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AN ALGORITHM FOR FACTORING COMPOSITE POLYNOMIAL P (xp − x− δ)

Sergey Abrahamyan, Knarik Kyuregyan

Abstract: Let P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be an irreducible polynomial over Fq . In [Cao, 2012,

Varshamov, 1973, Lidl, 1987] the factorization of the composite polynomial P (xp − ax − δ), when a = 1
and TrFq/Fp

(nb − an−1) = 0 is considered. The result of factorization of polynomial P (xp − x − δ) is a
p irreducible polynomials of degree n over Fq . In this paper we propose an algorithm for factoring composite
polynomial P (xp − x− δ) over Fq and give a explicit view of each factor.
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Introduction

Construction of irreducible polynomials from given irreducible polynomial is a classic problem of finite field theory and
computer algebra. One of methods to construct irreducible polynomials is the polynomial composition method. Such
methods have been studied by several authors including Varshamov [Varshamov, 1984], Cohen [Cohen, 1992],
Meyn [Meyn, 1990], Kyureghyan [Kyuregh, 2011].
Let Fq be the Galois field of order q = ps, where p is a prime and s is a natural number and F ∗q be its multiplicative
group. LetP (x) = xn+an−1x

n−1+· · ·+a1x+a0 be an irreducible polynomial overFq . Varshamov proved that
for a = 1 the composite polynomialP (xp−ax−δ) is irreducible overFq if and only if TrFq/Fp

(nδ−an−1) 6= 0.
In [Lidl, 1987, Varshamov, 1973] the problem of factorization of the composite polynomial P (xp − x − δ), when
TrFq/Fp

(nδ−an−1) = 0 is considered. Also, in [Cao, 2012] a short proof of above-mentioned problem is given.
For constructing p irreducible polynomials from the given irreducible polynomial we need compute the composition
P (xp−x−δ), and then factorize P (xp−x−δ). In this paper we show how factors of polynomial P (xp−x−b)
are connected each other. Also, we propose a probabilistic algorithm based on Cantor Zasenhaus‘s algorithm for
finding one of factors of polynomial P (xp − x− δ).

Factorization of composite polynomial P (xp − x− δ)

Recall that the trace function of Fqn over Fq is

Trqn/q(α) =

n−1∑
i=0

αqi , α ∈ Fqn .

Define Tr(i)qn/q(α) the following way

Tr
(i)
qn/q(α) =

∑
0≤j1<···<ji≤n−1

αqj1αqj2 · · ·αqji ,

here Tr(1)qn/q(α) = Trqn/q(α).

Let f(x) =
∑n−1

i=0 gix
i be a minimal polynomial of α. It is easy to see that
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gi = (−1)n−iTr(n−i)qn/q (α). (1)

In this section based on Proposition 1 (introduced below) we show how connected factors of polynomial P (xp −
x− δ) over Fq .

Proposition 1. (Theorem 2.1 [Cao, 2012]) Let g(x) = xn + an−1x
n−1 + · · ·+ a0 be an irreducible polynomial

over Fq = Fps of degree n. Let δ ∈ Fq and Trq/p(nδ − an−1) = 0. Then g(xp − x − δ) decomposes as a
product of p irreducible polynomials over Fq of degree n. Let g(xp − x− δ) = u0(x)u1(x) · · ·up−1(x). Then
via a suitable assignment of the indexes of the factors, uk(x) = u0(x+ k) for k = 0, 1, · · · p− 1, . . .

In our proof we will need the following proposition.

Proposition 2. (Theorem 2.25 [Lidl, 1987]) LetF be a finite extension ofK . Then forα ∈ F we haveTrF/K(α) =
0 if and only if α = βq − β for some β ∈ F .

Theorem 1. Let q = ps, where p is a prime. P (x) =
∑n

u=0 aux
u be an monic irreducible polynomial of degree

n over Fq and Trq/p(nδ − an−1) = 0. Then the polynomial F (x) = P (xp − x − δ), δ ∈ Fq factors to p
irreducible polynomials of degree n over Fq as follows: F (x) = G0(x)G1(x) . . . Gp−1(x), where

G0(x) = xn + gn−1x
n−1 + · · ·+ g1x+ g0,

Gk(x) = xn + g
(k)
n−1x

n−1 + · · ·+ g
(k)
1 x+ g

(k)
0 k = 1, 2, . . . , p− 1

and g(k)i =
∑n−i

v=0(−1)n+v−ikn−v−i
(
n−v
i

)
gn−v i = 0, 1, 2, . . . , n.

Proof 1. Let α ∈ Fqn be a root of P (x). Then we have

P (x) =
n−1∏
i=0

(x− αqi) (2)

Substituting xp − x− δ for x in (2), we will derive

F (x) = P (xp − x− δ) =
n−1∏
i=0

(xp − x− δ − αqi) =
n−1∏
i=0

(xp − x− (δ + α)q
i
) (3)

Let us consider the polynomial l(x) = xp − x− (δ + α).
By proposition 2 l(x) has a root in Fqn if and only if Trqn/p(δ + α) = 0.
Now we compute Trqn/p(δ + α).

Trqn/p(δ + α) = Trqn/p(Trqn/q(δ + α)) = Trq/p(nδ + Trqn/q(α)) = Trq/p(nδ − an−1)

which is equal to 0 by condition of theorem. So we have that l(x) has a root in Fqn .
Let γ ∈ Fqn be a root of l(x), that is

γp − γ − (δ + α) = 0.

Considering that α = γp − γ − δ one can see that Fq(γ) ⊇ Fq(α) = Fqn , therefore γ is proper element of
Fqn . It is easy to see that p roots of xp−x− (δ+α) are γ+ k, k = 0, 1, . . . , p− 1. Clearly, γq

i
+ k, k ∈ Fp

are all the roots of xp − x− (δ + α)q
i
.
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Hence from (3) we have

F (x) =
n−1∏
i=0

p−1∏
k=0

(
x− γqi − k

)
=

p−1∏
k=0

(
n−1∏
i=0

(
x− γqi − k

))
.

Denote

Gk(x) =
n−1∏
i=0

(
x− γqi − k

)
.

It is obvious Gk(x) is the minimal polynomial of γ + k, where k = 0, 1, . . . , p − 1 and Gk(x) = G0(x − k).
Thus Gk(x) is a irreducible polynomial over Fq .

Let G0(x) = xn + gn−1x
n−1 + · · ·+ g1x+ g0 and Gk(x) = xn + g

(k)
n−1x

n−1 + · · ·+ g
(k)
1 x+ g

(k)
0 .

From (1) we have

g
(k)
i = (−1)n−iTr(n−i)qn/q (γ + k) = (−1)n−i

∑
0≤j1<...<jn−i≤n−1

(γ + k)q
j1
(γ + k)q

j2
. . . (γ + k)q

jn−i
.

Let us compute g(k)i = (−1)n−iTr(n−i)qn/q (γ + k).

g
(k)
i = (−1)n−i

∑
0≤j1<...<jn−i≤n−1

kn−i + kn−i−1
∑

j1≤u1≤jn−i

u1∈{j1...jn−i}

γq
u1

+kn−i−2
∑

j1≤u1<u2≤jn−i

u1,u2∈{j1...jn−i}

γq
u1
γq

u2
+ · · ·+ k

∑
j1≤u1<...<un−i−1≤jn−i−1

u1,··· ,un−i−1∈{j1...jn−i}

γq
u1
γq

u2
. . . γq

un−i−1

+γq
j1
γq

j2
. . . γq

jn−i
)

(4)

Now we compute the following double sum∑
0≤j1<...<jn−i≤n−1

∑
j1≤u1<...<ur≤jn−i

u1,...,ur∈{j1...jn−i}

γq
u1
γq

u2
. . . γq

ur
r = 1, · · · , n− i− 1 (5)

In the first and the second sums we have correspondingly
(

n
n−i
)

and
(
n−i
r

)
terms, and totally -

(
n

n−i
)
·
(
n−i
r

)
terms.

It is easy to see that in (5) each term is repeated equal times. On the other hand the sum∑
0≤u1<u2<...<ur≤n−1

γq
u1
γq

u2
. . . γq

ur
r = 1, · · · , n− i− 1 (6)

contains the same terms found in (5) without any repetition, whereas in (6) contains
(
n
r

)
terms.

So, one may conclude that ∑
0≤j1<...<jn−i≤n−1

∑
j1≤u1<...<ur≤jn−i

u1,...,ur∈{j1...jn−i}

γq
u1
γq

u2
. . . γq

ur

=

(
n

n−i
)
·
(
n−i
r

)(
n
r

) ∑
0≤u1<...<ur≤n−1

γq
u1
γq

u2
. . . γq

ur
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= (−1)r
(
n− r
i

)
gn−r r = 1, · · · , n− i− 1 (7)

Opening brackets in (4) and substituting (7) in (4) we get

g
(k)
i =

n−i∑
v=0

(−1)n+v−ikn−v−i
(
n− v
i

)
gn−v (8)

where 0 ≤ i ≤ n, 0 ≤ k ≤ p− 1.
So, for obtaining the polynomial P (xp−x− δ) factors we need a single factor only. Rest factors may be computed
by (8).

An algorithm for factoring polynomial P (xp − x− δ)

As seen from the proof of Theorem 1 a polynomial P (xp − x− δ) has no repeated factors. Below we propose an
equal degree factorization algorithm based on Cantor and Zassenhaus‘s algorithm [Cantor, 1981].
Let f be a monic square-free univariate polynomial over a finite field Fq of degree n with r ≥ 2 irreducible factors
f1, · · · , fr each of degree d. Since f1, . . . , fr are pairwise relatively prime, the Chinese Remainder Theorem
provides the isomorphism:

χ : Fq[x]/(f)→ Fq[x]/(f1)× · · · × Fq[x]/(fr),

h mod f 7−→ (h mod f1, . . . , h mod fr).

Let us write R = Fq[x]/(f), and Ri = Fq[x]/(fi) for 1 ≤ i ≤ r. Then Ri is a field with qd elements and so
contains Fq

Fq ⊆ Fq[x]/(fi) = Ri
∼= Fqd for 1 ≤ i ≤ r.

Now fi divides h ∈ Fq[x] if and only if h ≡ 0 mod fi, that is, if and only if the ith component of χ(h mod f)
is zero. Thus if h ∈ Fq[x] is such that (h mod f1, . . . , h mod fr) has some zero components and some
nonzero components, i.e. h mod f is a nonzero zerodivisor in R, then gcd(h, f) is a nontrivial factor of f , and
we call h a “splitting polynomial”. Therefore, we look for polynomials with this property.
Now assume q to be odd (the algorithm can be generalized to characteristic 2 fields). We takem = (qd−1)/2 and
an r-tuple (h1, . . . , hr) with each hi ∈ R×i = F×

qd
= Fqd/{0}. In F×

qd
, half of the values are quadratic residues

and the other half are quadratic nonresidues. Thus, hmi = ±1, with the same probability for both values when hi is
chosen randomly. Now, choose at random (uniformly) a polynomial h ∈ Fq[x], with deg h < n, and let us assume
that gcd(h, f) = 1 (otherwise we have already found a partial factorization). The components (h1, . . . , hr) of its
image under the Chinese remainder isomorphism are independently and uniformly distributed random elements in
R×i = F×

qd
. Since hmi = 1 with probability 1

2 , the probability that gcd(hm − 1, f) is not a proper factor of f , i.e.
all the components in (hm1 − 1, . . . , hmr − 1) are equal , is 2 · 2−r = 2−r+1 ≤ 1

2 . Running the algorithm l times
ensures a probability of failure at most 2−l. Producing factorization f = g1g2 we can repeat it for g1 (or for g2 if
deg(g2) < deg(g1)). The process is interrupted when deg(g) is equal to n.

ALGORITHM:
Input: Polynomial F (x) = P (xp − x− δ) ∈ Fq[x] of degree m = np.

Output: Monic irreducible factor of F (x) of degree n.
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1: while deg(F ) 6= n, do

2: Choose h ∈ Fq[x] with deg(h) < deg(F ) at random;

3: g = gcd(h, F )

4: if g = 1, then g = h(q
n−1)/2 − 1( mod F )

5: if gcd(g, F ) 6= 1, then g1 = gcd(g, F ), g2 = F
gcd(g,F )

6:
F = min

deg
{g1, g2};

7: endif;

8: else: g2 = F
g , g1 = g;

9: F = min
deg
{g1, g2}

10: endif;

11: endwhile

For making the proposed algorithm more understandable, we will compare between ours and that of Cantor-
Zassenhaus algorithm. Using Cantor-Zassenhaus algorithm we can split the polynomial into two proper factors. The
remaining thing to do is to recursively call the algorithm on every splitting polynomial unless it is already irreducible.
Using our algorithm we will also be able to split the polynomial into two proper factors. After that we are recursively
call our algorithm only for one spitted polynomial, unless find one polynomial of degree n.

Theoretical computations show that the cost of the proposed algorithm for factoring polynomial P (xp− ax− δ) of
degree np, where n is a degree of factors, is O((n log q + log n))M(n) log p operations in Fq .
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