
34 International Journal Information Theories and Applications, Vol. 23, Number 1, (c) 2016

On a public key encryption algorithm based on Permutation Polynomials and
performance analyses

Gurgen Khachatrian Martun Karapetyan

Abstract: In this paper a modification of public key encryption system presented in [Khachatryan, Kyureghyan, 2015]
and performance analysis are presented. As described in [Khachatryan, Kyureghyan, 2015], the permutation polynomial
P (x) is declared to be a public polynomial for encryption. A public key encryption of given m(x) is the evaluation
of polynomial P (x) at point m(x) where the result of evaluation is calculated via so called White box reduction,
which does not reveal the underlying secret polynomial g(x). Our analysis have shown that an attacker may acquire
some information about the message, having its cipher-text, in case of using certain values of P(x). So either those
values of P(x) must be avoided, or the modification presented in this paper must be used. Our implementation’s
performance was compared to RSA-2048 implementation of CryptoPP library and it was 3.75x and 133x faster on
encryption and decryption operations respectively.

Keywords: Permutation polynomials, Public-key encryption, White box reduction..

ACM Classification Keywords: E.3 DATA ENCRYPTION - Public key cryptosystems

Conference topic: Cryptographic methods and protocols, Reliable and Secure Telecommunications;

MSC: 11T71, 94A60

Introduction

Let GF (q) be the finite field with q elements, where q is a prime or power of a prime. A polynomial f(x) over
GF (q) is called a permutation polynomial if an equation f(x) = r for any r ∈ GF (q) has only one root in
GF (q). In [Khachatryan, Kyureghyan, 2015] a new class of permutation polynomials was presented and a public
key system with white box implementation was provided. Its security relays on the problem of solving a polynomial
equation over GF (2n) when the field representation polynomial is unknown.
A pioneering work describing DH key exchange by Diffie and Hellman [Diffie, Hellman, 1976] was presented in
1976, which is based on the discrete logarithm problem (DLP). In 1978 another fundamental work by Rivest, Shamir
and Adleman [Rivest, Shamir, Adleman, 1978], called RSA cryptosystem was presented, which is based on integer
factorization problem. Another important development for public key cryptosystems was the invention of Elliptic
curve cryptosystems [Miller, 1986] which are based on the algebraic structure of elliptic curves over finite fields.
In this paper we present a modification of the cryptosystem described in [Khachatryan, Kyureghyan, 2015] and
performance analysis.
The paper is organized as follows: In section 2 the public key algorithm and white box implementation described
in [Khachatryan, Kyureghyan, 2015] are presented in short. In section 3 modification of the public key system
is presented. In section 4 implementation aspects and performance optimizations of the proposed system are
discussed. Section 5 concludes the paper.

Public Key encryption algorithm based on permutation polynomials

Let GF (q) be a finite field of characteristic p. For every permutation polynomial f(x) over GF (q), there exists
a unique polynomial, f−1(x) over GF (q) such that f(f−1(x)) = (f−1(f(x)) = x called the compositional
inverse of f(x).



International Journal Information Theories and Applications, Vol. 23, Number 1, (c) 2016 35

Let F (x) =
∑n

u=0 aux
u ∈ GF (2) be a primitive polynomial and P (x) =

∑n
u=0 aux

2u be its linearized
2-associate. Elements of the GF (2n) will be represented through a primitive polynomial g(x) over GF (2). Then
P (x) is a permutation polynomial and an algorithm for finding it’s compositional inverse P−1 was presented in
[Khachatryan, Kyureghyan, 2015].
A primitive polynomial g(x) of degree n over GF (2) is used as the public key encryption private (secret) parameter
and a permutation polynomial P (x) as the public parameter.

a) Public key encryption: any message m(x) of the length n as an input (plaintext) and evaluation of the
polynomial P (m(x)) = c(x) mod g(x) as an output (ciphertext). The evaluation operation will be
implemented via “White box” evaluation without revealing the polynomial g(x). The output of public key
encryption will be c′(x) based on “White box” tables explained later.

b) Private key decryption: Given a ciphertext c′(x) calculate c(x). ComputeP−1(c(x)) = P−1 (P (m(x)) =
m(x) mod g(x). [Khachatryan, Kyureghyan, 2015]

The white box evaluation is used to calculate the value of c′(x) without revealing the value of modulo reduction
polynomial g(x) in such a way, that the “owner” of the system can calculate c(x) from it. The evaluation procedure
will be as follows: all possible residues xN ≡ RN (x) mod g(x) for N = 2ir, where i = 1, ..., 128, r =
2k + 1, k = 0, 1, ..., 63 are biased by using random 64 secret polynomials L0, L1, . . . , L63 based on another
secret polynomial L(X) which are only known to the “owner” of the system. All biased values for residues modulo
polynomial g(x) are provided to the public in the following manner:

BN (x) = ((RN (x)× L0(x)) modL(x))⊕ Lk+1(x) (0.1)

for any N = 2i(2k + 1). Based on above explanation an encoding procedure will be as follows: The user
calculates an evaluation result of the polynomial P (m(x)) without any reduction, takes the polynomial R(x) that
contains all terms of evaluation for the degrees not exceeding 127, and calculates the modulo two sum of nonzero
terms BN (x) denoted by

∑
BN (x) corresponding to nonzero terms of evaluation result exceeding N = 127.

An encrypted message c′(x) then contains two 16 byte vectors including R(x),
∑

BN (x) and another 8 byte
vector B = (b0, b1, . . . , b63), where bk = 0 if the number of nonzero terms with the same value k in evaluation
result is even and bk = 1 otherwise for N = 2i(2k + 1), k = 0, ..., 63.
Decoding procedure by the “owner” of the system will be as follows: based on the value B = (b0, b2, . . . , b63)
and vector

∑
BN (x) the “owner” calculates:

R(x)⊕

(∑
BN (x)⊕

128∑
i=1

bi × Li(x)

)
×(L0(x))

−1 = c(x) mod L(x).[Khachatryan, Kyureghyan, 2015]

(0.2)

Modification of the Public Key encryption algorithm

A public polynomial P (x) =
∑n

u=0 aux
2u is used in the encryption algorithm described in

[Khachatryan, Kyureghyan, 2015]. Our analyses showed, that if au = 0 for all but one value v in u = 2..7 then the
attacker may gain some information about the plain-text message m(x) having the value of R(x). For example is
P (x) = x2

127
+ x2 + x is used, then if m(x) =

∑126
i=0 aix

i then R(x) =
∑63

i=0 aix
2∗i, which means that the

attacker will easily get the values of ai for i = 0..63. A simple solution to this problem is to use values of P (x) for
which au = 0 for u = 2..7.
A modification of the public-key system follows, which will make usage of any value ofP (x) secure. We will describe
the algorithm for n = 128, but it can be easily extended to be used for any value of n.



36 International Journal Information Theories and Applications, Vol. 23, Number 1, (c) 2016

a) Public key encryption: any message m(x) of the length n as an input (plaintext) and evaluation of the
polynomial P (m(x) ∗ x128) = c(x) mod g(x) as an output (ciphertext). The evaluation operation will be
implemented via a “White box” evaluation describe later.

b) Private key decryption: Given a ciphertext c′(x) calculate c(x). Compute

P−1(c(x)) ∗ x2n−8
= P−1

(
P (m(x) ∗ x128

)
∗ x2n−8

=

m(x) ∗ x128 ∗ x2n−8
= m(x) ∗ x2n−1

= m(x) mod g(x).

This is true because x2
n−1

= 1 mod g(x).

After the modification there are no terms with degrees of N < 128 in the evaluation result of the polynomial
P (m(x) ∗ x128), so there is no need of having an R(x) any more.
PolynomialsL0, L1, . . . , L127 are generated, and values ofBN (x) are provided publicly for anyN = 2i(2k+1),
where i = 1, ..., 128, r = 2k + 1, k = 0, 1, ..., 127.
An encrypted message c′(x) then contains a 16 byte vector

∑
BN (x) and another 16 byte vectorB = (b0, b1, . . . , b127),

where bk = 0 if the number of nonzero terms with the same value k in evaluation result is even and bk = 1
otherwise for N = 2i(2k + 1), k = 0, ..., 127.
Let P (x) = x2

11
+ x2

35
+ x2

77
and m(x) = x3 + x8. We have that

P (m(x) ∗ x128) = (x131 + x136)2
11
+ (x131 + x136)2

35
+ (x131 + x136)2

77

= x131·2
11
+ x136·2

11
+ x131·2

35
+ x136·2

35
+ x131·2

77
+ x136·2

77

= x131·2
11
+ x17·2

14
+ x131·2

35
+ x17·2

38
+ x131·2

77
+ x17·2

80

We have that
∑

BN (x) = B131·211(x)⊕B17·214(x)⊕B131·235(x)⊕B17·238(x)⊕B131·277(x)⊕B17·280(x)
where BN (x) are defined according to (0.1). Thus we have that for the vector B = (b0, b1, · · · , b63) in this case
b1 = 1

Decoding procedure by the “owner” of the system will be as follows: based on the value B = (b0, b2, . . . , b127)
and vector

∑
BN (x) the “owner” calculates:

(
∑

BN (x)⊕
128∑
i=1

bi × Li(x))× (L0(x))
−1 = c(x) mod L(x). (0.3)

After calculating c(x) = P (m(x)∗x128) the âĂIJownerâĂİ of the system can decrypt the message: P−1(c(x))∗
x2

n−8
= m(x), where P−1 is the compositional inverse of the polynomial P (x).

Implementation aspects and performance optimizations

Public key encryption of the proposed system requires evaluation of the polynomial P (m(x) · x128) and then a
modular reduction using white box implementation. The evaluation of P (m(x) · x128) will require to count the
values of m(x)2

i
for all i = 0..n, where 2n is the order of P (x). This will require n squaring of polynomial m(x).

Let’s denote by t the weight of P (x) and by s the weight of m(x). Then the evaluation of P (m(x) · x128) will
have t ∗ s terms, so t ∗ s XORs of polynomials will be required to count

∑
BN (x).

Calculation of c(x) from c′(x) will require 128 modulo two additions and one multiplication of polynomials as
explained in section 3. Final decryption operation will require to compute P−1(c(x)) ∗ x2120 = m(x), where
P−1 is a compositional inverse of polynomial P (x). Calculation of P−1(c(x)) will require counting the values of
c(x)2

i
for all i = 0..127, and XORing the resulting polynomials. If the weight of P−1(x) is t, then t XORs will be

required.



International Journal Information Theories and Applications, Vol. 23, Number 1, (c) 2016 37

The memory required for storing the white box tables, I.E. the values of BN (x) will be 16 bytes per value for each
N = 2i(2k + 1), where i = 1, ..., 128, r = 2k + 1, k = 0, 1, ..., 127, resulting to overall 128 × 128 × 16
bytes = 256 Kbytes.
Some performance optimization were made to the described algorithm. One can notice, that forP (x) =

∑n
u=0 aux

2u

and m(x) =
∑n

v=0 avx
v ,

P (m(x)) = sumn
v=0av × P (xv). (0.4)

In a similar way for m(x) =
∑n

l=0 alx
l,

P−1(c(x)) = sumn
l=0al × P−1(xl). (0.5)

So if we precalculate and store the values of
∑

BN (x) for terms in P (xv) for each v = 0..127 and the values
of P−1(xl) for all l = 0..127, this will require 128 ∗ 16 bytes of additional memory for each of encryption and
decryption operations, but the performance will be increased dramatically. We also calculate the impact of P (xv)
on array B for each v = 0..127, which requires another 128 ∗ 16 bytes of memory. After calculating and storing
these values, instead of doing 128 squarings and t ∗ s XORs for encryption, we’ll do no squarings and just s
XORs. In decryption we will skip doing the squarings. This optimizations speed up both encryption and decryption
operations by about 2.2 times.
Performance tests were ran on Intel Core I5 CPU 1.6 GHZ processor, and the CryptoPP library’s RSA-2048
implementation was used for comparison. A single encryption and decryption operations took 0.032ms and 0.041ms
respectively for our algorithm, and 0.12ms and 5.46ms respectively for RSA-2048. So the algorithm described was
3.75x faster on encryption and 133x faster on decryption.

Conclusion

In this paper a modification of white box encryption scheme [Khachatryan, Kyureghyan, 2015] based on permutation
polynomials has been presented. Implementation aspects and performance optimizations were provided.

Bibliography

[Khachatryan, Kyureghyan, 2015] G. Khachatrian, M. Kuregian, Permutation polynomials and a new public key
encryption - accepted for publication in Discrete Applied Mathematics journal- February 2015, 9 pages

[Laigle, Chapuy, 2007] Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finite Fields,
Appl.13, 58–70, 2007

[Lidl, Niederreiter, 1983] R. Lidl, Niederreiter, Finite Fields, Addison Wesley, reading, MA, 1983.

[Schwenk, Huber, 1998] J. Schwenk, K. Huber,Public key encryption and digital signatures based on permutation
polynomials, Electron, Lett.34 (1998), 759–760.

[Zeirler, 1959] N. Zeirler, Linear recurring sequences, J.Soc.Ind.Appl.Math.7,(1959), 31–48.

[Diffie, Hellman, 1976] W. Diffie and M.E. Hellman, New Directions in Cryptography, IEEE Transactions on
Information Theory, Vol. IT-22, Nov.1976, 644–654.

[Rivest, Shamir, Adleman, 1978] R. Rivest, A. Shamir, L. Adleman, A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems, Communications of the ACM 21 (2), (1978), 120–126.

[Miller, 1986] V.S.Miller, Use of Elliptic curves in cryptography, Advanced in Cryptology-Crypto-85 Proceedings,
Springer-Verlag, (1986), 417–426.



38 International Journal Information Theories and Applications, Vol. 23, Number 1, (c) 2016

Authors’ Information

Gurgen Khachatryan American University of Armenia
Yerevan, Armenia
e-mail: gurgenkh@aua.am

Martun Karapetyan Institute for Informatics and Automation Problems
National Academy of Sciences of Armenia
Yerevan, Armenia
e-mail: martun.karapetyan@gmail.com

mailto:gurgenkh@aua.am
mailto:martun.karapetyan@gmail.com

