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Abstract: This paper considers construction of some composition permutation polynomials. For some
permutation polynomials the explicit view of their self-compositions and inverse mappings are given. Also
for some particular case the cycle structure is considered.
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Introduction

Let ¢ be a power of a prime number p and F;, be a finite field. A polynomial f(z) € F,[z] is called

a permutation polynomial of F, if it induces a bijective map from £, to itself. The study of permutation
polynomials have intensified in the past few decades, which is connected with their applications in coding
theory, cryptography and combinatorial design theory. It is a challenging problem to construct permutation
polynomials and their inverse polynomials over finite fields. There are tremendous amount of papers
devoted to construction of permutation polynomials. In [Evoyan et. al, 2013] some construction of permutation
polynomials of the form F'(z) = x + Ay fi(x) + Aafa(x) + - - - + A\ fr(x) € Fym[x] are considered,
where Ay, Ay ... A\ € Fim are alinearly independent over £, and f;: Fym — F, 1 < 5 < k(called
coordinate function of £ with respect to the basis A, As ... Ag).

Recall that for an integer &£ > 1 the fold composition of the mapping £ with itself is
Fy(t)=FoF...0oF(z).

J: times

In [Kyureghyan, 2011] it is shown that in case F'(z) = = + A f(x) then Fj(z) = = + By f(x) where

k if b=0
Be=93 b+1)%-1

; if b+#0

and A € F,; is a b linear translator of f (see Definition 1).

It is shown too, that a period of permutation polynomial F'(z) = = + Af(x) is p (characteristic of field)
when b = 0 and ord(b+1) inthe contrary case. In this paper the explicit view of permutation polynomials
Fi(z), k > 1 and theirs inverse mappings are given, where F'(x) = = + A\ fi(x) + Aofo(x) +
<o+ Afu(z) € Fmlz] andn < m. Also, for some particular cases the period of permutation
polynomial F'(x) is studied. Similar studies were considered in the following works [Charpin et. al, 2009,
Evoyan et. al, 2013, Kyureghyan, 2011].
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Some preliminary results

In this section some preliminary results and definitions, which will be used, are introduced.

Definition 1. [Kyureghyan, 2011] Let f: Fj,n» — F,and c € F},. We say that o € F};, is a c— linear
translator(structure) of the function f if f(x + o) — f(z) = cforallx € F,. Note that if v is a c-linear
structure of f, then necessarily ¢ = f(«) — f(0).

Proposition 1. [Kyureghyan, 2011] Let o, 8 € Fj,a + 3 # 0 anda,b,c € Fy, ¢ # 0. Ifais an
a-linear translator and /3 is a b-linear translator of a mapping f: F,m» — F,, theno + B isan (a + b)-
linear translator of f and ¢ - «is a (c - a)-linear translator of f. In particular, if A*(f) denotes the set of
all linear translators of f, then A(f) = A*(f) U {0} is an F,-linear subspace of Fym.

Definition 2. We will say that permutation polynomial F'(x) has a period k if k is a minimal natural
number for which Fy.(z) = F(x).

Proposition 2 (Theorem 3 [Evoyan et. al, 2013]). . Let1 < k < n, A, Ag, ..., A\ € Fym be
linearly independent over I, and f;: Fym — Fy, j = 1,2,..., k. Further, suppose \; is a b;; linear
translator for f;, wherei,j € {1,2,... k}. Set

1 + 6171 b172 NN bl,k
b bQ’,1 1 +.b2,2 - bgl,k |
bk71 bk72 B kaQ

andlet F': Fym — F,m be defined as
F(z) =2+ M fi(x) + Xafo(z) + - + A fu(2).
Then F(x) = F(y) forsome x,y € F, if and only if
T =y + ANay + Aag + - -+ Apay,

a1

a
and _2 € F,n belongs to the kernel of B. In particular, the mapping F' is a ¢"~"-to-1 on Fym,

ag
where r is the rank of the matrix B.
Proposition 3 (Corollary1, [Evoyan et. al, 2013]). With the notation of Proposition2, the mapping

F is bijective on F, if and only if the matrix B has a full rank. Let B~ be the inverses matrix of B.
Define the functions h;: Fym — F,, 7 =1,2,...,k by

hi(z) fi(z)
ha(z) . _p fo()
ha(@) fulw)

Then the inverse mapping of F'(x) is given by

FNz)=x— Z Aihy(z).
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Construction of Some Composition Permutations

In this chapter the explicit view of permutation polynomial of the form Fy(x) = F o ... o F(z), where
F(z) = o+ M fi(z) + - -+ + A\ fn(x) and their inverse mapping is given. Also for some particular
case we compute the period of Fy(x). Itis clear that if F'(z) is a permutation polynomial then Fy.(z) is
also permutation. Finding the explicit view and period of permutation polynomial £ () is a equivalent to
finding the inverse of permutation polynomial F}.(x).

Theorem 1. Let F'(z) =z + A\ fi(z)+---+ )\, fn( ) € E,;»[x] be a permutation polynomial, where
Ay A2, ..., Ay € Fym are linearly independent, f;: Fim — F and \; is a bj;-liner translator of f; for
i,j =1, 2 .. Def/ne

1+bi by 2 . b, O
b 1+0b ba 0
- 2,1 + 2,2 2, 0 . 7& ;
B;= : : : : a; 1 ; j=1,....n
bn1 bpo ... 14+by, O =7
aq as an, 1
then
fi(z)
- k—1 fa(z)
Fk(fﬂ)::v—l—Z)\i(al,ag...an 1)?1(. -l :
i=1 £.()
0

Proof. We will proof by mathematical induction method. As assumed earlier, \; is a b;;-liner translator of
;. Hence by Proposition 1 we have

(HZA]@ > 1+b”fl+Zb”f], i=1,2,...,n. (1)
J#Z

For k = 2 we will have
Fy(x)=FoF(x)=

=+ Z Nifi(x) + A fi (96 + Z Azfz(@) + o Anfn (fC + Z Az’fz‘(@)

Substituting (1) in the provided expression we derive

I) =x+ Z /\1fl(l’) + )\1 (1 + b171)f1 + Z bLjfj +
i=1 7=1
J#1

+A2 | (1 +ba2) fo Jrzszfj +oe A (1 +bn,n)fn+2bn7jfj
=1 =1
i#2 i#n
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Grouping similar terms we obtain

fi(x)
n f2($)
— 0
Fy(x) = FoF(z) = x—l—z (a1, as, . ..ay, 1)B; ; , a; = { Z 7&‘7 =1,2,
— 1 1=
! fa(z)
0
Now suppose that theorem’s condition is true for & = s, i.e
fi(z)
n f?(x)
s 0
F5<x):x+2)\i<a]_,a2,...an, 1)B; ! : ey { Z_#j j=12,....n
— 1 1=
= fa(z)
0
Next we will proof that it is true for &k = s + 1.
Fo(z) = Fso F(z) =
filz+ 3250 f(@)
n n e f2 x+Z?:1)\jfj(x)
:x—i—Z)\jfj(x)—i—Z)\i(al,aQ...an 1)Bf_ : =
j=1 i=1 n
fo (24 X0 Aifi(@))
0
j=1
(14 b11)f1 + Z?z b1 fj
J
. (1 +bo2)fo+ D j=1ba;f;
—(s—1) J#2
+Z)\i(a1,a2,...an 1)B7, (2)
=1 (1 + bn,n)fn + Z?;l bn,jfj
JFNn

0

It is obvious
(L+bia)fi + Z?z b1 f;
J

(1 + Do) fo+ D i=1b2f;
J#2

(L + bun) fro + D=1 bnj f
0 Jj#n
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1+ bl,l b172 Ce bl,n 0 fl (fﬂ)
bg’l 1+ b2,2 . b2,n 0 f2 (.73)
= : : : - I (3)
bna bna ... 14+0by, O fn(x)
0 0 . 0 1 0
Substituting (3) in (2) we will derive
Foa(z) =2+ Mfi(x) + -+ A ful)+
1+bip b ... bin, O fi(x)
n ba.1 1+0bop ... ban 0 fa(x)
+Z)\i(a1,a2...an 1)?55_1) . =
i=1 bn,l bmg B bn,n 0 fn(x)
0 0 . 0 1 0
1+ bl,l b12 e bl,n 0 f1 (13)
n bQ}l 1+ b2’2 Ce bg’n 0 f2 (.Z‘)
= x+2)\,~(a1,a2. ..y 1)?1»8_1) : : ) . : =
=1 bn,l bn,2 1 + bn,n 0 fn(x)
a; as G, 1 0
fi(z)
n f2($)
::c—i—Z)\i(al,ag...an 1)?1(8)
=1 fn(x)
0
O]
Let B~! be an inverse matrix of B. Denote the (¢, j)-th element of matrix B~ by d; ;.
Let hj(x): Fim — F,, j =1,2,...,n be afunctions with the notation of Proposition 3 and namely
ha(x) fi(x)
ho(x x
0| _ o | Rl | “
han () fal2)
In (4) instead of x substituting = — >=7_, A;h;(x) we will get
hQ(lL‘ — Alhl(l') — e — )\nhn(x)) - fg(l‘ — )\1h1($) — e — /\nhn<$)) _
hp(x — Ahy(x) — - — Nho(2)) folx — Mhi(z) — - = Nho(2))

In accordance to (1) we will have

fil@) =377, bighy(@)

e fa(@) = Xoja baghi(e) |

Fal) = S by (2)
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fi(x) hy(z) — ZZZI by ;h;(z) — hy(x)
_ g f2@) L ha(x) — >y b?,jhj(l") — ha(z) _
ful@) () = 0 b hy (@) — ho(a)
i A O ) I
=B || -B"'B +BH T =B
fu(2) hn(z) hn(z) hn(z)

Finally we derive
J=1 J=1

Let F(z) = x4+ A1 fi(x) + - - - + A\ fiu () is @ permutation polynomial with the notation of Proposition
1. As mentioned in Proposition 3 the inverse mapping of F'(x) is F'~'(x) = 2 —>_"_; A;h;(x). Below
the explicit view of the inverse of permutation polynomial F}.(x) is given.

Theorem 2. Let fi, fo, ..., fu: Fym — Fy, A, Ae, ..., N, € Fym are linearly independent, \; is a
b;i-linear translator of f; and F'(x) = x + 37, A fj(x) € Fym is @ permutation polynomial for which
H(z) =z =377 \jh;(x) is an inverse mapping of F'(x). Then the inverse polynomial of Fy () will

be
ha(z)
n h2(x)
Hk(l‘):ﬁOHO...Oflj(z):$—Z)\i(a1,a2,...an, 1)Dik_1' s
k times i=1 hn(2)
0
where
dii dig din, 0O
do1 dag doy O o
€ ’ ' 07
Did:f : ) aj_{l Zf] :17"7n
dn,l dn,2 dnn 0 ’ =/
a, ay ... ap, 1

Proof. Like theorem 1 this one also, is proved by introduction method. For & = 2, we will have

Hy(x)=Ho H(x) =

Substituting (5) in above expression we obtain

HQ(IL’) =

=z =Y Nhj(x) = MY dighj =N Y dojhy— =AY dyshy =
j=1 j=1 j=1 j=1
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hi(x)
0,
:x—ZAj(al,aQ.. a, 1)D; - : where a; {1 ij
j=1 hn () ’ =
0
Assume that theorem’s conditions is right for £ = s, l.e
hi(z)
n h'2($)
Hy(x) :x—Z)\i(al,aQ...an 1)Ds ! :
=1 hn(2)
0
Hup(z) = Hy o H(z) =
:x—Z)\jh3<J])—Z/\i(al,ag...an ].)Dﬁil -
j=1 =1 hn<1‘ - )\1h1($) - )\nhn(x))
0

Xr — Z >\jhj (l’)—
j=1

dip dip ... diy, O hq(z)
n doq doo ... day O ho(z)
—Z/\,;(al,ag...an HDs | Lo : —
i=1 dng dpn2 ... dyp, O h ()
0 0 0 1 0
dipn dip ... dip, O hi(x)
n deqy dog ... doy O ho(z)
:x—Z)\i(al,ag...anl)Dﬁ : Lo :
=1 dng dn2 ... dyp, O h ()
a Gy ... Gp 1 0
whereaj:{(l)’ Zfﬁ n

Our next theorem is about a period of permutation polynomial F'(z) = z+ Ay fi(x) +- - -+ A\ fu(x) €
qu [.flf]
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Theorem 3. Let F(x) =z + A fi(z) + - - + A\ fu(x) € Fym|[x] be a permutation polynomial with
the notation of Proposition 2, where b; ; = 0 wheni # j.

OTd(l + bm) bi,i % 0
p bi,i =0
[ =lem(ry,ro, ... 1) + 1.

Denote r; = ,fori = 1,2,... ,n. Then the period of F'(x) is equal to

Proof. In order to find the period of F'() one should find some k& > 1 integer, for which

fi(z)
n fQ(x)
Fi(z) :$+Zx\i(a1,a2...an 1)§§k_1) : = 7.
=1 fu()
0

Denote Cf = 1+ (1 +b;;) +---+ (1 + b;;)". Considering that b; ; = 0, when i # j, itis easy to
see that

(14by4)" 0 0 0

0 (14by0)" ... 0 0

B = : L
0 0 o (4bu)" 0

aq a9 Qn, 1

0 i#J
where a; = ,

ch-1

Hence, (a1, as,...a;...,a,)-B; = (0,...0,(1+b;;))*+C*1,0...0,1) = (0,0,...,C¥ 0...0,1)

Now let’s consider the following two cases.
Let b;; = 0, then C* = k and C¥ be equal to 0 provided £ is a multiple of p.

Let b;; # 0, then CF = (”bgi and C¥ be equal to 0 provided & is a order of 1 + b; ;.

In case r; = ord( ’)we have C]* = 0 and Fi(z) = x.
p

So we obtain that Fi 1 (x) = F(x)
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