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CONVEXITY RELATED ISSUES FOR THE SET OF HYPERGRAPHIC SEQUENCES  

Hasmik Sahakyan, Levon Aslanyan 

 

Abstract: We consider ܦ௠(݊), the set of all degree sequences of simple hypergraphs with ݊ vertices 

and ݉ hyperedges. We show that ܦ௠(݊), which is a subset of the ݊-dimensional ݉ + 1-valued grid ߌ௠ାଵ௡ , is not a convex subset of ߌ௠ାଵ௡ ; and give a characterization of the convex hull of ܦ௠(݊). 
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Introduction 

A hypergraph ܪ is a pair (ܸ,  the set of hyperedges, is a ,ܧ and ,ܪ where ܸ is the vertex set of ,(ܧ

collection of non-empty subsets of ܸ. The degree of a vertex ݒ of ܪ, denoted by ݀	(ݒ), is the number 

of hyperedges in ܪ  containing ݒ . A hypergraph ܪ  is simple if it has no repeated hyperedges. A 

hypergraph ܪ is ݎ-uniform if all hyperedges contain ݎ-vertices. 2-uniform hypergraphs (edges contain 

exactly 2 vertices) are simply ordinary graphs.   

Let ܸ = ⋯,ଵݒ} , {௡ݒ (ܪ)݀ . = ⋯,(ଵݒ)݀) , ((௡ݒ)݀  is the degree sequence of hypergraph ܪ . A 

sequence ݀ = (݀ଵ,⋯ , ݀௡) is hypergraphic if there is a simple hypergraph ܪ with degree sequence ݀. 

For a given ݉, 0 < ݉ ≤ 2௡ , let ܪ௠(݊) denote the set of all simple hypergraphs ([݊], [݊] where ,(ܧ = {1,2,⋯ , ݊} , and |ܧ| = ݉ , and ܦ௠(݊)  denote the set of all hypergraphic sequences of 

hypergraphs in ܪ௠(݊). 
We investigate issues related to the characterization of the set of all hypergraphic sequences. The case 

of graphs is easy - a simple necessary and sufficient condition for the characterization of the set of 

degree sequences is known by the Erdos-Gallai Theorem [Erdos,Gallai, 1960], [Harary, 1969]: 

Theorem 1 (Erdos-Gallai) A decreasing sequence of non-negative integers (݀ଵ,⋯ , ݀௡) is the degree 

sequence for a simple graph if and only if: ∑ ݀௜௡௜ୀଵ  is even;          (1) ∑ ݀௜ ≤ ݇(݇ − 1) + ∑ min	{݇, ݀௜}௡௜ୀ௞ାଵ௞௜ୀଵ ݇	ݎ݋݂	 = 1,⋯ , ݌ − 1.  

 

In general, the characterization of degree sequences for uniform hypergraphs is an open problem when ݎ ≥ 3  (see  [Berge, 1989], [Bill, 1988], [Bill, 1986], [BhanuSriv, 2002], [Colb, 1986] , [KocayLi, 2007]). 
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The characterization of ܦ௠(݊) , which is not easier that the case of uniform hypergraphs, - is 

investigated in [Sah, 2009] - [Sah, 2015], [AslGroSahWag, 2015]. The problem has its interpretation in 

terms of multidimensional binary cubes; it is also known as a special case in discrete tomography 

problem, when an additional constraint/requirement – non-repetition of rows is imposed [SahAsl, 2010], 

[Sah, 2013]. Structures, properties, and several related partial results were obtained in [Sah, 2009] - 

[Sah, 2015] for ܦ௠(݊). In this research we consider convexity issues related to the set ܦ௠(݊). 
Convex hull of degree sequences of ݇ -uniform hypergraphs was investigated in [Koren, 

1973],[BhanuSriv, 2002], [Klivans, Reiner, 2008], [Ricky Ini Liu, 2013]. It was shown by Koren [Koren, 

1973] that the inequalities in (1) define a convex polytope ܦ௡(2)  of degree sequences of simple 

graphs, so that the sequences with even sum, lying in this polytope are exactly the degree sequences of 

the graphs on ݊ vertices.  

Analogous questions for ݇-uniform hypergraphs when ݇	 > 	2 investigated in [Klivans, Reiner, 2008], 

[Ricky Ini Liu, 2013]. Klivans and Reiner [Klivans, Reiner, 2008] verified computationally that the set of 

degree sequences for ݇-uniform hypergraphs is the intersection of a lattice and a convex polytope for ݇	 = 	3 and 	≤ 	8 . Ricky Ini Liu [Ricky Ini Liu, 2013] show that this does not hold for ݇	 ≥ 	3 and ݊	 ≥ 	݇	 + 	13. 

In this paper we consider analogous convexity questions for ܦ௠(݊). 
Structure of (࢔)࢓ࡰ 
Suppose that we consider the set of all hypergraphic sequences of hypergraphs ([݊],  and omit the ,(ܧ

restriction of non-repetition of hyperedges. Then, every integer sequence of length ݊ with all component 

values between  0 and ݉, can serve as degree sequence of some hypergraph with the vertex set  [݊] 
and with ݉ hyperedges. 

Thus, the ݊ -dimensional ݉ + 1 -valued integer grid ߌ௠ାଵ௡  of elements: {(ܽଵ,⋯ , ܽ௡)|0 ≤ ܽ௜  [݊] can be considered as the set of degree sequences of hypergraphs with the vertex set {݅	݈݈ܽ	ݎ݋݂	݉≥
and with ݉ hyperedges; and in this manner, ܦ௠(݊) ⊆ ௠ାଵ௡ߌ . 

In this section we consider the structure of ܦ௠(݊) in ߌ௠ାଵ௡ . 

Component-wise partial order is defined on ߌ௠ାଵ௡ : (ܽଵ,⋯ , ܽ௡) ≤ (ܾଵ,⋯ , ܾ௡) if and only if ܽ௜ ≤ ܾ௜ 
for all ݅, and ݎ(ܽଵ,⋯ , ܽ௡) = ܽଵ + ⋯+ ܽ௡ is the rank of an element (ܽଵ,⋯ , ܽ௡). An illustration of ߌ௠ାଵ௡  can be given by the Hasse diagram. Figure1 illustrates the Hasse diagram of ߌହଷ. 
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Figure 1. The Hasse diagram of ߌହଷ 

Opposite elements in ࢓ࢮା૚࢔  

A pair of elements ݀, ݀̅ ∈ ௠ାଵ௡ߌ  are called opposite if one can be obtained from the other by inversions 

of component values: if ݀ = (݀ଵ,⋯ , ݀௡), then ݀̅ = (݉ − ݀ଵ,⋯ ,݉ − ݀௡).	
Boundary elements of (࢔)࢓ࡰ . 
We call (݀ଵ,⋯ , ݀௡) ∈ (݊)௠ܦ  an upper boundary /lower boundary/ element of ܦ௠(݊)  if no (ܽଵ,⋯ , ܽ௡) ∈ ௠ାଵ௡ߌ  with (ܽଵ,⋯ , ܽ௡) > (݀ଵ,⋯ , ݀௡) / with (ܽଵ,⋯ , ܽ௡) < (݀ଵ,⋯ , ݀௡) / belongs 

to ܦ௠(݊). 
Let ܦ෡௠௔௫ and ܦෙ௠௜௡ denote the sets of upper and lower boundary elements of ܦ௠(݊), respectively. 

Interval in ࢓ࢮା૚࢔ . 

For a pair of elements ݀ᇱ, ݀ᇱᇱ, ݀ᇱ ≤ ݀′′ of ߌ௠ାଵ௡ ,′݀)ܧ , ݀′′) denotes the minimal subgrid/interval in ߌ௠ାଵ௡  spanned by these elements: ܧ(݀′, ݀′′) = {ܽ ∈ ௠ାଵ௡ߌ |݀′ ≤ ܽ ≤ ݀′′}. 
Theorem 2 ([Sah, 2009]). ܦ௠(݊) is a union of intervals spanned by the pairs of opposite elements of ܦ෡௠௔௫ and ܦෙ௠௜௡:  ܦ௠(݊) = ⋃ ,ෙܦ)ܧ ෡)஽෡∈஽෡೘ೌೣ,஽ෙ∈஽ෙ೘೔೙ܦ ,  

where (ܦ෡,  .ෙ) are pairs of opposite elementsܦ
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An illustration is given in Figure 2 by the example of ܦସ(3) in ߌହଷ: ܦ෡௠௔௫ = {(3,3,3), (4,2,2), (2,4,2), ෙ௠௜௡ܦ  ,{(2,2,4) = {(1,1,1), (0,2,2), (2,0,4), ସ(3)ܦ ,{(2,2,0) ,൫(1,1,1)ܧ= (3,3,3)൯ ∪ ,൫(0,2,2)ܧ (4,2,4)൯ ∪ ,൫(2,2,0)ܧ (2,2,4)൯ ∪ ,൫(2,0,2)ܧ (2,4,2)൯.  

 

Figure 2 

ସ(3) in Ξହଷܦ  : vertices in red compose ܦସ(3), and vertices in darker red  compose sets ܦ෡௠௔௫  and ܦෙ௠௜௡. 

Non-convexity of (࢔)࢓ࡰ in ࢓ࢮା૚࢔  

In this section we show that ܦ௠(݊) is not a convex set in ߌ௠ାଵ௡ . 

 

Convex set. [Birkhoff, 1948] A subset ܵ of the poset ܲ is convex whenever ܽ ∈ ܵ, ܾ ∈ ܵ and ܽ ≤ ܾ 

imply [ܽ, ܾ] ∈ ܵ. 

It follows from the definition that each interval ܦ)ܧෙ,  ෡) spanned by opposite boundary elements is aܦ

convex set in ߌ௠ାଵ௡ . 

Nevertheless we prove that ܦ௠(݊) being a union of convex sets, - is not convex. 
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Theorem 3. ܦ௠(݊) is not convex in  ߌ௠ାଵ௡ , when  1 < ݉ < 2௡ − 1.  

We omit the details of the proof and just bring the outline. First we show that ܦ௠(݊) is convex for the 

following values of ݉: 

a) ݉ = 1. We show that ܦ௠(݊) = ෩,0)ܧ ෥݉), which coincides with ߌ௠ାଵ௡ , and thus, is a convex 
set. 

b) ݉ = 2௡ . In this case ܦ௠(݊) = ⋯,2௡ିଵ))ܧ , 2௡ିଵ), (2௡ିଵ,⋯ , 2௡ିଵ) – that is 1 point of ߌ௠ାଵ௡ . 
c) ݉ = 2௡ − 1 . Here ܦ௠(݊) = 2௡ିଵ))ܧ − 1,⋯ , 2௡ିଵ − 1), (2௡ିଵ,⋯ , 2௡ିଵ)  – this is an 

interval of ߌ௠ାଵ௡ , and thus, is a convex set. 

 Then we prove that for the following cases: 

d) 1 < ݉ ≤ 2௡ିଵ  
e) 2௡ିଵ < ݉ < 2௡ − 1  

there always exist two comparable elements  ܽ < ܾ in  ܦ௠(݊), such that the spanned interval ܧ(ܽ, ܾ) 
in ߌ௠ାଵ௡  contain an element ܿ ∉    .(݊)௠ܦ
Consider an example in Figure 3.  

 

Figure 3 

 

The elements (0,2,2) and (3,3,3) belong to ܦସ(3), and (0,2,2) < (3,3,3). However the elements (0,3,2), (0,2,3), (0,3,3) of 3ߌହ௡ , which are greater than (0,2,2), and less than (3,3,3), - do not 

belong to ܦସ(3). 
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Convex hull of (࢔)࢓ࡰ 
In this section we characterize the convex hull of ܦ௠(݊). 
Convex hull ([Eggleston, 1958])  
Let ܵ be a nonempty subset of ܴ௡. Then among all convex sets containing ܵ (these sets exist, e.g., ܴ௡ 
itself) there exists the smallest one, namely, the intersection of all convex sets containing ܵ. 
This set is called the convex hull of ܵ (denote by: ݒ݊݋ܥ	(ܵ)). 
In our case we consider the intersection of ݒ݊݋ܥ(ܦ௠(݊)) and ܼ௡  - in other words we consider the 

integer points of ݒ݊݋ܥ(ܦ௠(݊)). 
Notice that ߌ௠ାଵ௡  itself corresponds to some convex set of ܴ௡. ܦ௠(݊) ⊆ ௠ାଵ௡ߌ  is also contained in 

the mentioned convex set. We are interested in finding the smallest convex subset of ߌ௠ାଵ௡ , containing ܦ௠(݊). We denote this set by ܥ஽೘(௡). 
 

Theorem 4. ܥ஽೘(௡) = ⋃ ,ෙܦ)ܧ ෡)஽෡∈஽෡೘ೌೣ,஽ෙ∈஽ෙ೘೔೙ܦ  (the union is by all pairs (ܦ෡,  ෙ) and not only byܦ

opposite pairs). 

We prove the theorem by showing first that the set ⋃ ,ෙܦ)ܧ ෡)஽෡∈஽෡೘ೌೣ,஽ෙ∈஽ෙ೘೔೙ܦ  is a convex set, and then 

- that this is the smallest convex set containing ܦ௠(݊). 
An illustration is in Figure 4. 

	
Figure 4 
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 ஽ర(ଷ) are in red andܥ ସ(3) are in red color, and the elements ofܦ ହଷ, where the elements ofߌ ஽ర(ଷ) inܥ

blue colors. 

 

Corollary.  

 The smallest convex subset of ߌ௠ାଵ௡  containing ܦ௠(݊) is the convex hull of the set (ܦ෡௠௔௫  .(ෙ௠௜௡ܦ	∪	

 Each element ݀   of (ܦ෡௠௔௫ 	∪ ෙ௠௜௡ܦ	 ) is an extreme point of ܥ஽೘(௡)  since ⋃ ,ෙܦ)ܧ ෡)஽෡∈஽෡೘ೌೣ,஽ෙ∈஽ෙ೘೔೙ܦ \{݀} is a convex set. 

 

Conclusion 

We considered D୫(n) , the set of all degree sequences of hypergraphs with n  vertices and m 

hyperedges, as a subset of the n-dimensional m+ 1-valued grid Ξ୫ାଵ୬ . We showed that D୫(n) is not 

a convex subset of Ξ୫ାଵ୬ , and characterized the convex hull of D୫(n). 
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