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RANDOMIZED SET SYSTEMS CONSTRAINED BY THE DISCRETE TOMOGRAPHY  

Irina Arsenyan, Levon Aslanyan and Hasmik Sahakyan 

 

Abstract: This article, in general, is devoted to a set of discrete optimization issues derived from the 

domain of pattern recognition, machine learning and data mining - specifically. The global objectives are 

the compactness hypotheses of pattern recognition, and the structural reconstruction of the discrete 

tomography.  

The driving force of the current research was the proof technic of the discrete isoperimetry problem. In 

proofs by induction the split technique was applied and then it is important to have some information 

about the sizes of the split compounds. Isoperimetry itself is a formalism of the compactness 

hypotheses. From one side knowledge on split sizes helps to find the compact structures and learning 

sets based on this, from the other side – split sizes help to prove the necessary relations. The pure 

combinatorial approaches [22-77] are not able at the moment to give an efficient description of the split 

sizes and – the weighted row-different matrices. The probabilistic method, as it is well-known, gives 

additional knowledge about the random subsets, and this may be useful as a complementary knowledge 

about a different objects or a situations concerned the properties of discrete structures – isoperimetry 

and tomography. 

The discrete mathematical science deals with different types of discrete structures, studying their 

transformations and properties. In some problems we face the issues about the existence of structures 

under some special constraints, about the enumeration of structures under these constraints, and – on 

algorithmic optimization. Given a simple structure – in some cases, it can be even hard to compute 

some basic properties of it. Such are for example the graph chromatic number, the minimal set cover, 

the solution of the well-known SAT and plenty of other NP-complete problems. When structures are 

given, the mentioned parameters may be easily computable. To find a structure by the given parameters 

often becomes hard. We call such problems – inverse problems. Our special interest is in considering of 

simple (0,1) matrices and their row and column weights. Given a matrix we can compute the mentioned 

weights (direct problem). The inverse problem, -- when it is to find the construction with the given 

weights is not simple. At least there is not known polynomial algorithms for this problem. Moreover, the 

problem is known as the hypotheses posted by famous graph theorist C. Berge so that the problem is 

well known and unsolved. 



International Journal “Information Theories and Applications”, Vol. 23, Number 3, © 2016 

 

204

Besides the logical and combinatorial analysis of the inverse type problems of discrete optimization, in 

several cases the probabilistic models were applied successfully. The idea of this paper is to use the 

probabilistic theory of combinatorial analysis to the discrete tomography problem given in terms of the 

(0,1) matrices. The paper tries to outline the models, relations and the methodology. Our research 

priority interest is to understand the opportunities, similarities and perspectives in this broad research 

area. The study is ongoing and the follow up publication will come soon. 

Keywords: discrete tomography, discrete isoperimetry, probabilistic theory of combinatorial analysis, 

(0,1) matrices, discrete optimization. 
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Introduction 

Our aim is to present the work done on composition and analysis of appropriate probabilistic models 

that support investigations of a group of combinatorial problems related to the basic one – the Discrete 

Tomography. The first articles in the domain of probabilistic theory of combinatorial analysis [1-4] by 
Erdős, Rényi and Gilbert, and [5-7] by Glagolev, Kospanov and Nechiporuk considered graph models 

with random vertices and edges, and random Boolean schemes and formulas -- evaluating the 

frequencies of appearance of different configurations given the specific properties. Since then, 

thousands of publications appeared in this domain. Today also the systematic presentation of the 

subject is accessible [8-10]. 

 

Our consideration is focused on study of different specifically constrained set systems, which are known 

alternatively as the problems of hypergraph theory, or the Boolean functions or the ݊-cube geometrical 

studies. As usual, we denote the set of all vertices of the n-dimensional unite cube by E୬. Subsets of E୬  compose set systems with the base ݊ -set, that represents the set of Boolean variables. 

Alternatively, we will also consider multi-sets, defined over the set of vertices of E୬. 

 

Within the set theory, formally, a multi-set (or bag) is a 2-tuple (A, r) where A is some set of elements 

and r:	A → Zା  is a function from A  to the set Zା = {1,2, … }  of positive natural numbers. For 

each a ∈ A the multiplicity of a in (A, r) is the number r	(a), that is the number of its occurrences. For 

a finite A multi-set (A, r) can be given by a list. If an underlying set U, wherefrom the elements of A are 

obtained is specified, then the definition can be simplified to just a multiplicity function r:	U → Zஹ 

obtained by extending ܣ to U with the use of the values 0 for all elements not in A. 

The multi-sets ܯ = ,ܣ) ܧ with the universal set (ݎ  and a multiplicity function r: ܧ → ܼஹ  will be 

considered. Different interpretations concerning the structure (ܣ, r)  will be considered and used 

throughout this paper. In particular, ܣ may denote the pairs of rows in a (0,1) matrix. The different rows 

compose a set of vertices of ܧ. The number of repeated rows (or the number of pairs of equal rows) 

will denote multiplicity. 

 

The probabilistic method used throughout this paper basically deals with the discrete probability spaces. 

We suppose that it is given a finite space ܣ of elementary events (outcomes of a certain processes or 

experiments/trials) and that there are probabilities related to these events. If the total number of 

outcomes of experiment is ݊ , then the probabilities ଵ, ,ଶ … ,   are allocated to them so that ∑ = 1. The set theoretical relations such as union and intersection, and the inclusion exclusion 
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principle regulate more complex events ܺ ⊆ ܣ  under this scheme. The probability space provides 

probability measures of these events, 	(ܺ) = ∑ ఢ(ܽ)	 . Let us remind some of the basic 

probabilistic relations. Let ܣ be the finite set of elementary events, ଵܺ , and ܺଶ ⊆ )	 Then .ܣ ଵܺ ∪ܺଶ) = )	 ଵܺ) + (ଶܺ)	 − )	 ଵܺ ∩ ܺଶ). Form the expression 	( ଵܺ ∪ ܺଶ) ≤ )	 ଵܺ) +  that (ଶܺ)	

is known as the Boole’s inequality. If here we have the equality, 	( ଵܺ ∩ ܺଶ) = 0, then we call ଵܺ and ܺଶ mutually exclusive. ଵܺ and ܺଶ are independent, iff 	( ଵܺ ∩ ܺଶ) = )	 ଵܺ)	(ܺଶ). Further: 

for arbitrary events ܺ 	( ଵܺ ∪ ܺଶ ∪ …∪ ܺ) ≤ )	 ଵܺ) +  (ܺଶ) + ⋯+  (ܺ), (2.1) 

for independent events ܺ  	( ଵܺ ∩ ܺଶ ∩ …∩ ܺ) =  ( ଵܺ) (ܺଶ)… (ܺ) (2.2) 

and 

)	 ଵܺ ∪ ܺଶ ∪ …∪ ܺ) = 1 − (1 −  ( ଵܺ))(1 − (1 −  (ܺଶ))… (1 − (1  (2.3) .((ܺ)	−

Repeated independent trials when there are only two outcomes in each trial and the probabilities of 

outcomes remind unchanged is known as the Bernoulli model.  

In a succession of ݊ Bernoulli trials number of successes can be 0, 1, … , ݊. If  and ݍ = 1 −  are 

the probabilities of success and failure correspondingly, then the probability that the ݊ Bernoulli trials 

result in t success, exactly, equals ܾ(ݐ, ݊, ( =  ି௧. By this we obtained the probability of theݍ௧௧ܥ

random number ݐ of successes in ݊ Bernoulli trials that is known as the binomial probabilistic model. 

The maximum of ܾ(ݐ, ݊, ,ݐ)ܾ goes from 0 to ݉ the probability ݐ we call the central term. It is easy to check that when ݐ by ( ݊,  first increase monotonically to the central term and then it decrease. The (

central term reaches at ݐ = (݊ + (1  and ݐ − 1  when these are integer, and at [(݊ +  [(1
otherwise. 

In numerical applications of Bernoulli trials, as a rule, ݊ is large and  is small with the product ߣ =  ݊

of a moderate magnitude. Consider the formula 

ି௧ݍ௧௧ܥ  = ݊(݊ − 1)… (݊ − ݐ + !ݐ(1 ௧(1 −  .ି௧(
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Let ݐଶ = ݊)݊ then ,(݊) − 1)… (݊ − ݐ + 1)~݊௧ and (1 − ି௧~(1( − ,ݐ)ܾ ~݁ି, and( ݊, ( = ~ି௧ݍ௧௧ܥ !ݐ௧ߣ ݁ିఒ. 
 

The right part of the last line determines the well-known Poisson probability distribution. The distribution, 

as demonstrated, is a convenient approximation to the binomial distribution.   

 

Let ߦ be the random integer variable. The expected value ܧ	(ߦ) or mean and the variance ܸܽݎ	(ߦ) 
can be computed as  

[ߦ]	ܧ  = ∑ t ∙ Pr	(ߦ = ௧(ݐ  and ܸܽݎ	[ߦ] = ∑ (t − E	[ξ])ଶ ∙ Pr	(ߦ = ௧(ݐ . 

  

We differentiate several types of convergences of random variables. Let ߦ  be a sequence of random 

variables, and let their distribution functions be ܨ(ݔ), respectively. 

The first notion of convergence of a sequence of random variables is known as convergence in 

probability. The sequence ߦ  converges to a random variable ߦ in probability, denoted ߦ → < if for any ߦ 0 lim→ஶ Pr ߦ|)	 − |ߦ < (ߝ = 1. 

Note that this does not say that the difference between ߦ  and ߦ becomes very small. What converges 

here is the probability that the difference between ߦ  and ߦ  becomes very small. It is, therefore, 

possible, although unlikely, for ߦ  and ߦ to differ by a significant mount and for such differences to occur 

infinitely often. 

A stronger kind of convergence, which does not allow such behavior, is called almost sure convergence 

or strong convergence. A sequence of random variables ߦ  converges to a random variable ߦ almost 

surely, denoted ߦ ௦→ ߝ	if for any ߦ > 0 lim→ஶ Pr 	(supஹ|ߦ − |ߦ < (ߝ = 1. 

  

Finally we like to remind the classical continuity theorem of distributions. 
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Suppose that for any fixed ݊ the sequence  ܽ,, ܽଵ,, ܽଶ,, …  

is a probability distribution of ݊-th trial, that is, ܽ, ≥ 0 and ∑ ܽ,ஶୀ = 1. 

In order that a limit ܽ = lim→ஶ ܽ, exists for every ݇ ≥ 0 it is necessary and sufficient that 

the limit (ݏ)ܣ = lim→ஶ ܽ, ∙ ஶୀݏ  

exists for each ݏ in the open interval 0 < ݏ < 1. In this case (ݏ)ܣ = ܽ ∙ ஶୀݏ . 
 

Inequalities: First and Second Moment Methods. 

We review some inequalities that play a considerable role in probabilistic analysis of algorithms. In 

particular, we discuss first and second moment methods that are ‘bread-and-butter’ of a typical 

probabilistic analysis. 

 

Markov Inequality: For a nonnegative random variable ߦ  and ߝ > 0  the following holds: Pr	(ߦ ≥ (ߝ 	≤ ா(క)ఌ . 

Indeed: let ܫ	(ܣ) be the indicator function of ܣ (i.e., ܫ	(ܣ) 	= 	1 if ܣ occurs, and zero otherwise). Then, ܧ	[ߦ] 	≥ ߦ)	ܧ ∙ ߦ)	ܫ ≥ ((ߝ 	≥ ߝ E(ܫ	ߦ) ≥ (ߝ = εPr(ߦ ≥  .(ߝ
 

Chebyshev Inequality: If one replaces in the Markov inequality ߦ  by |ξ − E	[ξ]|  then Pr(|ξ − E	[ξ]| > (ߝ 	≤ 	(క)ఌమ . 

 

A. The problem 
 

Our investigation, in general, belongs to the combinatorial theory of finite and constraint set systems 

described above. Doing this r we will construct and investigate probabilistic models complementary to 

the combinatorial analysis, intending to achieve in an alternative way to gain the necessary knowledge 

on structures and properties of these set systems – of subsets of E୬ representing the set systems of a 

universal ݊ -element set. In this way we face 2 basic problems: first is how to obtain meaningful 

postulations over the probabilistic models, and second is how to transfer this knowledge to the 
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combinatorial domain of the basic addressed problems. To give an expression about the structures and 

properties it is enough to note the following. Erdős and Rényi [1-2] initiated the domain of random 

graphs but they considered a larger domain of set systems with different properties: constrained 

intersection, special coverage and others.  

Glagolev [5] initiated the probabilistic study of Boolean functions through the description of sub-cubes of 

the truth domain.  

Aslanyan and Akopova (Arsenyan) [11-21] applied the probabilistic technique to the domain of discrete 

isoperimetry.  

The Hungarian and Russian scientific schools were the well-recognized centers of intensive use of 

probabilistic models of combinatorics. 

B. The model 
Probabilistic model of a combinatorial problem consists the set of all structures of the problem and 

extends probabilities on this set. Allocate probabilities to the variables that are generating the ݊ -

dimensional unite cube. Boolean functions will appear with corresponding probabilities. If we allocate 

probabilities to the vertices of ܧ to be the truth-value of random Boolean function ݂, then Boolean 

functions will appear with different probabilities. The probabilistic models that are used in combinatorics 

is very large. For the beginning, in our study of random discrete tomography we will use one of these 

models. 

 

The probabilistic model ै୮୯. 

 

Consider random Boolean ݉ × ݊ matrix ܴ generated in the result of evaluation of column variables ݔ, ݆ = 1,⋯ , ݊, that independently and identically (i.i.) attain values 1 and 0 with respective none-zero 

probabilities  and	ݍ = 1 − . The number of all matrices that will be generated in this scheme is 2  (this is the set of all possible ݉ × ݊ matrices) and the probability of a particular matrix being 

generated is tightly related to the number of “1” values in its columns. Consider a matrix, and let its 

column weights are as ,ଵݏ	 ,ଶݏ … , ݏ , then, the probability of this matrix in ै୮୯  is equal to ∏ ି௦ೕୀଵݍ௦ೕ . There are ∏ ୀଵ	௦ೕܥ  different matrices with column weights	ݏଵ, ,ଶݏ … ,   so that theݏ

probability that the random matrix obey column weights ݏଵ, ,ଶݏ … ,   equalsݏ

 



International Journal “Information Theories and Applications”, Vol. 23, Number 3, © 2016 

 

210

ෑܥ௦ೕ௦ೕݍି௦ೕ
ୀଵ . (2.4) 

It is convenient to consider this probabilistic model as a process, where ݉ vertices i.i. distributed, as it is 

defined above, are dropped onto the	ܧ. Vertices can appear repeatedly and only in cases when there 

are no vertex repetitions we receive an ݉-subset of the ܧ (vertices given by the rows of the matrix). In 

an approach, -- the indicator to the existence of such row different matrices can be the related nonzero 

probability - in the given model ै୮୯.  

 

In a special case we will suppose that  = ݉,݊ /݉ and intend to prove asymptotically, whenݏ → ∞ 

the following:  ܼ1. Probabilities that column sums are equivalent/equal to ݏଵ, ,ଶݏ … , ݏ  are positive and/or 

tend to 1. ܼ2. Probability that all rows are different tends to 1, or is straightly grader than 0. 

Consider an arbitrary column	݆. Let ܯ and ܦ be the average value and the dispersion of the random 

weight of column	݆ . We will treat ܼ1 and ܼ2 on this probabilistic basis, and will also combine the 

problems ܼ1 and ܼ2. 

Additionally we will consider the issue: ܼ3. Probability that a random set of ै୮୯ is a Sperner Family (SF) is positive under the special 

constraints. 

 

Alternatively, several more probabilistic models besides the ै୮୯ can be involved into this study but we 

postpone this for the continuation. 

 

C. The technique 
 

The technique used in this domain is diverse. The first step in many studies is the calculation of 

averages for the target properties. The main value shows the existence of a value that is greater 

(smaller) than this value. Proving the existence of certain types of structures is achieved by showing that 

the averages/probabilities are positive. Next group of considerations are in computation and use of the 

second moments. By the Chebyshev inequality, when the main value and the variance are appropriate, 

conclusions are made in terms of probabilistic convergences, in particular in terms of “almost all” 
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structures. Another scheme is in use of the means of convergences of probabilistic distributions. In 

particular, this is through the estimation of factorial moments of random numbers, and then the 

continuity of distributions in a couple of cases brings us to the resulting Poisson or some other 

distribution. For example, this is the case of the random number of isolated truth-values of the random 

Boolean functions. 

D. Example 1. Positive probability implies the existence. 
In a simplest application of the probabilistic method to prove that a structure with the desired properties 

exists we define an appropriate probability space and then show that the desired properties hold in this 

space with positive probability. Our first example belongs to this case. We also decided the first example 

to be graph theoretical. 

 Let ܩ = (ܸ, ݊ be a graph with (ܧ  vertices and ݉ edges. Then ܩ  contains a bipartite sub-
graph with at least ݉/2 edges.  

The proof of such proposition is very simple. It is to generate random subsets ܺ  of vertices with (ܺ߳ݒ)ݎ = 1/2. Then the average of number of edges linked to ܺ is equal to ݉/2, which implies the 

existence of the desired bipartite graph. Continue applying this construction recursively, we see that the 

graph edges will expire in ݈݉݃ steps. We see an interesting extension of the “bisection” principle in a 

form - applicable to the arbitrary graphs. 

E. Example 2. Probability distributions with the Chebyshev inequality give the asymptotics. 
Next to the “positive probability” level model it comes the model based on second probabilistic 

moments. Let us bring an example from the field of Boolean functions. Consider ordinary Boolean 

functions. We intend to derive the complexity asymptotic formula ݏ(݂) of reduced disjunctive normal 

form of random Boolean functions. Consider the appropriate model. Let the “thru” values are generated 

randomly and uniformly on Boolean vertices by probability  . For the average number of the ݇ 

dimensional prime sub-cubes we obtain the formula 

݅(݊, ( = ݉(݅(݂)) = ଶೖ(12ିܥ −   denote the so called “directions” of the ݇-sub-cubes. On these directions the second probabilisticܥ .ଶೖ)ି

moments are calculated: 

݀(݅(݂)) = 2ିଶೖ(1 − ଶೖ)ି + ିଶܥ 2ିଶೖశభ(1 − −ଶೖ)ଶ(ିିଵ) (1 + (݊ − ݇) + ିଶܥ ିଶܥ( 2ିଶೖశభ ቀ1 −  .ଶೖቁଶ(ି)
Then, continuing with the use of the Chebyshev inequality we obtain that simultaneously in all ܥ 

directions with the probability tending to 1, and ݊ → ∞, ݅(݂)~݉(݅(݂)).  
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Let  = 1/2. There is a unique integer point ݇  of maximum of the function ݅(݊, ( . The result 

achieved says that for a random Boolean function, with probability tending to 1 with ݊ → ൫݅బ(݂)൯݉~(݂)ݏ ∞ + ݉൫݅బାଵ(݂)൯.	
F. Example 3. Continuity theorem helps to describe the types of the Boolean functions. 
Consider the next model according to the continuity theorem of the generating functions of factorial 

moments. We construct the model around the well-known discrete isoperimetry problem. 

As usual, we denote the set of points of the ݊-dimensional unite cube by ܧ. For a subset ܣ ⊆   weܧ

call a point ߙ interior if ଵܵ(ߙ) 	⊆  in Hamming ߙ is the sphere of radius 1 with centre (ߙ)where ଵܵ ܣ

metrics ߩ. Let ܤ	(ܣ) denote the set of all interior points of the subset ܣ. Γ(ܣ) = ܣ −  is called (ܣ)ܤ

the boundary of the subset ܣ. 

Discrete isoperimetry is the problem of finding the value  Γ(a) = min⊆ா,||ୀ|Γ(B)| 
for given ܽ, 0 ≤ ܽ ≤ 2. 

For the ratio ߬  of the subsets ܣ ⊆ ܧ  with |ܣ| = (1 − 2ିଵ(݊(݊)ߙ  and ݇  interior points the 

following holds: 

߬ → 1݇! ቆ݁ఒ2 ቇ ݁ିഊଶ  

if lim→ஶ ݊(݊)ߙ = ݇) ߣ = 0,1,2, … ). 
Random Discrete Tomography 

 

G. Series of compound trials. 
 ै୮୯, is one of considered probabilistic distribution schemes over the set ܧ. Let ݔଵ, ,ଶݔ … ,   be theݔ

generating binary variables of ܧ . Consider a compound trial, where the variables ݔଵ, ,ଶݔ … ,  ݔ

independently of each other accept values 1  by corresponding probabilities ଵ, ,ଶ … ,  . By the 

complementary probabilities ݍ = 1 − , ݅ = 1, ݊തതതതത  these variables accept the value 0. Series of ݉ 

such compound trials will be considered. Here, in particular, the random ݔ  remain under the same 

distribution throughout the sequence of compound trials, and, because of in each trial there are only two 
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possible outcomes and their probabilities are unchanged, we deal with the Bernoulli trials at ݅ = 1,2, … , ݊. We use a compound trial consisting of ݊ variables and get one vertex of ܧ  as the 

outcome of each compound trial.  

 

Consider ݔ ∈  in the model ै? Since the ݔ . Which is the probability of appearance of this vertexܧ

individual variable trials in a compound trial are independent, the probabilities of individual variables 

multiply. In order to calculate the probability of the vertex ݔ  it is to take the product obtained on 

replacing the symbols 1  and 0  by p and q (depending on ݅ ), respectively. Doing ݉  sequential 

compound trials generates a distribution over the multi-sets on ܧ.  

 

H. The column weight probability and the average column weight. 
 

Consider the random variable ߦ representing the number of 1’s in the column ݆ (we call it also column 

sum, weight, projection) in the model ै୮୯. The probability of the value ߦ in the random matrix ܴ 

equals  

ିకೕݍకೕకೕܥ   (3.1) 

On this base for the expectation of the weight of column ݆ we obtain the formula 

 

ܯ = ൯ߦ൫ܯ =ܥݐ௧ ௧
௧ୀ ି௧ݍ =ݐ !ݐ!݉ (݉ − !(ݐ ௧

௧ୀଵ ି௧ݍ
= ݉ (݉ − ݐ)!(1 − 1)! (݉ − 1 − ݐ) − 1))! ௧

௧ୀଵ 	.ି௧ݍ
 

Substituting ݑ = ݐ − 1 we obtain 

 

ܯ = ݉  ିଵ௨ିଵܥ
௨ୀ ିଵି௨ݍ௨ =  .݉

For example, when  = ݍ = 1/2  we receive parameters of the usual homogeneous model of 

random Boolean functions on	ܧ that are easy interpretable. In the weighted model, the overall average 
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sums by the set of coordinates/columns will be ݉ଵ,݉ଶ,…  . And in utilization of݉, = ௦ೕ , ݆ =1,⋯ , ݊ we obtain that the average columns sums vector equals to ݏଵ, ,ଶݏ … ,  . In this concern theݏ

model ै୮୯ is the most convenient to the problem ܼ1. But it does not fit well to the requirements of ܼ2. 

 

At this point we have 2 known parameters – the probability of the given column weight and the average 

value of the weight. The column weight ݐ probability ܥ௧  ି௧ forݍ௧ = ௦ೕ is straightly greater than 0, 

which indicates the existence of construction with this weight ݐ. Although trivial, this same postulation 

does not follow from the notion of the main value. The main value instead shows that a greater and/or 

lesser values (an integrative event) exist. These notes are applicable also to compound values because 

of the independency of the coordinates.  

 

I. The column weight variance. 
 

The additional use of the variance in model ै୮୯ brings more points. Combined with the Chebyshev 

inequality this gives intervals around the values ݏ with a property that the random sums belong to these 

intervals (to polyhedrons) with a strongly positive probability.  

 

Let us compute the variance of ߦ. There are 2 ways. One is in direct use of formula ܦ = ଶ൯ߦ൫ܯ ߦ)ߦ൫ܯ ଶ. But, there is an easier way of computingܯ− − 1)൯, having in mind that ܯ൫ߦ(ߦ − 1)൯ ଶ൯ߦ൫ܯ= −  .൯. The benefit of this choice is seen belowߦ൫ܯ ൯ and that we already computed theߦ൫ܯ

 

ߦ)ߦ൫ܯ − 1)൯ =ݐ)ݐ − ௧ܥ(1 ௧
௧ୀ ି௧ݍ =ݐ)ݐ − 1) !ݐ!݉ (݉ − !(ݐ ௧

௧ୀଶ ି௧ݍ
= ݉(݉ − 1) (݉ − ݐ)!(2 − 2)! (݉ − 2 − ݐ) − 2))! ௧

௧ୀଶ  .ି௧ݍ
 

Performing substitution ݑ = ݐ − 2 we obtain 

 

ߦ)ߦ൫ܯ − 1)൯ = ݉(݉ − 1)  ିଶ௨ିଶܥ
௨ୀ ିଶି௨ݍ௨ଶ = ݉(݉ −  .ଶ(1
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Substituting the values finally we obtain that 

ܦ  = 	݉(݉ − ଶ(1 + ݉ − ൫݉൯ଶ = ൫1݉ − ൯ =  .ݍ݉
 

By the Chebyshev inequality we obtain the following probability estimate: 

 ܲ	(หߦ − หܯ ≥ (ܯߝ ≤ ଶܯଶߝܦ = ଶଶ݉ଶߝݍ݉ =  . (3.1)ଶ݉ߝݍ

 

Let ߝ → 0 with ݉ →   may depend on ݉, but let they  have the same order. It is easy to  andݍ .∞

choose ߝ in a way that 
ଵఌమ → 0. So the probability of the event P	 (หߦ − หܯ <  tends to 1 and	)ܯߝ

the relation achieved says, “with probability tending to 1 the random weight ߦ is equivalent to ܯ”. So, 

the probability, that the random variable ߦ of the component ݆ is equivalent to its average value ݉ 
when ݉ → ∞, is tending to 1.		
J. Analysis of compound trials. 
 

Consider series of ݉ compound trials by the model ै୮୯ . Because of the component probabilities ଵ, ,ଶ … ,   in ै୮୯ act separately/independently, we have that any set of events, each defined in

terms of one individual coordinate probability are totally independent. Denote the event หߦ − หܯ ܯߝ≤ 	by	 ℧ 	and consider the compound event	 ℧ = ℧ଵ ∪ ℧ଶ ∪ …∪ ℧ .	 Then, by (2.1) 	ܲ	൫℧൯ ≤ ∑ ܲ	൫℧൯ୀଵ .	Denote the event	หߦ − หܯ < 	,ܯߝ complementary to	℧	as	¬℧.	Then for	¬℧ = ¬℧ଵ ∪ ¬℧ଶ ∪ …∪ ¬℧	it is true that	ܲ	൫¬℧൯ ≤ ∑ ܲ	൫¬℧൯ୀଵ .	These relations are true 

for arbitrary sets of events.		
Events ℧ are independent by the notion above, and all they have the same structure of the probability. 

In this way, if ℧ = ℧ଵ ∩ ℧ଶ ∩ …∩ ℧, then ܲ	൫℧൯ = ∏ ܲ	(℧)ୀଵ . Also the events ¬℧ are totally 

independent so that for ¬℧ = ¬℧ଵ ∩ ¬℧ଶ ∩ …∩ ¬℧  it is valid the expression ܲ൫¬℧൯ = ∏ ܲ	(¬℧)ୀଵ . 
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By ै୮୯ we have a very peculiar model that gives us more useful relations: 	ܲ 	൫℧൯ = 1 − ∏ ቀ1 − ܲ	൫℧൯ቁ = 1 − ∏ ܲ	൫¬℧൯) = 1 − ܲ൫¬℧൯ୀଵୀଵ   

and  ܲ൫¬℧൯ = 1 −∏ (1 − ܲ	൫¬℧൯)ୀଵ = 1 − ∏ ܲ	൫℧൯ = 1 − ܲ	൫℧൯ୀଵ . 

 

We proceed to derive the “compound” generalization of point III.C. We use the set of Chebyshev 

inequalities for coordinates: ܲ	൫℧൯ = ܲ	൫หߦ − หܯ ≥ ൯ܯߝ ≤ ଶܯଶߝܦ =  .ଶ݉ߝݍ
Let us mention also the equivalent forms ܲ	൫¬℧൯ = ܲ	൫หߦ − หܯ < ൯ܯߝ ≥ 1 − ଶܯଶߝܦ = 1 −  .ଶ݉ߝݍ
Note that ℧ means that there exists a more that ߝ divergence from the main value at least in one of the 

coordinates. And ¬℧ denotes the event wherein simultaneously in all coordinates deviations are less 

than ߝ. Concluding, -- our aim is to find the conditions when ܲ	൫℧൯ is small and/or when ܲ൫¬℧൯ is 

large (which is the same in our case of ै୮୯). 

 

Start with ܲ	൫℧൯ ≤ ∑ ܲ	൫℧൯ୀଵ .  Substituting inequalities ܲ	൫℧൯ ≤ ೕఌమೕ  into this formula we 

receive 

 ܲ	൫℧൯ ≤ ଶ݉ߝ1 ൬ݍଵଵ + ଶଶݍ + ⋯+ ൰ݍ ≤ ଶ݉ߝ݊ maxଵஸஸ 1ݍ − maxଵஸஸ  .ݍ
To get an applicable result let us suppose that 

ఌమ∙ → 0 asymptotically and that all factors 
  are 

limited. In these conditions we receive that in the model ै୮୯, having a series of ݉ trials, the probability 

of a sensitive deviation from the mean value, -- at least in one of the coordinates tends to 0.   

 

We may also use the formula ܲ	൫℧൯ = 1 − ∏ ܲ	൫¬℧൯)ୀଵ  complemented with the ܲ	൫¬℧൯ ≥ 1 −ೕఌమೕ. To get an applicable postulation from this, it is to require that 
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ߣ =ෑ (1 − )ୀଵଶ݉ߝݍ → 1. 
 

ߣ ≥ෑ ቌ1 − maxଵஸஸ ଶ݉ߝݍ ቀ1 − maxଵஸஸ ቁቍୀଵݍ = ቌ1 − maxଵஸஸ ଶ݉ߝݍ ቀ1 − maxଵஸஸ ቁቍݍ
. 

 

Apply the following formula: if 0 ≤ ݔ ≤ 1/2 and 0 ≤ 1)ݔ−)then exp ,ݕ − (ݕ(ݔ ≤ (1 −  ௬. We(ݔ

get 

ߣ ≥ exp൮− ݊ ∙ ଵஸஸݔܽ݉ ଶ݉ߝݍ ቀ1 − ଵஸஸݔܽ݉ ቁቌ1ݍ − ଵஸஸݔܽ݉ ଶ݉ߝݍ ቀ1 − ଵஸஸݔܽ݉  .ቁቍ൲ݍ
 

We arrived to the same condition. To get an interpretable result it is to suppose that 
ఌమ∙ → 0 

asymptotically, and that all factors 
 are limited. In these conditions we receive that in the model ै୮୯, 

having a series of ݉ trials, the probability of a sensitive deviation from the mean value in at least in one 

of the coordinates tends to 0.   

 

Recall out main target. Our interest is in a situation when column weights of an ै୮୯ random matrix are 

close to the given ݏଵ, ,ଶݏ … , ݏ , and the rows of the matrix are all different. Ideally, ݊ ≥ logm is 

“satisfactory” for the row difference. And 
 limited is also an acceptable condition (but not necessary), 

because of this is the case when each column participates in row differentiation. 

 

This is our result for the point ܼ1. The domain described by the above intervals is a rectangular area in 

the space of all sum vectors space ߌ  and the achieved property insists that there exist a proper 

random sum vector that belongs to the indicated rectangular area. Setting ݏଵ, ,ଶݏ … ,   arbitrarily, weݏ

receive corresponding rectangular area of different size and probability (it can be also empty). Unless 

attractive, the property in this form is not yet useful, because of we do not know if the rows of random 

matrix that are different in this case. 	
The strategy at this point is: 	
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 independent coordinates run in ݉-dimensional unit cubes each. If to consider the most transparent ݊ :ߙ

case  = ଵଶ, then ݉-column-evaluations are equally probable with probability 
ଵଶ. If ݏ = ݉/2, then 

there are ~2/√݉ evaluations with this ݏ and the concluding probability is 1/√݉ in one direction, 

and, -- ݉ି/ଶ in integration by the ݊ coordinates. This is a small value, but still positive, that shows the 

existence of ݏ-weighted vectors. All weights are possible but probabilities are different. And ݏ is the 

central term of this distribution.  

 The situation with low probabilities can be softened a bit. The way is in considering the equivalency :ߚ 

classes to the ݏ vectors [12-29]. For simplicity consider the n-cube when m is odd. This gives a 2 

multiplier (the size of the equivalency class) to the probability that now becomes ݉ଵି/ଶ. Here we 

suppose (by bisection) that that the most acceptable value is close to the ݊ = logଶ ݉. This is a higher 

probability but the difference is not sensitive. The next step forward is:  

 For each coordinate consider an interval of length √݉. In the composed rectangular area there will :ߛ 

be ݉/ଶ points and this gives a constant probability to the considered event.  But this may only speak 

about the existence of a point nearby the vector ݏ, in a rectangular area. 

 

The further idea is to find a type of independency between the events related to the weights ݏ, and the 

events of the row-difference. It is also to be able to apply the part of proof on row-difference to the parts 

of distribution by the weights, or to its central term, which we adopt to be the compound weight ݏ. 

 

K. The row differences model. 
 

This point deals with the model ै୮୯ considering random matrices ܴ obtained by ै୮୯, evaluating 

probability of matrices under the constraint of having no repeated rows. For an arbitrary matrix ܴ we 

generate a correlated with it matrix ܦమ , that consists of all comparisons of pairs of rows of ܴ in 

the following way [6]. ܦమ   consists of ݉ − 1  separate parts, ݊ -column sub-matrices, which are 

concatenated vertically. First sub-matrix has ݉ − 1  rows that represent coordinate wise ݉2݀ 

summations of the first row of ܴ  with the reminding rows 2,3, … ,݉. Denote this sub-matrix by ܦ(ିଵ)	. The next sub-matrix ܦ(ିଶ)	 is composed by ݉ − 2 rows generated from ܦ(ିଵ)	 in the 

same way (first row with other rows). The last group (݉ − 1) will be a 1-row matrix, ܦ൫ି(ିଵ)൯  .ଵܦ=
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ܴ  and ܦమ   are straightly related to each other by the following important properties. Rows ܦ߳ݎమ  correspond to pairs of rows of the matrix ܴ in a way that if ݏ is the number of sub-matrix the 

row ݎ belongs to, and ݐ is the sequential number of this row in ܦ(ି௦)	, then ݎ have the property:  

 The “1” value in a coordinate of ݎ corresponds to the “difference” in the row pair (ݏ,  of ܴ (ݐ

in that coordinate, and  

 The norm of ݎ represents the Hamming distance of rows ݏ and ݐ.  
These notes may have one more important interpretation:  

 ܴ consists of all different pairs of rows if and only if ܦమ  does not include the row with all 0 

coordinates. 

 

The notes are reducing the problems with conditions of “difference” of all pairs of rows - to a specific set 

cover problems, with cover sub-sets composed from the rows of matrix ܦమ  . In terms of ܴ 

“differences” must cover all pairs of rows. If to recall that the columns of ܴ are weighted, then the 

“differences” introduced by an individual column compose a bipartite graph, so that in fact the appearing 

set cover interpretation is very much specific and it works with a cover by a set of ݊ bipartite graphs. 

Also it is to mention that when ܴ  is a random matrix constructed directly, then its ܦమ   is a 

secondary construction, it is not given and not visible, so there is no direct way to check if it contains the 

all 0 row or not. Two frames are used to estimate the probabilities of matrices that have no repeated 

rows. 

 

 Different Coordinates. Firstly, we prove that in the considered random generation columns of ܦమ   and its sub-matrices homogeneously appear with high weights (that represent row 

differences). Then we use the greedy estimation of the columns that are able to cover the rows 

of ܦమ  – in this way they cover all pairs of initial rows and the rows appear different.  

 Different Vectors. In a second approach we study the probabilities of pairs of rows to be 

different. Extending this property to all pairs we get a lower estimate of the probability that ݉ 

random rows are all different. This is valid/acceptable for some constraints over the ݉ and ݊.  

And of course we follow with combining the postulations of this section with the ones about the 

column weights to get the proper estimations for the discrete tomography problem. 
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Different Coordinates 

Next random variable of our consideration is the number of different coordinates in the pairs of rows. 

The expected number of different coordinates in the pairs of rows in the one-column model (having only 

one coordinate) can be calculated as: 

 

ݐ(݉ − ௧ܥ(ݐ ௧
௧ୀ ି௧ݍ =  ݉)ݐ − ௧ܥ(ݐ ௧ିଵ

௧ୀଵ ି௧ݍ = ݉(݉ − ݍ(1  ିଶ௧ܥ ௧ିଵିଶ
௧ୀ ିଶି௧ݍ

= ݉(݉ −  .ݍ(1
 

Probabilities of random difference of coordinates are computed and estimated in a regular way, and 

their use is tightly correlated to the matrix ܦమ . The idea here is to follow the property of ܦమ  to 

have 1’s in rows having large values of the coordinate differences. Details of this part partially repeat the 

above narration and preferred to be a subject of a separate publication. 

 

Different Vectors  

Let us consider the random variable ∆, -- the number of different pairs of rows in the matrices at the 

model ै୮୯.  

Let ܴଵ,… , ܴ, … , ܴଶ  are all ݉ × ݊ matrices that may appear randomly at the model ै୮୯ . Let 	(R) is the probability of R, and let ∆ is the number of “different” pairs of rows in R. Then the 

main value of the number of “different” pairs of rows at the random outcome of ै୮୯ can be presented 

as: ܯ(∆) =  ೖै౦౧ୖ(R) ∙ ∆. 
 

It is imperceptible how (R) and ∆ can be brought to a concise computable form. To simplify the 

formula we consider the following standard [5] “bipartite” scheme: 
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Right side vertices ܿ  represent all pairs of rows in the ݉ × ݊ matrices, listed in some fixed order. 

Edges, in this bipartite graph scheme connect ܴ and ܾ iff the pair ܾ in ܴ is “different” (consists of 

different rows). Vertex degrees at all ܾ constantly are equal to 2(2 − 1). But edges are weighted, 

and the weight of link between ܴ and ܾ represents the probability that ܾ as a “different” pair appears 

in ܴ. 

Consider an arbitrary pair of random rows. The probability that for a particular ݆-th coordinates on the 

considered pair of rows are identical is evidently ଶ + ଶ. Due to 1ݍ =  + ݍ  it is true that ଶ ଶݍ+ = 1 − ݍ2  so that this forms will be equivalently exchanged in need in our narration. The 

probability that the entire rows are identical (all coordinates) equals to ∏ ൫1 − ൯ୀଵݍ2  and the 

complementary probability that this rows are different will be some ߙ = 1 −∏ ൫1 − ൯ୀଵݍ2  (for 

example when  = ݍ = 1/2 then we receive the well known ߙ = 1 − ଵଶ). We obtained that the 

probability that arbitrary ܾ  to be “different” is equal to 1 − ∏ ൫1 − ൯ୀଵݍ2  and finally, for the 

average number of “different” pairs of rows we obtain the following concise formula: 

 

(∆)ܯ =  ೖै౦౧ୖ(R) ∙ ∆= ଶܥ ቌ1 −ෑ൫1 − ൯ݍ2
ୀଵ ቍ. 

 

In a similar way we may obtain the formula for the variance of ∆. By the definition 
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(∆)ܦ =  ೖै౦౧ୖ(R) ∙ ∆ଶ. 
 

We apply again the formula ܦ(∆) = ଶ∆)ܯ ) − ൫ܯ(∆)൯ଶ . And consider an analog of the 

bipartite scheme with random matrices. Matrices ܴଵ,… , ܴ, … , ܴଶ appear by the scheme ै୮୯ with 

the probabilities (R).  
 

 

Right part vertices ܿ correspond to all pairs of pairs of vertices of matrices. First to note is the formula 

ଶ∆)ܯ  ) =  ᇲ,ᇲᇲ(ᇲ,ܿᇲᇲܿ) . 
Split the set of all pairs ܾᇲ,ܾᇲᇲ into the classes: 

 At first – consider the class of the pairs (pairs of pairs of rows) of the type ܾ, ܾ. Number of this 

pairs is ܥଶ  and they all have the probability of “difference” 1−∏ ൫1 − ൯ୀଵݍ2 . 

 The largest group consists of pairs ܾᇲ  and ܾᇲᇲ that have no common row. Number of this pairs 

is ܥଶ ିଶଶܥ  and they have probability of difference: 1 − ∏ ൫1 − ൯ଶୀଵݍ2 . 

 The last group of pairs includes the 2 pairs of rows with one common row. Number of these 

fragments is equal to ܥଶ 2(݉ − 2) = ݉	(݉ − 1)(݉ − 2). And the probability of difference 

is: 1 − 2∏ ൫1 − ൯ୀଵݍ2 + ∏ ൫ଷ + ଷ൯ୀଵݍ . 
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Combining into the general formula we obtain 

 

ଶ∆)ܯ ) = ଶܥ ቌ1 −ෑ൫1 − ൯ݍ2
ୀଵ ቍ + ଶܥ ିଶଶܥ ቌ1 −ෑ൫1 − ൯ଶݍ2

ୀଵ ቍ
+ ଶܥ 2(݉ − 2)ቌ1 − 2ෑ൫1 − ൯ݍ2

ୀଵ +ෑ൫ଷ + ଷ൯ݍ
ୀଵ ቍ 

(3.2) 

 

We aim to apply the Chebyshev inequality. To obtain a “for almost all” type result it is to prove that with ݉, ݊ → ∞ it is true that 
ఌమெమ → 0. In this case we check if 

ெమ → 0 and then it is simple to take a 

proper ߝ, ߝ → 0  and this proves the required “almost all” type result. Consider the proposition ெ൫∆మ ൯(ெ(∆))మ → 1  that is equivalent to 
ெమ → 0 . For  = ݍ = 1/2  the sub-formula ∏ ൫1 −ୀଵ2ݍ) = 2ି so that it tends to 0. In our case of arbitrary probabilities , sub-formula ∏ ൫1 −ୀଵ2ݍ) exceeds 2ି but it is acceptable to seem that ∏ ൫1 − ൯ୀଵݍ2 → 0. In this case it is easy 

to be convinced that the first and the last summands of ܯ(∆ଶ ) are ߧ	(ܯଶ). For the analysis of the 

midterm, let us note that  1 − ∏ ൫1 − ൯ଶୀଵ൫1ݍ2 − ∏ ൫1 − ൯ୀଵݍ2 ൯ଶ = 1 + ∏ ൫1 − ൯ୀଵ1ݍ2 − ∏ ൫1 − ൯ୀଵݍ2 = 1 + 2∏ ൫1 − ൯ୀଵ1ݍ2 − ∏ ൫1 − ൯ୀଵݍ2 . 
 

Having this and ∏ ൫1 − ൯ୀଵݍ2 → 0 we conclude that the request 
ெమ → 0 is valid and that the 

Chebyshev inequality lets us to obtain the required “almost all” type postulation for the random number 

of the “different” rows at ै୮୯. Denote 

߯ =ෑ൫1 − ൯ݍ2
ୀଵ . 

 

Note 1.:  ܯ(∆) have the form ܥଶ (1 − ߯) with ߯ → 0. Consider the case when ܥଶ ߯ → 0. As this 

is the average number, there must be an outcome of trial, -- the matrix ܴ, so that the offset number of 

different rows is ≤ ଶܥ ߯. As ܥଶ ߯ becomes < 1 this means a trivial thing – existence of an ݉-sub-set 

of the cube. Markov inequality does not help as well. 
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Claim 1.: Now we involve the variance into the game. By the Chebyshev inequality we have  

ܲ	൫|∆ − |(∆)ܯ > ൯(∆)ܯߝ ≤  ൯ଶ. (3.3)(∆)ܯଶ൫ߝ(∆)ܦ

 

Consider the complementary to the |∆ − |(∆)ܯ ≥  event, and rewrite the inequality (∆)ܯߝ

(3.3) in the form:  

 ܲ	൫(1 − (∆)ܯ(ߝ < ∆< 	 (1 + ൯(∆)ܯ	(ߝ ≥ 1 −  ൯ଶ(∆)ܯଶ൫ߝ/(∆)ܦ

 

and use its extension:   

 

ܲ	൫(1 − (∆)ܯ(ߝ < ∆൯ ≥ 1 −  ൯ଶ. (3.4)(∆)ܯଶ൫ߝ(∆)ܦ

In a way similar to the considerations of Note 1. we obtain that in proper selection of ߝ, and applying 

reasonable constraints on ߯ (this means – constraints on probabilities ଵ, ,ଶ … ,  ), we may ensure

that (1 − (∆)ܯ(ߝ > ଶܥ − 1. This implies that (3.4) estimates the probability of ∆= ଶܥ , i.e. 

the probability that the random ܴ will have all-different rows. 

 

Note 2. We conclude in 2 steps. First – we further estimate the formula in (3.4). Then we consider the 

probability estimates of ܴ  with weights ݏଵ, ,ଶݏ … , ݏ . We sum probabilities of these two events. 

When the sum becomes > 1 this implies that the two events are intersecting. Intersection means 

existence of a random outcome of trial ै୮୯  with weights ݏଵ, ,ଶݏ … , ݏ  and with all-different rows.  

Ignoring the probability of this integrative event and just requiring that it be positive, we obtain the 

statement on existence of constructions with weights ݏଵ, ,ଶݏ … ,  . and with different rowsݏ

 

Evaluate the right side formula of (3.4). We intend to add this formula to (2.4) finding out the conditions 

for this sum to be > 1. Then wee simply look for conditions of  
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ෑܥ௦ೕ௦ೕݍି௦ೕ
ୀଵ >  ൯ଶ. (3.5)(∆)ܯଶ൫ߝ(∆)ܦ

 

Our analysis is asymptotical, in ݊,݉	 → ∞. At this point we suppose that 
ெమ → 0 and in this condition 

we choose ߝ in a way that 
ఌమெమ → 0. We already checked these conditions for  = 1/2. Now let us 

consider the right side of (3.5). 

Apply ∏ ൫ଶ + ଶ൯ୀଵݍ ≥ ∏ ൫ଷ + ଷ൯ୀଵݍ  on the last term of (3.2), and combining the first ad last 

terms of this formula we obtain that this sum is: 

≤ ଶܥ (2݉ − 3)ቌ1 −ෑ൫1 − ൯ݍ2
ୀଵ ቍ = ܽ. 

 

Compose the following difference with the midterm of (3.2) 

ଶܥ) )ଶ ቌ1 −ෑ൫1 − ൯ଶݍ2
ୀଵ ቍ − ଶܥ ିଶଶܥ ቌ1 −ෑ൫1 − ൯ଶݍ2

ୀଵ ቍ
= ଶܥ (2݉ − 3)ቌ1 −ෑ൫1 − ൯ଶݍ2

ୀଵ ቍ = ܾ. 
 

Additionally, denote 

ଶܥ ିଶଶܥ ቌ1 −ෑ൫1 − ൯ଶݍ2
ୀଵ ቍ = ܿ. 

In (3.2) we want to delete the minor term ܽ keeping only the major term ܿ. The objective is in keeping 

(3.2) increasing or, -- in the same order. The mentioned change is possible due to ܽ ≪ ܿ. It is also 

challenging replacing ܿ by the term (ܥଶ )ଶ ቀ1 − ∏ ൫1 − ൯ଶୀଵݍ2 ቁ but this is not acceptable due to ܽ < ܾ. 

 

This analysis helps to correctly use the (3.5) for particular ଵ, ,ଶ … ,  . The concise estimation of (3.5)

can be done for some regular examples of ଵ, ,ଶ … ,  . Two things are to be elaborated: does the

probabilistic method bring some knowledge on tomography, and how accurate is this result. To get an 
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idea on the last point let us consider the example of  = 1/2 treating the case ݏ = ݉/2. Above, for 

this case we accepted the constraint ݉ଶ ≪ 2. That is, 2 log݉ ≪ ݊. It is evident that for ݏ = ݉/2 

and log݉ ≤ ݊ the required tomography matrix exist. So if successful the probabilistic method requires 

al least 2 times more columns to differentiate the rows. The hope is that for nontrivial ଵ, …,ଶ ,  , this

even in approximation, may bring an additional knowledge about the tomographic property. 

 

L. Sperner families. 
In a short note consider case of Sperner families. Many of the existence issues about the Sperner 

families are already resolved – the maximal Sperner family, almost all Sperner families, weighted 

Sperner families (by recursive apply of Kruskal-Katona theorem [60]). To understand the relation 

between the random sets and the Sperner property consider the bipartite graph with left side, including 

all ݉-subsets, and with right side, that consists of all pairs of comparable vertices of ܧ. Compute the 

average number of comparable pairs of vertices in all Sperner families: ߝ = ∑ ܥ ൫2 − 1൯ܥଶିଶିଶୀ ଶܥ = ݉(݉ − 1)2(2 − 1) (3 − 2) 
Let ݉ଶ = …1.333) ), n ⟶ ∞ then ߝ is nearly zero value that indicates that there exist a Sperner 

family of size	݉, or in more precise, that the random subset of this size is a Sperner family. 

Conclusion 

Considerations above intend to get an additional knowledge about the row-different matrices of the 

discrete tomography problem, using the probabilistic theory of combinatorics [1-21]. The objective is 

reasonable because the pure combinatorial approaches [22-77] are not able at the moment to give an 

efficient description of the column weighted row-different matrices. The probabilistic method gives 

knowledge on random subsets, which might be useful as a complementary knowledge about a different 

object or a situation concerned to discrete tomography. 

Bibliography 

1. Erdős P., Graph theory and probability, Canad. J. Math., volume 11, pp. 34-38, 1959, 

doi:10.4153/CJM-1959-003-9.MR 0102081. 

2. Erdős P., Rényi A., On Random Graphs, I, Publicationes Mathematicae, 6, pp. 290–297, 1959.  

3. Gilbert E. N., Random Graphs, Annals of Mathematical Statistics 30 (4), pp. 1141–1144, 1959.  

4. Erdős P., Rényi A., On the evaluation of random graphs, Publications of the Mathematical Institute of 

the Hungarian Academy of Sciences, V, pp. 17-61, 1960. 



International Journal “Information Theories and Applications”, Vol. 23, Number 3, © 2016 

 

227

5. Glagolev V., Some estimates of disjunctive normal forms in the algebra of logic, Problemy 

Kybernetiki (in Russian), vol. 19, Nauka, Moscow, pp. 75-94, 1967. 

6. Kospanov E., On algorithm of synthesis of rather simple tests, Discrete Analysis (in Russian), vol. 8, 

pp. 43-47, 1966. 

7. Нечипорук Э. И., О топологических принципах самокорректирования, Проблемы кибернетики, 

21, стр. 5-102, Наука, Москва, 1969. 

8. Дискретная математика и математические вопросы кибернетики. Т.1., М., Наука, 1974. 

9. Erdős P., Spencer J., Probabilistic Methods in Combinatorics, Akademia Kiado – Budapest, 1974. 

10. Alon N., Spencer J., The Probabilistic Method (3rd edition), Wiley-Interscience, 352p., 2008. 

11. Асланян Л.А., О сложности сокращенной дизъюнктивной нормальной формы частичных 

булевых функций. I., Ученые Записки, Естественные науки, ЕрГУ, 1, 1974, pp. 11-18. 

12. Асланян Л.А., О сложности сокращенной дизъюнктивной нормальной формы частичных 

булевых функций. II., Ученые Записки, Естественные науки, ЕрГУ, 3, 1974, pp.16-23. 

13. Асланян Л.А., О применениях сокращенной дизъюнктивной нормальной формы в задачах 

доопределения частичных булевых функций, Молодой научный работник, Естественные 

науки, ЕрГУ, 20(2), 1974, pp. 65-75. 

14. Асланян Л.А., Об одном методе распознавания, основанном на разделении классов 

дизъюнктивными нормальными формами, Кибернетика, 5, Киев, 1975, pp. 103-110. 

15. Асланян Л.А., Алгоритмы распознавания с логическими отделителями, Сборник работ по 

Математической кибернетике, вып. 1, ВЦ АН СССР, Москва, 1976, pp. 116-131. 

16. Асланян Л.А., И.А.Акопова, Докозательства некоторых оценок сокращенных дизъюнктивных 

нормальных форм булевых функций, Ученые Записки, Естественные науки, ЕрГУ, 1,1980, 

14-23. 

17. Aslanyan L.A., I.A.Akopova, On the distribution of the number of interior points in subsets of the n-

dimensional unit cube, Colloquia Mathematika Societatis Yanos Bolyai, 37, Finite and Infinite 

Sets, (Eger) Hungary, 1981, pp. 47-58. 

18. Асланян Л.А., О длине кратчайшей дизъюнктивной нормальной формы слабо определенных 

булевых функций, Прикладная математика, ЕрГУ, 2, 1982, pp. 32-42. 

19. Асланян Л.А., Дискретная изопериметрическая проблема - асимптотический случай, Доклады 

Академии наук, Арм.ССР, 74 (3), Ереван, 1982, pp. 99-103. 

20. Асланян Л.А., К вопросу минимизации систем слабо определенных булевых функций. 

Некоторые задачи автоматизации проектирования, SzTAKI, MTA, Tanulmanyok, 135, 

Budapest, 1982, pp. 51-86. 



International Journal “Information Theories and Applications”, Vol. 23, Number 3, © 2016 

 

228

21. Асланян Л.А., О единственности компактных булевых функций с точностью до изоморфизма, 

Working Paper, MTA SzTAKI,E/17 Budapest, 1983, pp. 1-11. 

22. Aslanyan L., Sahakyan H., Numerical characterization of n-cube subset partitioning, Electronic Notes 

in Discrete Mathematics, Volume 27, Pages 3-4/110, October 2006, Elsevier B.V.,ODSA 2006 - 

Conference on Optimal Discrete Structures and algorithms. 

23. Aslanyan, H. Sahakyan, A. Hovsepyan On constrained convexity tomography and Lagrangean 

approximations, Mathematical Problems of Computer Science, XXX, 2008, ISSN 0131-4645, 

pp.111-122. 

24. H. Sahakyan, Numerical characterization of n-cube subset partitioning, Discrete Applied 

Mathematics, 157 (2009), pp. 2191-2197. 

25. K. Ivanova, I. Mitov, K. Markov, P. Stanchev, K. Vanhoof, L. Aslanyan, H. Sahakyan, Metric 

Categorization Relations Based on Support System Analysis, Computer Science and 

Information Technologies Conference, Yerevan, Sept. 28 – Oct. 2, pp. 85-88, 2009. 

26. Sahakyan Hasmik, “(0,1)-matrices with different rows”, Ninth International Conference on Computer 

Science and Information Technologies, Revised Selected Papers, IEEE conference 

proceedings (November, 2013). 

27. Sahakyan Hasmik, “On Hypergraph Degree Sequence Characterization”, Forty-Fourth Southeastern 

International Conference on Combinatorics, Graph Theory, and Computing, March 4-8, 2013, 

Florida Atlantic University. 

28. Sahakyan Hasmik, “On the set of simple hypergraph degree sequences”, Seventh Czech-Slovak 

International Symposium on Graph Theory, Combinatorics, Algorithms and Applications, 7-13 

July, 2013, Kosice, Slovakia. 

29. Levon Aslanyan, Hans-Dietrich Gronau, Hasmik Sahakyan, Peter Wagner, Constraint Satisfaction 

Problems on Specific Subsets of the n-Dimensional Unit Cube, CSIT 2015, Revised Selected 

Papers, IEEE conference proceedings, p.47-52, DOI: 10.1109/CSITechnol.2015.7358249 

30. Aslanyan L., The discrete isoperimetry problem and related extremal problems of discrete spaces, 

Problemy Kybernetiki, 36, pp. 85-127, 1979. 

31. Aslanyan L., Recognition method based on classification by disjunctive normal forms, Cybernetics, 

no. 5, pp. 103-110, 1975. 

32. Aslanyan L., Danoyan H., Complexity of Hash-Coding type search algorithms with perfect codes, 

Journal of Next Generation Information Technology, volume 5, number 4, November 2014, pp. 

26-35. 



International Journal “Information Theories and Applications”, Vol. 23, Number 3, © 2016 

 

229

33. Aslanyan L., Danoyan H., On the optimality of the Hash-Coding type nearest neighbour search 

algorithm, Selected Revised Papers of 9th CSIT conference, IEEE Xplore, 2013. 

34. Aslanyan L., Castellanos J., Logic based pattern recognition - ontology content (1), 

International Journal Information Technologies and Applications, volume 1, pp. 206-210, 2007. 

35. Aslanyan L. and Ryazanov V., Logic based pattern recognition - ontology content (2), Information 

Theories and Applications, volume 15, number 4, pp. 314-318, 2008. 

36. Barcucci E., Del Lungo A., Nivat M., Pinzani R., Reconstructing convex polyominoes from horizontal 

and vertical projections, Theor. Comput. Sci., 155, pp. 321–347, 1996. 

37. Behrens Sarah, Erbes Cathy, Ferrara Mike, Hartke Stephen, Reinger Ben, Spinoza Hannah, 

Tomilson Charles, New results on degree sequences of uniform hypergraphs, Electronic 

Journal of Combinatorics, 20, number 4, 2013.  

38. Berge C., Graphs and Hypergraphs, North Holland Publishing Company, Amsterdam, 1973. 

39. Berge C., Hypergraphs: Combinatorics of Finite Sets, North-Holland, 1989. 

40. Billington D., Conditions for degree sequences to be realisable by 3-uniform hypergraphs, The 

Journal of Combinatorial Mathematics and Combinatorial Computing, 3, pp. 71-91, 1988. 

41. Billington D., Lattices and Degree Sequences of Uniform Hypergraphs, Ars Combinatoria, 21A, pp. 

9-19, 1986. 

42. Billington D., The (s,p)-exchange property, Ars Combinatoria, 23, pp. 185-200, 1987.  

43. Bhanu Murthy N. L., Murali K. Srinivasan, The polytope of degree sequences of hypergraphs, Linear 

Algebra Appl. 350 pp. 147–170, 2002. 

44. Bollobás B., Random Graphs (2nd ed.), Cambridge University Press, 2001. 

45. Boonyasombat V., Degree sequences of connected hypergraphs and hypertrees, Lecture Notes in 

Math., 1073, pp. 236-247, 1984. 

46. Brualdi R. A., Matrices of zeros and ones with fixed row and column sum vectors, Linear Algebra 

Appl. 33 pp. 159-231, 1980. 

47. Chrobak, M., Durr, C., Reconstructing hv-convex polyominoes from orthogonal projections, Inform. 

Process. Lett. 69(6), pp. 283–289, 1999. 

48. Colbourn Charles J., Kocay W.L. and Stinson D.R., Some NP-complete problems for hypergraph 

degree sequences, Discrete Applied Mathematics 14, pp. 239-254, 1986. 

49. Demange M., Monnot J., An introduction to inverse combinatorial problems, Paradigms of 

Combinatorial Optimization: Problems and New Approaches, John Wiley & Sons Inc., Hoboken, 

NJ, USA, volume 2, 2013.  



International Journal “Information Theories and Applications”, Vol. 23, Number 3, © 2016 

 

230

50. Engel K.. Sperner Theory, Encyclopaedia of Mathematics and its Applications, volume 65, 

Cambridge University Press, New York, 1997, 417p.  

51. Feller W., An Introduction to Probability Theory and its Applications, volume I, 3rd (revised) edition, 

ISBN: 9780471257080. 

52. Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP 

Completeness, Freeman and Company, 1979. 

53. Glagolev V., Some estimates of disjunctive normal forms in the algebra of logic, Problemy 

Kybernetiki (in Russian), vol. 19, Nauka, Moscow, pp. 75-94, 1967. 

54. Gnedenko B., On a local limit theorem of probability theory, Uspekhi Math. Nauk, 1948, v. 3, n. 

3(25), pp. 187-194. 

55. Gronau H.-D. O. F. and Proske Chr., Maximal families of restricted subsets of a finite set, Acta 

Cybernetica, Tom.5, Fasc.4, 1982.  

56. Gua Xiaofeng, Lai Hong-Jian, Realizing degree sequences with k-edge-connected uniform 

hypergraphs, Discrete Mathematics 313 pp. 1394–1400, 2013. 

57. Hansel G., Sur le nombre des fonctiones booleennes monotones de n variables, C. R. Acad. Sci., 

Paris 262, pp. 1080-1090, 1966. 

58. Harper L. H., Global Methods for Combinatorial Isoperimetric Problems, Cambridge University Press, 

Cambridge, 2004. 

59. Heuberger C., Inverse combinatorial optimization: a survey on problems, methods and results, 

Journal of Combinatorial Optimization, vol. 8, pp. 329–361, 2004. 

60. Katona G., A theorem of finite sets, Theory of Graphs, Academy of Sciences, Budapest, pp. 187-

207, 1968. 

61. Katerinochkina N., On sets, containing maximal number of pair wise incomparable n-dimensional k-

valued vectors, Mathematical notes, v. 24, no, 3, Sept. 1978. 

62. Kocay William and Li Pak Ching, On 3-hypergraphs with equal degree sequences, Ars Combin. 82 

pp. 145–157, 2007, MR 2292314 (2007k:05049). 

63. Koren Michael, Pairs of sequences with a unique realization by bipartite graphs, J. Combin. Theory, 

B21, 3, pp. 224-234, 1976. 

64. Koren Michael, Extreme degree sequences of simple graphs, J. Combinatorial Theory, Ser. B, 

15:213–224, 1973. 

65. Korn G., Korn T., Mathematical Handbook for Scientists and Engineers, McGraw-Hill company, 

1961. 

66. Korobkov V., On monotone functions of algebra of logic, Problemy Kybernetiki, 13, 1965. 



International Journal “Information Theories and Applications”, Vol. 23, Number 3, © 2016 

 

231

67. Nigmatullin R. G., Variational principle in algebra of logic, Discrete Analysis, Novosibirsk 10 (1967) 

69-89. 

68. Paschos Vangelis Th. (Editor), Paradigms of Combinatorial Optimization: Problems and New 

Approaches, 2nd Edition, ISBN: 978-1-119-01519-2, August 2014, Wiley-ISTE. 

69. Ryser H. J., Combinatorial Mathematics, 1963. 

70. Ryser H. J., Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371–

377. 

71. Sally C., Chris N. Potts, Barbara M. Smith, Constraint satisfaction problems: Algorithms and 

applications, Invited Review, European Journal of Operational Research 119 (1999) 557-581. 

72. Tsang Ed, Foundations of Constraint Satisfaction, Academic Press, 1993. 

73. Woeginger G. J., The reconstruction of polyominoes from their orthogonal projections, Inform. 

Process. Lett., 77:225-229, 2001.  

74. Zhuravlev Yu., Elected Research Works (in Russian), Magister, Moscow, 1998. 

75. Zhuravlev Yu., L. Aslanyan, and V. Ryazanov, Analysis of a training sample and classification in one 

recognition model, Pattern Recognition and Image Analysis, vol. 24, no. 3, pp. 347-352, 2014. 

76. Тараканов В. Е., Комбинаторные задачи и (0,1)-матрицы, М., Наука, 1985. 

77. Тышкевич Р. И., Характеризация (0,1)-матриц, определяемых числом единиц в строках и 

столбцах, и униграфических последовательностей, Доклады АН БССР, 1978, 22, 7, 592-

595. 

Authors' Information 

 

Irina Arsenyan – Institute for Informatics and Automation Problems of the 

National Academy of Sciences of Armenia 

Major Fields of Scientific Research: Boolean functions, Probabilistic 

Combinatorial Analysis. 

 

Levon Aslanyan – Institute for Informatics and Automation Problems of the 

National Academy of Sciences of Armenia 

Major Fields of Scientific Research: Discrete Mathematics, Pattern Recognition. 

 

Hasmik Sahakyan – Institute for Informatics and Automation Problems of the 

National Academy of Sciences of Armenia 

Major Fields of Scientific Research: Discrete Tomography, Combinatorial 

Analysis. 

  


