 1 2,S S S  are disjoint sets of objects, such that 1 2S S S  . 

As we can see, D2 constructor gives us determined scheme for creation of multiset of objects. We also can 

calculate multiplicity of every object and cardinality of the multiset before its creation. As a proof of these facts, we 

can formulate and prove two following theorems. 
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Theorem 8. The cardinality of each multiset of objects S , which is obtained using D2 constructor, can be 

calculated by the following formula 

22

2

nn
S n n   , 

where bn S . 

 

Proof. According to Theorem 6, cardinality of each multiset of objects S , which is obtained using PS 

Constructor, can be calculated by the following formula  

2

2

nn
S n  , 

where bn S . From proof of Proposition 2, we know that result of D2 decomposition of set of objects S  does 

not contain subsets of cardinality 1n  , n  and quantity of such subsets of objects will be equal n  and 1 

respectively. That is why we can conclude that 

2 22 2 2
1 2

2 2 2
( )

n n nn n n
S n n n n n n n n n            , 

where bn S □ 

 

Theorem 9. Multiplicity of each object iA  from multiset of objects S , which is obtained using D2 constructor, 

can be calculated by the following formula 

12 1( ) n
im A n   , 

where bn S . 

Proof. From proof of Theorem 7 we know that it is possible to build only 1
1

k
nC

  subsets of cardinality k  for set of 

objects bS , where bS n . In addition, we know that each object iA S  has the same multiplicity. Using 

these facts, we can conclude that 

2
2

2

2
2 1 2 22 1
2 2 2

( )

n

n n n

i
b

n
n nS n n n n

m A n n n
S n n n n n

   
            

 
 

1
12 2 2 2 2 1

2 1
2 2

( )n n
nn n

n


        , 

where bn S .□ 

Let us consider proof of Theorem 9. It shows that multiplicity of every object iA  from multiset of objects S  can 

be calculated as a sum of appropriate binomial coefficients. Using this fact, we can build a part of Pascal’s 

triangle. However, in contrast to original Pascal’s triangle, we will combine its part with results of Theorem 8 and 

Theorem 9. It is convenient to formulate this as following corollary. 
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Corollary 9.1. We can calculate cardinality, multiplicity of every object from the multiset of objects, which was 

created using D2 constructor, and quantity of subsets of objects which were used for its creation, using the 

following matrix 

2 3 4 5 6

3 12 6 4 6

10 50 20 5 10 10

25 150 50 6 15 20 15

56 392 112 7 21 35 35 21

119 952 238 8 28 56 70 56 28

( ) ( ) ...

... ... ... ... ... ... ... ... ... ...

k w bm A S q S S

, 

where column ( )km A  reflects multiplicity of object kA  in multiset of objects S ; column S  reflects cardinality 

of multiset of objects S ; column ( )wq S  reflects quantity of w bS S  that was used for obtaining S ; column 

bS  reflects cardinality of basic sets of objects; first row starting with 5-th column reflects quantity of subsets of 

objects of certain cardinality, where cardinality coincides with the value of 1 5, ja  . 

The elements of column ( )km A  can be calculated using Theorem 9 or using the following formula 

2 1
1

2 4

3 2

2, ,
,

, ;
, .i

i j
i j

i
a a i 

 

  

  

The elements of column S  can be calculated using Theorem 8 or using the following formula 

2 2 1
2 5

, , ,
,

i i j j
i j

a a a
 

  . 

The elements of column ( )wq S  can be calculated using Proposition 2 or using the following formula 

2 3
2 5

, ,
,

i i j
i j

a a
 

  . 

The element 2 5,i ja    of matrix can be calculated in such a way 

2 5 1 1 1 1

1 1 1

6 2 5

5 3

3
, , ,

, ,

, , ;
, , ;
, ;

i j i j j

i j i j

i j

a a a j j i

a a j i
    

  

  
    
   

 

or using the following formula 

4
2 5

1 4 1

,
,

, , ,

!
!( )!

i
i j

j i j

a
a

a a a  


. 

Conclusions 

This paper presents certain approach for modeling of some aspects of human thinking, in particular creation of 

sets and multisets of objects, within constructive object-oriented version of set theory, which was proposed in 

[Terletskyi, 2014]. The creation of sets and multisets of objects is considered from different sides, in particular 

classical set theory, object-oriented programming and development of intelligent information systems. 
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The paper also presents universal constructor of multisets of objects that gives us a possibility to create arbitrary 

multisets of objects and to recognize (identify) every copy of particular object, which have multiplicity 2m  . In 

addition, a few determined constructors of multisets of objects, which allow to create multisets, using strictly 

defined schemas, are also presented in the paper. The author proposed methods for calculation multiplicity of 

each object and cardinality of multiset before its creation for each constructor. That makes them very useful in 

cases of very big cardinalities of multisets. 

The proposed approach for modeling of creation of sets and multisets of objects allows not only creation 

(generation) of sets and multisets of objects, but also their classification. It gives us an opportunity to consider the 

problem of object classification and identification in another way. The presented constructors of multisets of 

objects allow us to model corresponding processes of human thought, that in turn give us an opportunity to 

develop intelligent information systems, using these tools. 
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