
International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

338

SOFTWARE MODEL COGNITIVE VALUE

Elena Chebanyuk, Krassimir Markov

Abstract: An approach for estimation of Software Models (SMs) from Cognitive Science point of view is

outlined in the paper. The basic notion of this approach is the new term “Software Model Cognitive

Value” (SMCV). Software models are represented as Unified Modeling Language (UML) [UML 2.5,

2012] diagrams that are used in Agile approach [Beck et al, 2001; Allen, 2015].

In order to define peculiarities of SM human perception, cognitive principles of comprehension are

considered in this paper. According to these principles, the peculiarities of SM comprehension in

different situations when software is developed following Agile approach, are formulated.

The proposed approach offers an estimation of SM from the points of view both Software Engineering

and Cognitive Science. From the Software Engineering view, characteristics of SM designing are

considered. The cognitive features of SM such as its comprehension and understanding are taken into

account.

The process of applying the proposed approach to choose the best type of SM for requirement analysis

for project of designing 3D-graph is also outlined in this paper.

Applications of this approach and advantages of its applying for solving typical Software Engineering

tasks are formulated.

Keywords: Software Model Cognitive Value; UML Diagram; Agile Development; Model-Driven

Development; Software Lifecycle Process; Software Designing, Software Requirement Analysis; 3D-

grpah.

ACM Classification Keywords: D.2 Software Engineering; D.2.1 Requirements/Specifications; D.2.9

Management - Life cycle; Software process models; I.2.0 General: Cognitive science.

Introduction

Human cognitive abilities have limits [Green & Blackwell, 1998]. For example, Miller [Miller, 1956]

found that a person’s short term memory has limited capacity to remember

chunks of information [Endres & Rombach, 2003]. Modern psychology has even more sophisticated

models of how memory works. Simon [Simon, 1982] argued that “bounded rationality” is an important

aspect of human problem solving and design activities, in particular.

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

339

Cognitive science is concerned with understanding the brain processes aimed to accomplish complex

tasks including: perceiving; learning; remembering; thinking; predicting; Inference; problem solving;

decision making; planning; moving around the environment; and etc.

The goal of a cognitive model is to scientifically explain one or more of these basic cognitive

processes, in particular, to understand how these processes interact [Thagart, 1996].

Cognitive modeling is the process of explaining human intelligence behavior by means of designing

models that represent different cognitive processes [J. Olson & G. Olson, 2015].

In this paper, we outline an approach for estimation of SMs from cognitive science point of view. The

basic notion of this approach is the new term “Software Model Cognitive Value” (SMCV).

Cognitive value is an evaluation of both the convenience of SM comprehension and understanding by

humans and its design characteristics effectiveness. Factors that influence resulting SMCV meaning are

analyzed in this paper.

When a large scale software project is created, the process of its creation is characterized by great

amount of information to be processed. The effectiveness of execution many such operations is defined

by entire information representation. When some laws of software artifacts representation are kept, it

facilitates their analysis and processing.

Process of software creation has several stages that are parts of software development lifecycle.

According to standard ISO 12207 (definition 5.1.12) “the life cycle model is comprised of a sequence of

stages that may overlap and/or iterate, as appropriate for the project's scope, magnitude, complexity,

changing needs and opportunities” [ISO/IEC 12207:2008(E)]. Each stage is described with a statement

of purpose and outcomes development artifacts [Lassenius et al, 2015]. According to standard UML 2.5,

software model is a UML [UML 2.5, 2012] diagram. One of the peculiarities of Agile approach [Beck et

al, 2001; Allen, 2015] is that SMs replace other software artifacts and have both cognitive and

communicative functions:

 Cognitive functions of SMs: using software models one can acquaint with algorithms, processes

or software structure. The aspect of obtaining new knowledge depends upon SM notation and

purpose of its usage.

 Communicative functions of SMs: one can express his understanding about software

functionality, structure or algorithm, to collaborate with other stakeholders. Then these models are

used with cognitive purpose. Using strict notation avoids misunderstanding.

The most widespread tools for expressing models are UML [UML 2.5, 2012] and Business Process

Modeling Notation (BPMN) [BPMN, 2011].

The reason of UML and BPMN choice is that graphical representations of models (diagrams) make their

comprehensions convenient for human perception. For effective comprehension of these diagrams they

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

340

are necessary to be designed considering both some comprehension patterns and principles of

visualization.

Task and challenges

Task:

To propose an approach for estimation of SMCV, considering convenience of SM comprehension and

designing by humans, when software is created according to Agile approach. Doing this, it is necessary

to define the most valuable parameters and investigate their influence to resulting SMCV.

Also, it is necessary to propose rules for estimation of common SMCV when all software requirements

are covered by means of SMs of specific type.

The proposed approach should consider both the peculiarities of human comprehension and purposes

of specific software development process.

Challenges:

An application of the proposed approach will help to:

 design a model of stakeholder for leading an interview by means of comparing SMCV obtained by a

candidate with etalon values;

 estimate compatibility of stakeholder with other software team members;

 choose the best SMs from a set of SMs, describing scalable project, to provide effective processing

of large amount of information about software;

 ground the choice of the best SM for effective organizing of concrete software development lifecycle

process;

 design rules for SM visualization from such formats as eXtensible Markup Language (XML).

Related papers

In general, when software is designed according to Agile approach, the cognitive skills of all

stakeholders are important. There are some activities that involve cognitive processes, for example

software artifacts comparison.

Comprehension of software engineering diagrams is studied well. For instance, Mangano et al.

[Mangano et al, 2015] analyzed the role of sketches when pairs of software designers are working on

design problems.

At a cognitive level, processing of UML diagrams consists of constructing (generating, transforming, and

evaluating) their representations until they became precise and concrete [Allen, 2015]. This question

was explored by Visser [Visser, 2006]. She defines the process of construction of cognitive artifacts that

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

341

represent a software product. Effective visualization of complex system is possible when graphical

representation of this system allows comprehending a system as a set of components.

Cognitive design principles

Investigation of cognitive design principles is represented in [Tversky et al, 2006]. Authors underlined

two cognitive principles, namely principles of congruence and apprehension. The idea of congruence

principle is to compare visual patterns which are known for person with new ones. Then one can

recognize components of some complex structure using apprehension principle. Collaboration of

these two principles provides a common cognitive comprehension of visual models.

Some examples of different models visual comprehension are also considered in the [Tversky et al,

2006]. One model is routing maps comprehension and processing. Another one is a representation of

set of sequences goal-oriented actions. In order to represent goal oriented actions, processes of

complex objects assembling are considered. These two examples allow considering that common

verbal-oriented approach can facilitate a process of existing visual model modification. Examples of

visual models are maps, in the first case, and drawings in the second case. It is difficult to estimate

effectiveness of verbal description method reading the paper [Tversky et al, 2006]. Authors do not

propose alternative methods of visual models comprehension. Also measurement to estimate cognitive

characteristics of verbal description method absents.

Authors of the paper [Gureckis & Love, 2009] define two main principles of comprehension, namely

direct associations and internal transformations.

Using direct associations principle one can comprehend a sequence of patterns. The content of

particular pattern from this sequence can be forgotten partially of fully, for example such situation occurs

when memory is over. After comprehension of such a sequence in people’s memory just common

model is left. Using this model some properties of investigated object can be predicted. Such a principle

is used when a sequence of movie or sound frames is comprehended.

Using internal transformation principle, one can match incoming patterns with ones that are already

exist in memory. Existing patterns can be modified by means of adding or removing details. Such a

principle is used when structural schemas are refined or new routes are established.

In the next section an application of these principles while UML diagrams are comprehended in different

purposes and situations is considered.

Comprehension of UML diagram within cognitive principles

The cognitive mechanism, proposed in the paper [Tversky et al, 2006], is applied when a separate UML

diagram is comprehended by stakeholder. According to this mechanism, SM is comprehended

following the next principles (Figure 1):

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

342

1. When SM structure is recognized, every element in SM notation is matched with a set of

templates that compose a notation of specific SM (congruence principle).

2. Every defined template is juxtaposed with specific behavior (apprehension principle).

3. The process of UML diagram comprehension as a whole consists on uniting functionalities of all

recognized templates. This process is based on structure components processing which is

made by human brain.

Figure 1. Comprehension of a separate SM by Tversky Principles

The cognitive mechanism, described by [Gureckis & Love, 2009], is applied when a sequence of UML

diagrams is comprehended (Figure 2):

1. The human brain comprehends the sequence of UML diagrams according to direct association

principle. Such a sequence can be formed from SMs that are designed in different Agile

iterations or SMs that describe different software components.

2. Then, considered SM is matched with the closest SM in sequence according to internal

transformation principle.

Figure 2. Matching a new SM with sequence of existing ones

Factors that influence on software models cognitive value

Different software lifecycle processes need various SMs to represent considering aspects of software

with given level of details. The SMCV is characterized by a set of cognitive parameters and software

designing characteristics which are different both for various SMs and process of software development

lifecycle. These parameters should be integrated in a common mathematical model and this way the

Matching
patterns

Defining
behavior

SM
functionality

Sequence of
SMs

Functionality
of new model

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

343

SMCV may be estimated. The aim of SMCV is to consider whether the usage of this model is advisable

for concrete software lifecycle development process.

Main cognitive parameters of software models are outlined below.

Cognitive value of SM depends upon complexity of its notation for its representation. Every type of

SM has its own notation. The complexity of notation depends upon number of elements and their

combination that can represent some software process or structure. The more difficult model requires

more efforts to comprehend it. That is why the cognitive value of model decreases when model is

expressed by means of complex notation. It requires more time to comprehend all details and more

tension to memorize it. Denote the complexity of notation as comp.

The parameter prec depends on the level of representation precision of software process (behavioral

SM) or structure (static SM). More precise model contains more information about process details.

Stakeholder who acquaints with SMs that allow precise representation of process or software structure

can get more concrete knowledge about algorithm or architectural solution. But precise models usually

represent small amount of software features.

Also for estimating the SMCV, it is necessary to consider the time of SM designing. When this

parameter is increased the complexity of model is increased too.

Analyze the influence of every introduced parameter to SMCV. Table 1 contains information about

influence of every parameter on common SMCV.

Table 1. Influence of base parameters to common SMCV

Parameter Estimation of SMCV when the considered parameter is

 increased decreased

Complexity of notation Reduced Raised

Precision of process (structure)

representation
Raised Reduced

Scale of software functionality Raised Reduced

SM creation time Reduced Raised

The resulting SMCV for effective

managing of chosen software

development process

Raised Reduced

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

344

Proposed approach

Analyzing the Table 1, define the SMCV:

timecomp

scaleprec
CVtype

 (1)

where: typeCV – cognitive value of given type SM (types of SMs: Collaboration, State, Class and others

according to UML standard);

― prec – level of precision for representation of software process or structure. This parameter

is measured by means of coefficient. Matching this coefficient for every type of SM is based

of subjective decision. This parameter varies from 0.1 to 1;

― scale – the number of features from software requirement specification that are covered by

SM. This parameter also is measured by the following way:

total

repr
scale (2)

where: repr – number of software requirements represented in SM;

 total – number of all software functional requirements to the project.

Coefficient scale is defined for concrete SM, considering its tasks. This parameter also

varies from 0.1 to 1;

― comp – complexity of SM notation. This parameter is defined by number of elementary

components in the specific SM notation and quantity of combinations created from them.

The range for this parameter is also from 0.1 to 1;

― time – is a time for one software model creation. This parameter is set for concrete

specialist.

Such parameters as prec and comp are general. Values of the time and scale parameters are defined

for every SM, software development lifecycle process and stakeholder separately.

Denote an amount of SMs that are necessary to cover all functionality of software requirement

specification as typeC . That is why common cognitive value of software models of specific type is

defined as follows:

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

345

nCVC typetype (3)

where: n - is a number of SMs that are necessary to represent all software functionality.

When parameter typeC is defined it is very important to prove every SM has unique content that

describes software requirements specification. An approach for defining whether the content of specific

SM is unique is proposed in the paper [Chebanyuk, 2014].

Rules for estimating SMCV

Expressions (1)-(3) define SMCV from the point of software engineering view. But cognitive aspects of

SM effective processing and human perceptional abilities should be considered [Green & Blackwell,

1998; Miller, 1956; Endres & Rombach, 2003]. In order to precise the proposed approach, rules of

estimating SMCV for specific software development lifecycle process regarding comprehension of

obtained SMCV are proposed below:

1. The best SM has the highest cognitive value.

2. Every SM from the set of typeC must have unique content, namely non repeatable elements.

3. Number of SM elements must be nearly to number of Miller [Miller, 1956], namely seven.

Both the rules for estimating SMCV and mathematical apparatus (1)-(3) allows to precise the SMCV by

the following:

timecomptotal

uniquemillerreprprec
CVtype

 (4)

where:

― unique – a coefficient, defining correspondence of CVSM to the second rule.

Measurements of this coefficient are proposed in the Table 2.

― miller – the coefficient, considering correspondence of CVSM to the third rule.

Measurements of this coefficient are also proposed in the Table 2.

To introduce the recommended values of miller and unique coefficients (Table 2), an additional

parameter elem – number of SM elements, is used. Respectively, for comparing two SMs: 1elem -

number of elements in the first SM and 2elem in the second one.

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

346

Table 2. Recommended values of miller and unique coefficients

Diapason Considered coefficient

miller

9elem miller = 1.0

1310 elem miller = 0.6

1513 elem miller = 0.2

15elem miller = 0.1

unique

3|| 21 elemelem unique = 1.0

5||3 21 elemelem unique = 0.5

7||5 21 elemelem unique = 0.25

7|| 21 elemelem unique = 0.15

Defining of cognitive value for different types of software models in requirement analysis

process

Requirement analysis process activity is to represent exact software requirements by means of

behavioral software models [ISO/IEC 12207:2008(E)]. The aim of these models is to analyze the future

software system in general and to see details.

In order to assign coefficients to behavioral SMs [UML 2.5, 2012] that are used for requirements

analysis process it is proposed to estimate SM characteristics of a typical software project that contains

10000 lines of code. The purpose of software is to design 3D-graph using Unity 3D and scripting

language C#. Example of 3D-graph is represented on the figure 3 [Markov, 2011].

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

347

Figure 3. 3D-graph example

Ideas of 3D-graph structuring and finding routes in it are represented in [3D-graph]

Software requirement specification for this project is represented in Table 3.

Table 3. Requirement specification for project 3D-grpah creation

Requirement code Requirement description

F1 Add different kinds of vertices to 3D-graph

F2 Move both vertices with edges and single vertices

F3 Add and remove edges connecting two vertices

F4 Save and load graph

NF1 Operation system for application working is Android

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

348

Table 4 contains information about estimation of general values for factors that influence on SMCV

(1)-(4). In Table 4, general values consider the experience of creation different projects of such type.

Table 4. Estimation of parameters that influence the cognitive value of different SMs types in

requirements analysis process

 Use Case Collaboration Sequence

 General

value

Chosen

value

for

consi-

dered

project

General

value

Chosen

value for

consi-

dered

project

General

value

Chosen

value

for

consi-

dered

project

Complexity of notation 0,1 0,5 0,7

Precision of process representation 0,2-0,3 0,2 0,4-0,5 0,4 0,6-0,7 0,7

Scale of software functionality 0,5-1.0 1.0 0,1-0,8 0,8 0,03-0,1 0,1

Creation time (hours) 0,1-0,2 0,15 0,2-0,8 0,4 0,2-0,9 0,5

Number of software models that

are needed for specific requirement

analysis process

1-100 1 2-20 2 5-70 5

Represent a requirement analysis for this project. Doing this, design different types of SMs and compare

their cognitive value.

According to UML standard 2.5 [UML 2.5, 2012] Use Case diagrams are used to represent general

software behavior. Description of the requirement specification (Table 3) by means of Use Case

diagram is given on the Figure 4.

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

349

Figure 4. Description of requirement specification by means of Use Case diagram

Use Case diagram in the Figure 4 contains five elements and describes the functionality of whole

software requirement specification. This description is not precise but the percent of representation of

software requirements is 100%. Time for creation of this diagram is 0.15 hour. Cognitive value of this

diagram is the highest because user can get information about whole functionality for project 3D-graph

creation.

Consider a Collaboration Diagram for describing software requirements. These diagrams show both

objects and data flows between them. Data flows are represented both by messages and conditions

[UML 2.5, 2012].

Figure 5 represents the requirement specification (Table 3) by means of Collaboration Diagram notation.

According to standard UML 2.5 [UML 2.5, 2012].

:graph

:vertices :edges
[edges>0]

[is_graph=True]

2.1

ver:vertices

2.2

2.3

2.4

2.5
[vertices>0]

[edges=0]

2.6

[edges>0]
user

1.1

1.2

Figure 5. Description of requirement specification by means of Collaboration Case diagram

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

350

Messages for Collaboration Diagram (Figure 4) are explained in the Table 5

Table 5. Collaboration Diagram messages

Code of message Message explanation

1.1 Load a 3D graph from file

1.2 Add vertex to 3D graph

2.1 Move vertex of 3D graph

2.2 Remove vertex of 3D graph

2.3 Remove edge of 3D graph

2.4 Move vertex of 3D graph with nested edges

2.5 Remove edge of 3D graph

Number of elements in Collaboration Diagram corresponds to number of Miller. The operation “Save

graph” is not represented in this diagram (Figure 5, Table 5). Consequently, this diagram covers

requirement specification on 80%. Time for creation of this diagram is 0,4 hour.

Consider a Sequence Diagram for describing software requirements, which reflects the stages of some

algorithms execution in details. Main elements in Sequence Diagram notation are objects and

messages between them. Also the Sequence Diagram notation allows representing such operations as

conditional statements, loops, parallel execution of processes and others [UML 2.5, 2012]. Due to high

level of precision for processes representation, Sequence Diagram in the Figure 6 that satisfies the

human perception abilities, covers the only requirement F1 from the Table 3.

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

351

Figure 6. Description of requirement specification by means of Sequence Diagram

This SM covers 25% of software requirements (see Table 3).

Time for creation of this diagram is 0,5 hour.

Estimation of cognitive value for different behavioral SMs according (4) for the project of 3D-graph

creation:

― for all SMs coefficient unique=1 because they represent unique software requirements;

― coefficient miller=1 (see Table 2);

― parameter total=4 (see Table 3);

― parameter repr=4 for Use Case (see Figure 3), repr=3 for Collaboration diagram (see Figure 4),

repr=1 for Sequence diagram (see Figure 5), Parameters time and prec are taken from the

Table 2.

33,13
15,01,04

1142,0
_

caseuseCV (5)

87,1
4,04,04

1134,0

ioncollaboratCV

(6)

35,0
5,07,04

1115,0

sequienceCV

(7)

Analyzing the expressions (5)-(7) according to the first rule of estimation SMs, one can make a

conclusion that cognitive value of Use Case diagram is more valuable in requirement analysis process.

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

352

Refer to some facts from software engineering.

When requirement analysis is done, it is necessary to manipulate with general representation of

software functionality and use simple notation for understanding software tasks in general. This process

is characterized by necessity of creation large amount of SMs. And also the specific of requirement

analysis process that it is necessary to make a lot of changes in software models rapidly. Using complex

notation and precise representation of software model can slower this process.

Then estimate typeC value according to (3). Parameter n is taken from the Table 3.

33,13133,13_ caseuseC (8)

74,3287,1 ioncollaboratC (9)

75,1535,0 sequenceC (10)

The analysis of the expressions (8)-(10) shows that SMCV has the highest meaning when software

functionality is described by means of Use Case diagrams.

Make a note that cognitive value of Use Case diagram is various for different software development

lifecycle processes.

Conclusion

The approach for estimation the Software Model Cognitive Value (SMCV) is proposed in this paper.

Represented model (4) considers both the characteristics of SM designing features (Table 1) and

human perception (Table 2).

When SM are designed by different stakeholders, such parameters as time, scale, repr, miller and

unique are changed (4). Parameter prec depends on the complicity of concrete SM type notation [UML

2.5, 2012].

Proposed model is extendable and can be modified by adding parameters reflecting:

 process of SM comprehension with different purposes according different cognitive principles

(Figure 1 and 2).

 characteristics, specific for different software development lifecycle processes [ISO/IEC

12207:2008(E)].

 rules and recommendations for SM visualization on different screens, including mobile devices,

 operations of SM processing in Model-Driven Architecture (MDA) area [MDA, 2001]

 other software engineering tasks.

Application of this model is used to predict stakeholder’s behavior for the next situations:

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

353

 to lead an interview by means of comparing SMCV obtained by a candidate with

etalon values;

 to estimate compatibility of stakeholder with other software team members;

 to choose the best SMs from a set of SMs, describing scalable project, to provide effective

processing of large amount of information about software;

 to ground the choice of the best SM for effective organizing of concrete software development

lifecycle process.

Using the proposed approach, the process of defining the best SM (namely Use Case) for requirement

analysis was represented in this paper (5)-(10). This choice matches with practical recommendations

and experience of stakeholders from different software development companies. For other software

development lifecycle processes different level of details for representation of software process and

structure are needed. Consequently other SMs will be chosen.

Further research

Using the mathematical apparatus (1)-(4) as a ground, to design an approach for SM visualization tools,

considering human cognitive abilities:

 from formats of text SM representation, such as XML;

 for effective SMs processing performing main MDA operations [MDA, 2001], namely model

transformations, refactoring, merging and comparison.

Bibliography

[Allen, 2015] Edward B. Allen. Design Artifacts are Central: Foundations for a Theory of Software Engineering.

Technical Report MSU-20150420. Mississippi State University, Mississippi State, Mississippi 39762 April

2015. http://web.cse.msstate.edu/~allen/Allen15MSU20150420.pdf (accesed 01.09.2015)

[Beck et al, 2001] K.Beck, M.Beedle, A.van Bennekum, A.Cockburn, W.Cunningham, M.Fowler, J.Grenning,

J.Highsmith, A.Hunt, R.Jeffries, J.Kern, B.Marick, R.C.Martin, S.Mellor, K.Schwaber, J.Sutherland, D.Thomas.

Agile Manifesto Copyright 2001. Access mode http://www.agilemanifesto.org/ (accessed 02.09.2015)

[BPMN 2.0, 2011] OMG Standard. Business Process Modeling and Notation (BPMN 2.0) access mode

http://www.omg.org/spec/BPMN/2.0/PDF/ (accessed 05.09.2015)

[Chebanyuk, 2014] E. Chebanyuk. Framework to Manage Scrum Meeting Artifacts. In: O. Voloshyn, V. Velychko,

Kr. Markov (eds.). Proceedings of the XX-th Internationa Conference “Knowledge-Dialogue-Solution” (KDS

2014). ITHEA®, 2014, Kyiv, Ukraine, Sofia, Bulgaria, ISSN 1313-0087 (printed), ISSN 1313-1206 (online). pp.

111-114.

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

354

[J. Olson & G. Olson, 2015] J. R. Olson and G. M. Olson. The Growth of Cognitive Modeling in Human Computer

Interaction Since GOMS. University of Michigan. Access mode

http://www.ics.uci.edu/~kobsa/courses/ICS205/03F/goms.ppt (accesed 01.09.2015)

[Endres & Rombach, 2003] A. Endres and D. Rombach. A Handbook of Software and Systems Engineering:

Empirical Observations, Laws and Theories, Pearson - Addison Wesley, Harlow, England, 2003. ISBN 978-

0321154200. 327 pp.

[Green & Blackwell, 1998] Thomas Green and Alan Blackwell. Cognitive Dimensions of Information Artefacts: a

tutorial. October 1998.

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf (accesed 01.09.2015)

[Gureckis & Love, 2010] Todd M. Gureckis, Bradley C. Love. Direct Associations or Internal Transformations?

Exploring the Mechanisms Underlying Sequential Learning Behavior. Cognitive Science 34 pp. 10–50.

Cognitive Science Society, Inc. 2010. ISSN: 0364-0213 print / 1551-6709 online.

[ISO/IEC 12207:2008(E)]. ISO/IEC 12207:2008(E) IEEE Std 12207-2008 https://www.iso.org/obp/ui/#iso:std:iso-

iec:12207:ed-2:v1:en (accessed 02.09.2015)

[Lassenius et al, 2015] C. Lassenius,T Dingsoyr, M. Paasivaara (ed.) Agile Processes, in Software

Engineering, and Extreme Programming: 16th International Conference, XP 2015, Helsinki, Finland, May 25-29,

2015, Proceedings, (accessed 04.09.2015)

[Markov, 2011] Kr. Markov et al. Intelligent Data Processing in Global Monitoring for Environment and Security.

ITHEA, 2011, Kiev, Ukraine - Sofia, Bilgaria. ISBN: 978-954-16-0045-0 (printed), ISBN: 978-954-16-0046-7

(CD/DVD), ISBN: 978-954-16-0047-4 (online). ITHEA® IBS ISC No.: 21. 410 p., 561 bibliographical

references, 12 tables, 183 figures http://foibg.com/ibs_isc/ibs-21/ibs-21.htm

page 367.

[Mangano et al, 2015] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek,“How Software Designers

Interact with Sketches at the Whiteboard,” IEEE Transactions on Software Engineering, vol. 41, no. 2, Feb.

2015, pp. 135–156.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6922572 (accessed 01.09.2015)

[Miller, 1956] G. A. Miller, “The Magical Number Seven Plus or Minus Two: Some Limits on Our Capacity for

Processing Information,” Psychological Review, vol. 63, no. 2, Mar. 1956, pp. 81–97.

http://www.psych.utoronto.ca/users/peterson/psy430s2001/Miller%20GA%20Magical%20Seven%20Psych%2

0Review%201955.pdf (accesed 01.09.2015)

[MDA, 2001] Object Management Group Model-Driven Architecture standard, 2001 access mode

http://www.omg.org/cgi-bin/doc?ormsc/14-06-01 (accessed 02.09.2015)

[Simon, 1982] H. A. Simon, Models of Bounded Rationality, MIT Press, Cambridge, Massachusetts, 1984, ISBN:

9780262690867. 392 pp.

[Thagard, 1996] P. Thagard Mind: Introduction to cognitive science. – Cambridge, MA : MIT press, 1996. – Т. 4.

International Journal “Information Theories and Applications”, Vol. 22, Number 4, 2015

355

[Tversky et al, 2006] Barbara Tversky, Maneesh Agrawala, Julie Heiser, Paul Lee, Pat Hanrahan, Doantam Phan,

Chris Stolte, Marie-Paule Daniel. Cognitive Design Principles: from Cognitive Models to Computer Models. In:

Lorenzo Magnani, editor, Model-Based Reasoning in Science and Engineering, pp. 1–20 . 2006

http://www.purdue.edu/discoverypark/vaccine/assets/pdfs/publications/pdf/Cognitive%20Design%20Principles

.pdf (accessed 01.09.2015)

[Visser, 2006] Willemien Visser, The Cognitive Artifacts of Designing, Lawrence Erlbaum Associates, Mahwah,

New Jersey, 2006. ISBN 978-0805855111. 280 pp. http://www.amazon.co.uk/Cognitive-Artifacts-Designing-

Willemien-Visser/dp/0805855114/ (accessed 01.09.2015)

[UML 2.5, 2012] OMG standard. Unified Modeling Language 2.5, 2012 Access mode

http://www.omg.org/spec/UML/2.5/Beta1/ (accessed 02.09.2015)

Authors' Information

Elena Chebanyuk – Software Engineering Department, National Aviation University,

Kyiv, Ukraine,

Major Fields of Scientific Research: Model-Driven Architecture, Model-Driven

Development, Software architecture, Software development.

e-mail: chebanyuk.elena@ithea.org

Krassimir Markov – Information Modeling Department, Institute of Mathematics and

Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Major Fields of Scientific Research: Software Engineering, Cognitive Science,

Information Modeling, Multi-dimensional Graph Data Bases, Business informatics,

General Information Theory

e-mail: markov@ithea.org

