
International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

321

IMPLEMENTATION OF CONCURRENT CONTROL ALGORITHMS USING PLC

LADDER DIAGRAMS

Liudmila Cheremisinova

Abstract: The problem of mapping a concurrent control algorithm onto a program structure for

Programmable Logic Controller is discussed. The systematic method to derive Ladder Diagram

programs from a parallel automaton that is a functional model of logic control device is presented. The

mapping process is decomposed into a sequence of optimizing transformations of mathematical models

of a parallel control algorithm specified in a formal language PRALU. The suggested procedures of

optimizing the mathematical models are based on providing the proper control for a specific object

under the control, i.e. within the restricted domain.

Keywords: programmable logic controllers, parallel algorithms, control systems, state assignment.

ACM Classification Keywords: D. Software; D.1 PROGRAMMING TECHNIQUES; D.1.3 Concurrent

Programming; D. Software; D.2 SOFTWARE ENGINEERING; D.2.2 Design Tools and Techniques.

Introduction

Sequential control allows processing sequential and parallel operations in a discrete mode with respect

to time or events. It is used to coordinate different continuous functions and to control complex process

sequences. The behavior of the control system under discussion is characterized by complex

interaction, asynchronism and concurrency. The widespread case is considered when a complex

requires control in which inputs and outputs are on/off signals. The functions of a control of such a

system are concentrated in one block – logic control unit that should provide proper synchronization of

interaction between the components. In recent years the use of Petri net formalism has been gaining

popularity for abstract description of the behavior of concurrent systems [Karatkevich, 2007, 2015].

The success of the control of a multiple component system greatly depends on the efficiency of the

synchronization among its processing elements. The functions of a control of such a system are

concentrated in a logic control device that should provide a proper synchronization of interaction

between the components. In order to represent clearly the interaction involved in concurrent engineering

system it is necessary to describe formally its functional and structural properties. This is becoming the

usual industrial way to represent the control logic on the logical control level.

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

322

There exist many languages for description of logical control algorithms suited for these purposes. They

can be divided into two classes: the languages formalizing methods of description of system

functionality applied in industrial practice and languages based on formal mathematical models

[Cheremisinova, 2002]. Keeping a logical control algorithm representation in mind a special language

PRALU [Zakrevskij, 1989, 1999] has been chosen for these purposes. PRALU language combines the

best features of languages from the mentioned two groups: it is clear enough for a designer and at the

same time it has its background in Petri net theory (expanded nets of free choice – EFC–nets

investigated by Hack [Hack, 1972]). The language has means for representation of asynchronous,

sequential and concurrent processes. One of the proposed standard forms of PRALU–algorithms

released from technical details was named as a parallel automaton [Zakrevskij, 1984]. This form is well

suited for the purposes of hardware implementation of PRALU–algorithms and can be easily got from an

initial PRALU–algorithm by its transforming [Zakrevskij, 1999].

The programmable logic controllers (PLC) [Bolton, 2015] are being used in many places where some

kind of control is needed to run a real-time technical system. PLC-s [PLC, 1993] are digitally operating

electronic systems designed for the use in an industrial environment and they are now widely used in

many technical “real world” applications such as complex petro-chemical plants, robotic centers,

automobile production lines.

The problem of design of logic control devices for distributed discrete-event systems is considered. The

widespread case is considered when a technical system requires control in which inputs and outputs are

on/off signals. The problem of mapping a parallel control algorithm onto a program structure for PLC is

discussed. We use the most popular way of PLC programming based on the use of Ladder Diagram

(LD) language. The functional mathematical model of LD program is suggested and it is shown that at

the heart of the suggested method the asynchronous hardware realization of parallel automaton lies.

The paper presents a systematic method to derive LD programs from a parallel automaton that is a

functional model of logic control device. The mapping process is decomposed into a sequence of

optimizing transformations of mathematical models of a parallel control algorithm. The proposed

optimization procedures are based on providing the proper control for a specific object under the control.

This possibility for optimization arises when considering the control unit behavior together with the

behavior of the controlled object.

Programmable Logic Controllers

PLC is a special form of microprocessor-based controller that uses a programmable memory to store

instructions and to implement functions such as logic, sequencing, timing, counting and arithmetic in

order to control machines and processes. PLC-s were invented to replace the sequential electro-

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

323

magnetic relay circuits. They work by looking at their inputs and depending upon their state, switching

on/off their outputs. To get the desired behavior of a control device a designer has to write a program on

some of the available languages that is then translated into a list of instructions that have one-to-one

correspondence to each symbol of the language.

Many programming languages have been developed for programming PLCs. Each manufacturer has its

own language. To improve the software used in PLCs, the International Electrotechnical Commission

(IEC) has defined a standard for programming languages which is called IEC 1131-3 [PLC, 1993]. The

IEC 1131-3 standard tries to bring together the languages from the PLC and the computing worlds. The

following is a list of programming languages specified by this standard:

1) Ladder Diagram (LD) that has been developed to mimic relay logic;

2) Sequential Function Charts (SFC) that is similar (but much more powerful) to flowcharts, it was

developed to accommodate the programming of more advanced systems;

3) Function Block Diagram (FBD) that represent PLC programs as connection of different function

blocks;

4) Structured Text (ST) that is a textual (PASCAL or BASIC like) programming language;

5) Instruction List (IL) that is an assembly like language;

The first three languages are graphical ones and the last two are textual languages.

A very commonly used method of programming PLCs is based on the use of ladder diagrams

[Bolton, 2015]. Writing a program is then equivalent to drawing a switching circuit. Each LD diagram is

composed of two vertical lines representing the power rails. The power rails are connected as horizontal

lines called as rungs of the ladder, between these two verticals. In drawing a ladder diagram, certain

conventions are adopted:

1) The vertical lines of the diagram represent the power rails between which circuits are connected. The

power flow is taken to be from the left-hand vertical across a rung.

2) Each rung on the ladder defines one operation in the control process.

3) A ladder diagram is read from left to right and from top to bottom.

4) When the PLC is in its run mode, the rungs of an LD program are executed until an end rung is

reached. The procedure of going through all the rungs of the program is termed a cycle.

5) Each rung must start with one or more inputs and end with at least one output.

6) A particular device can appear in more than one rung of a ladder. A relay may switch on one or more

devices.

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

324

PLC language instructions can be classified into two categories: logic instructions and block instructions.

Practically all PLCs have the same set of logic instructions having one-to-one correspondence with coils

and contacts of the relay circuit. Accordingly to that the program variables can be divided into logic

(Boolean) (including input and output ones) and arithmetic variables. As we aimed to consider the

control part of a technical system the set of logic instructions is of the main interest (the other operations

are translated to logical ones when transforming a control algorithm into a parallel automaton

[Cheremisinova, 1988]. Practically all PLCs has the same set of logic instructions, the typical set of logic

instructions includes “examine if on (or off)”, “set on (or off)”, “set on (or off) and preserve”. Table 1

shows the typical set of basic logic instructions (as in [Allen-Breadly, 1976]). An example of a LD-

program rung is shown in Figure 1.

In the most basic form a PLC is a microprocessor-based controller that executes an application program

by interpreting its instructions. When executing an program a PLC continuously repeats a single loop

called a cycle which consist of 3 steps: sampling input signals, executing an program to update the

PLC’s internal registers and delivering new output signal.

We mentioned before that an LD program is a list of rungs. From a syntactic point of view we can

decompose a rung into two parts: a front and a rear. A front corresponds to a logic formula over the rung

inputs. An input can be normally open or close. The sequential and parallel connections of the inputs

represent respectively conjunction and disjunction. So, the left part of the logic formula is a multilevel

Boolean expression over AND, OR, NOT operations. A rear of a rung is one or more outputs connected

in parallel. In a rear, an output can be preceded by a front circuit like in the example of Figure 1.

Table 1. Basic logic instructions of LD language

Name
Graphic
symbol

Operation
Result of instruction:

is TRUE if
Relay analog

Load –| |– Examine if on Input is TRUE Normally open contact

LoadNot –| ⁄ |– Examine if off Input is FALSE
Normally closed

contact

Out –()– Set on
There is a path of TRUE
instructions on the rung

Relay coil

OutBar –(⁄)– Set off
There is a path of FALSE
instructions on the rung

Doesn't exists

Set –(L)– Set on and preserve
There is a path of TRUE
instructions on the rung

Latching relay

Reset –(U)– Set off and preserve
There is a path of TRUE
instructions on the rung

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

325

Figure 1. An example of LD-program

Ideally all rungs or as well as Boolean equations are independent and thus they should be evaluated

simultaneously but in practice rungs are evaluated in a top-to-bottom order as they appear in a program.

LD rung as well as a Boolean equation may be regarded as an if-then statement in programming

languages. If-clauses are composed of logic instructions or compare instructions. Then-clauses are

composed of output or arithmetic instructions. When a condition of an if-clause becomes true the

corresponding then-clause is executed.

To answer the question what are the values of variables, defined by Boolean expressions represented

by a system of Boolean equations or LD-program we have to think about the scanning sequence. The

first thing in the scan cycle is to read the values of input signal from PLC sensors into the memory. Next,

the PLC executes a program starting from the top left to bottom, changing the values of Boolean

variables and using these new values when executing then-clauses following just after their setting.

Parallel and sequent automata

The process of a control algorithm mapping into PLC program can be understood as a sequence of

transformations of mathematical models of the control PRALU-algorithm. When solving the problem of a

control algorithm implementation one faces the necessity of getting first a formal finite-state model of the

algorithm called as a parallel automaton [Zakrevskij, 1984]. This automaton model has structural input

and output states and abstract internal ones. An essential difference of parallel automaton model from

sequential one is that it can be in more than one partial state simultaneously. In that case the partial

states are called parallel. All parallel partial states, a parallel automaton is in at some moment, form its

g R l

 L

L

L

R

Rr

 e g

 s

 g

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

326

global state. Any transition of automaton defines changes of partial states that cause the current global

state change. As well as a customary sequential automaton parallel automaton may be of Moore type or

Mealy type.

For the purposes of PLC implementation of a control algorithm it is useful (though more difficult) to get a

Moore type automaton. It is obtained by cutting long chains of the PRALU-algorithm on a set of strings

(interpreted as automaton transitions) in the form:

n : –knin  n / knout,

where knin and knout are elementary conjunctions of Boolean variables, n and n are initial and terminal

labels: subsets of natural numbers – states. The expression “-knin ” denotes the waiting operation of the

PRALU-language: to wait until the term knin takes the value 1. “knout ” denotes the acting operation: to

give such values to the variables from conjunction knout it to be equal to 1. knin and knout are interpreted

as the input condition of the transition and the output signals respectively, n and n are interpreted as

subsets of partial states si. Such a transition should be understood as follows: if the current global state

of the parallel automaton contains all the partial states from n and the variables in the conjunction term

knin assume values providing knin = 1, then (as the result of the transition) the automaton goes to the

next global state involving from initial one by substituting partial states from n for the states from n.

The values of inner and output variables of Moore type automaton are specified by partial states. Note

that the conjunction knout is divided into |n| parts kniout: each kniout  knout corresponds to some partial

state si  n. Taking into account the most used behavioral interpretation of output variables of initial

PRALU-algorithm it can be said that automaton considered is inertial [Zakrevskij, 1999] over the set of

its output variables, i.e. the variables that are absent in knout preserve their values.

For instance, let us consider the process of transforming the following PRALU-algorithm (from

[Zakrevskij, 1999]):

1: – u  a b –u  2.3

2: –v w  b c –w  bc  2

 – v  a c  4.5

3: – u w  d  6

4: – u  ab  7

5: –v w c  8

6.7.8:u v ad  1

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

327

into a parallel automaton of Moore type:

1: |1 – u |9  a b –u  2.3

2: |2 –v w |10  b c –w |11  bc  2

 – v |12  a c  4.5

3: |3 – u w |13  d  6

4: |4 – u |14  ab  7

5: |5 –v w |15 c  8

6.7.8:u v |16 ad  1

After simplifying the automaton and renumbering its partial states [Cheremisinova, 2002] we have:

 u s1  s9 /a b

u s9  s2/bc. s3 /-

v w s2  s10 /b c

w s10  s2 /bc

 v s2  s4 /a. s5 /c

 u w s3  s6 /d

 u s4  s7 /ab

v w s5  s8 /c

u v s6.s7.s8  s1 /ad

Traditionally, the next step on the way to control device hardware implementation is state assignment. A

peculiarity of this process for parallel automaton is that there are parallel states in it. It was suggested

[Zakrevskij, 1989] to code partial states with ternary vectors which should be non-orthogonal for parallel

partial states (but orthogonal for non-parallel). After encoding partial states an initial parallel algorithm

can be transformed from its abstract form into a structural one – sequent automaton that can be directly

hardware implemented.

A sequent automaton is a system of sequents [Zakrevskij, 2000] fi(V) |– ki, where fi(V) is a Boolean

function over variables from V = X  Y  Z and ki is some elementary conjunction of variables from W

= Y  Z, where X, Y and Z are sets of input, output and inner variables. Such an expression is specified

semantically by the following manner: once the Boolean function fi(V) equals 1 then immediately after

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

328

that the variables from ki should be set to be such that ki equals 1. A set of values of all variables from V

defines a total variable vector-state v of the sequent automaton. Below a sequent fi(V) |– ki is called

active on the state vk if fi(vk) is true.

Further sequent automata inertial in relation to a subset U  V will be considered. A sequent fi(V) |– ki of

such an automaton defines the following relationship on the set U: if the current state v k of sequent

automaton is such that some sequent is active on it then in the next state v k+1 all variables from U

except for those mentioned in the conjunction ki keep their values. Thus the variables from U keep their

values, that have got, until any active sequent changes them. This property implies the interpretation of

acting operations of the PRALU-language and forces to implement all output variables with flip-flops as

well as inner variables.

Two types of sequent automata will be dealt with: a simple and a functional sequent automata

[Zakrevskij, 1999]. The first one is a system of simple sequents ki‘ |– ki‘‘. The functional sequent

automaton consists of the sequents having the form fi1(V) |– wi or fi0(V) |–wi, where wi  W and fi1(fi0)

are in the disjunctive normal form. In fact such an automaton is a system of Boolean equations. Having

in view a Moore type automaton any its transition n : –knin  n / knout will be converted into 1 + |n|

simple sequents, i.e. it generates the following sequents:

knin'  k | k, ki | kniout, i = 1, 2,…, |n|,

where k and k are conjunctive terms defining unions of compatible codes of partial states from the

sets n and n respectively, ki and kniout are conjunctive terms defining the code of the partial state

si  n and output signals knout implied by si.

Deriving LD realizable Boolean equations

As we focus our discussion on design of a control device let us consider a control part of the LD

program. Omitting technical details it can be said that the control part of LD program is an ordered set of

logic equations Fi(V) = w
j, where wj

  W = Y  Z (wj
 = wj when  = 1 orwj when  = 0). Fi(V)

defines multilevel Boolean expression over AND, OR, NOT operations. Omitting brackets in the

expressions Fi(V) converts them into a sum of products form (disjunctive normal form). Thus a LD

program can be represented syntactically by a functional sequent automaton.

When PLC executes a program the discipline of changing internal states should be maintained by input

signals. In other words, there must be a stable state on W for any input state on X. In a similar, an

asynchronous sequent automaton finding itself in a stable state wk passes into another stable state wk+1

after changing an input state xk. A transition between stable states could be fulfilled as a result of

execution of one or more active sequents. The execution order of sequents defines a variant of a

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

329

sequence of intermediate states wik+1 that take place when leaving wk for wk+1. This order is random for

asynchronous automata.

As to the LD program, Boolean equations (or LD-rungs) are executed in turn and the result of their

execution is used in the next equations. Strictly speaking, the derived sequence of intermediate states is

not random – one can find it for any given wk and xk. But to provide an automaton to function properly

the assumption, that the sequence of changes of inner variable values (as the result of input state

modification) is purely arbitrary, is sufficient for proper modeling control algorithm by LD program. Thus

the first and the basic step that should be done to convert parallel automaton into LD program is to

synthesize an asynchronous inertial functional sequent automaton.

It is possible to synchronize changes of inner variables values during scanning the LD program by

means of reduplication of inner variables. That is, one more inner variable zi’ is introduced for every

variable zi  Z. Then zi is used only in the left parts of Boolean equations, so it preserves invariably its

value during the whole cycle of LD program scanning in top-to-bottom. zi’ is used only in the right parts

of Boolean equations, so it can get new value in accordance with LD program flow. At the end of the LD

program cycle zi is set to have a value of zi’ and these new values of inner variables are used to set

values of output variables. Such synchronization redoubles the number of inner variables but makes it

possible to use state assignment methods developed for automaton synchronous implementation.

State assignment of asynchronous parallel automaton

When automaton asynchronous implementation is considered the additional condition has to be fulfilled

to avoid the influence of races between memory elements during hardware operation. One of the ways

to avoid them is to order memory elements switches so as to eliminate critical races [Cheremisinova,

2004]. The drawback of this approach seems to be the “density” of the codes obtained.

By using PLC for control device implementation it seems to be convenient to use a trivial method of

encoding the partial states – 1-hot encoding. For example, such a coding had been used for PLC

implementation of Graphset [Chevalier, 1980]. In this case the number of encoding variables is equal to

the number of internal partial states of an automaton. The code of any partial state of a parallel

automaton will have the only unit component. Any other component will be 0 if it corresponds to a partial

state incompatible with considered one or don’t care (“-”) if it corresponds to a partial state parallel to

considered one. But for some moment it might be more than one memory elements set to 1 due to

existence of parallel partial states.

Considering a transition between two partial states it should be noted that it passes through one

intermediate state encoded by the code with two unit components. This unstable state is alternated with

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

330

the force of the same input signal to resulting one. In general case a transition from n partial states to m

ones takes place over n + m -1 unstable states.

Having in mind an asynchronous implementation of parallel automaton it is desirable to agree on which

of two output signals will be displayed during unstable states taking place in the transition n  n : one

implied by n or the other one implied by n. For distinctness let us agree that the output signals begin

to change over their values in the state imposing n immediately after switching on encoding variables

of all partial states from n. Then only those states can cause the output variable settings that are at the

end of a LD program scan. So, if there exists an unstable state that takes place and that is changed

within a scan cycle it cannot do necessary output variable setting. A partial state si is an unstable if there

exist the following two transitions in the automaton:

n : –knin  n / knout , p : -kpin  p / kpout (si  n, si  p)

having compatible (nonorthogonal) input conditions knin and kpin. If there exist such an unstable state the

appropriate encoding variable should be doubled when implementing the automaton with LD program.

Otherwise it is not necessary.

Sequent automaton mapping into LD program

Let us suppose that each partial state si of an automaton is encoded by inner variable zi. And let the

global state and the input state xt of the automaton are such that the transition tn = n : –knin  n / knout

takes place. When converting a parallel automaton to functional sequent one it should be paid attention

to following.

1. The inner variable zi (si  n) is switched on immediately after the transition tn becomes active.

2. The inner variable zj (sj  n) is switched off only after all inner variables zi (si  n) take

the values 1.

3. The output variable yp preserves its value implied by si  n until the automaton reaches at least one

of the partial states from n controlling yp.

4. The output variable yq switches the proper value implied by sj  n immediately after reaching sj.

For any variable wp  W we form two functions fp1 and fp0, which present in fact its on- and off-functions.

Let us choose for every partial state sp sets Tpin and Tpfrom of all transitions into and from it respectively: ti

= i : –kiin  i / kiout  Tpin if sp  i and ti  Tpfrom if sp  i . Then in accordance with what was said

the functions fp1 and fp0 have the following general forms:

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

331

)(1
i

s

in
j

Tt
p zkf

jiin
pj







,

)(0
i

sTt
p zf

jifrom
pj







.

As to the output variables let us pick up all partial states implying the values 1 and 0 of the variable

yq  Y into the sets Sqon and Sqoff respectively. Then the functions fq1 and fq0 will have the following

forms:

)(1
r

Ss
i

Ss
q zzf

iq
r

on
qi






,

)(0
r

Ss
i

Ss
q zzf

iq
r

off
qi






.

Here Siq depends on si and yq: Siq = {sr / (yqC(sr))  (sr  j)  (tjTifrom), where C(sr) denotes a set

of variables controlled by the partial state sr [Cheremisinova, 1988].

Minimization of the code length

The shortcoming of 1-hot state encoding is that the number of introduced inner variables is overmuch.

But it seems to imply a fast program having rare rungs (or equations). At the same time it should be

taken into account that the number of encoding variables can be considerably decreased (sometimes to

0) at the expense of using the values of some existing variables of an automaton as encoding ones.

They can separate some incompatible partial states.

The set X of input variables of the control device can be divided into two subsets X1 and X2: those

arriving from an outside environment (from human operator, for example) and those from the object

under the control. The variables from X1 can be considered as the inputs of the control system as a

whole (with the controlled object) and, generally speaking, their behavior is unknown. The variables from

X2 are the internal variables for the control system. Their values depend on the object under the control.

How the values of these variables will change, one can predict if the behaviour of the object under the

engineering system control is known. PRALU-language allows to describe together the behavior

algorithms of the object and the control device [Cheremisinova, 1989]. In such a description of the whole

control system, variables from X2 can be considered as inertial ones. Besides variables from X2 output

variables can be added to the set U of inertial variables. Just inertial variables are allowed to use as

encoding for partial state assignment. That is permissible if their values are known in any automaton

state controlling these variables. The conjunction of the values, which these variables have, when the

automaton is in a partial state, can be used as a part of its code. For these purposes the conjunction

terms knin and knout of a parallel automaton transitions n : –knin  n / knout are expanded up to the

conjunctions knin* and kn
* of the generated sequent knin*  kn

 | kn
*. The method of calculating a set

of all possible states on the set U includes defining [Cheremisinova, 1988*]:

1) concurrency relation on the set of partial states;

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

332

2) sets (non-overlapping for parallel partial states) of variables from U controlled by partial states;

3) set of eventual values of the variables from U that are controlled by every given partial state.

The first problem is defined [Cheremisinova, 2004] on a dynamic model of a parallel automaton (or a

control algorithm) – its “skeleton” called as -net [Zakrevskij, 1999]. When the concurrency relation has

been found, for any partial state it can be said what partial states it is parallel to. A variable is called as

“controlled” by a partial state sk if its value can be changed when automaton finds itself in sk and it may

be changed in no partial state parallel to sk. The subset of all such variables for a partial state sk

includes all variables under consideration except those changing their values in partial states parallel to

sk. For the considered above parallel automaton partial states s2, s4, s5, s7 and s8 are parallel to s3 and

s6; s4 and s7 – to s5 and s8. s1 control all output variables {a, b, c, d}; s3 and s6 – the only d; s4 and s7 –

{a, b}; s5 and s8 – the only c.

Total variable states are considered on a set U of variables the automaton is inertial in relation to it.

Each possible global state sk* defines a set Sk* of partial states and appropriate total variable state uk*

on the set of variables controlled by partial states from Sk*. This state uk* consist of non-orthogonal (by

definition) variable states ui corresponding to partial states si  Sk*. In [Cheremisinova, 1988] a concept

of initial and final variable states of transitions of parallel automaton was introduced. An initial variable

state unb of a transition tn = n : –knin  n / knout is a vector of values that might have the variables

controlled by partial states si  n when that transition takes place. The final variable state une of the

transition differs from appropriate initial one in values of variables from knout.

An initial variable state unb is a concatenation of component-vectors unjb of values, variables controlled

by partial states sj  n might have. unb implies each of unjb (they are compatible). Each vector unb

component unjb is defined by final variable states of transitions ti: i  i to the partial state snj  i and

snj  i. The set of initial and final variable states of all automaton transitions gives the entire domain of

the control system definition. If the variable state uj implicating component-vectors unjb of all initial

variable states of all transitions tn: n  n, sj  n is found, it may be considered as a part of the code

of sj on the set of variables controlled by it.

Let us consider the example of the reciprocating motion from [Allen-Breadly, 1976] (Figure 2). The

object is to start out at the right hand of the table, activating the limit switch r. When the “start”

pushbutton (the appropriate variable s) is pressed, right to left motion should occur until the limit switch l

is tripped. Then left to right motion occurs until the limit switch r is tripped. This cycle should continue

until the limit switch r is tripped again after the “stop” (the appropriate variable e) pushbutton is pressed.

At this point motion will stop until “start” is pressed again. The output signals L and R of the control

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

333

device are introduced to cause right to left and left to right motions correspondingly, as shown in

Figure 2.

Figure 2. Example of reciprocating motion.

The following PRALU-algorithm describes the behavior of the control needed to provide such a

reciprocating motion (the internal variable g is introduced to indicate the last of the pressings “start” or

“stop”):

Motion(s, e, l, r / L, R)

1:  2.3

2: – g  L – l L  R – r R  2

3: – s  g – e g 3

The following PRALU-algorithm describes the behavior of the whole control system:

Motion(s, e, l, r / L, R)

 l rgLR

1:  2.3

2: – gR |4  L r l – l |5 L –L |6  R l r – r |2 R  2

3: – s |7  g – e |3 g 3

Here X = {s, e, l, r}, Y = {L, R}, Z = {g} are the sets of input, output and internal variables. l rgLR

specifies the values of the variables, the automaton is inertial to, immediately before the motion starting.

The part of PRALU-algorithm describing the behavior of the object of the control is set off in bold face.

The waiting operations “–L” and “–R” (not changing the control algorithm) have been introduced to do

the control algorithm as LD program realizable without doubling inner variables. The variables l and r

define the behavior of the object of control and they are internal for a control system as a whole, so their

l r

L
R

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

334

exhaustive behavior can be defined as well as for internal and output variables of the control device: g,

L and R. Thus the variables from U = {l, r, g, L, R } may be used as encoding ones for automaton partial

states.

The first column of Table 2 shows the obtained parallel automaton of Moore type realizing the behavior

of the control system. The sets of initial and final variable states of transitions of the automaton on the

set U are given having in mind that the partial states from {s2, s4 – s6} and {s3, s7} control the variables

from U2 = {l, r, L, R} and U3 = {g} (the values of uncontrolled variables are marked as “+”).

Table 2. Parallel automaton of Moore type

The automaton transitions
Initial states

l r g L R

Final states

l r g L R

t1: s2: – g –R  s4  L

t2: r

t3:  l

t4: s4 : – l s5 L

t5: s5 : –L  s6  R

t6: l

t7:  r

t8: s6 : – r  s2 R

t9: s3 : – s s7g

t10: s7: – e  s3 g

0 1 0 0 0

0 1 + 1 0

0 0 + 1 0

1 0 + 1 0

1 0 + 0 0

1 0 + 0 1

0 0 + 0 1

0 1 + 0 1

+ + 0 + +

+ + 1 + +

0 1 + 1 0

0 0 + 1 0

1 0 + 1 0

1 0 + 0 0

1 0 + 0 1

0 0 + 0 1

0 1 + 0 1

0 1 + 0 0

+ + 1 + +

+ + 0 + +

The partial states s2, s4, s5 and s6 (as well as s3 and s7) of the control automaton are pair-wise incompatible

and their codes should be orthogonal. But we see that their initial states are parewise orthogonal with

respect to variables from {l, r, L, R} ({g}). So we need no more additional variables to encode the

automaton partial states. So, the following functional sequent automaton realizing realizes the parallel

automaton (shown in the first column of Table 2):

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

335

 l r gLR | L

 lr LR |L

 lrLR | R

 l rL R |R

 sg | g

 e g |g

As follows from the parallel automaton description (Table 2) there exist no unstable partial states. So

implementing the sequent automaton with LD program there is no need to duplicate the variables L and

R that are used as inner ones. Then taking into account the sequential mode of LD execution we can

simplify the sequent automaton by discarding some inner variables from sequents:

l gR | L

 l |L

 rL | R

 r |R

 s | g

 e |g

As one could see from Table 1 any Boolean function can be realized by means of two LD instructions: a

simple relay coil or latching relay (latch-unlatch). In the first case two sequents for the same variable (of

a functional sequent automaton) is realized as a single rung of LD program, in the second case – as two

rungs.

Taking into account that the sequent automaton is inertial one over inner and output variables we can

realize any pair of sequents defining wi and wi by means of one of two LD instructions. That is Set-

Reset (latching relay) instruction) or more preferable Out instruction (its relay coil analog). So, any pair

of sequents wi = fi1 and wi = fi0 could be implemented as:

wi = fi1  wifi0 or wi = (fi1  wi)fi0

The appropriate LD program is shown in Figure 1.

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

336

Conclusion

This paper presents the process of mapping control algorithm onto PLC program as a sequence of

transformations of mathematical models of PRALU-algorithm. The task of minimization of PLC program

(in the form of LD diagram) length is achieved as a result of solution of some optimization problems

concerning transformations of PRALU-algorithm models.

Acknowledgement

The paper is published with partial support by the project ITHEA XXI of the ITHEA ISS (www.ithea.org)

and the ADUIS (www.aduis.com.ua).

Bibliography

[Karatkevich, 2007] A.Karatkevich. Dynamic Analysis of Petri Net-Based Discrete Systems. In: Lecture

Notes in Control and Information Sciences. Springer -Verlag, vol. 356, 2007, 166 p.

[Karatkevich, 2015] A.Karatkevich. Petri Nets in Design of Control Algorithms. In Design of

Reconfigurable Logic Controllers. Springer -Verlag, Vol. 45 of the series Studies in Systems,

Decision and Control, 2015, pp 1-14.

[Zakrevskij, 1989] A.D.Zakrevskij. To the theory of parallel algorithms for logical control. In Izvestiya AN

SSSR. Tekhnicheskaya Kibernetika, 1989, No. 5, pp. 179–191 (in Russian).

[Zakrevskij, 1999] A.D.Zakrevskij. Parallel algorithms for logical control. Minsk: Institute of Engineering

Cybernetics of NAS of Belarus, 1999. (in Russian).

[Hack, 1972] N.Hack. Anaysis of production schemata by Petri nets. Project Project MAC TR-94,

Cambridge, 1972.

[Zakrevskij, 1984] A.D.Zakrevskij. Parallel automaton. In Doklady AN BSSR, 1984, vol. 28, No. 8, pp.

717 – 719 (in Russian).

[Bolton, 2015] W.Bolton. Programmable Logic Controllers, Elsevier, 2015, 6th Edition, 424 p.

[PLC, 1993] International Electrotechnical Commission. Programmable Controllers. Part 3.

Programming Languages, IEC Publication, 1993, pp. 1131-1133.

[Allen-Breadly, 1976] Allen-Breadly Company. PLC Programming and operations manual, 1976, Bulletin

177.

[Cheremisinova, 2002] L.D.Cheremisinova. Implementation of parallel algorithms of logical control.

Minsk: Institute of technical Cybernetics of NAS of Belarus, 2002, 246 p.

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

337

[Zakrevskij, 2000] A.Zakrevskij, B.Steinbach. Sequent automaton - a model for logical control. In

Proceedings of the Intern. Workshop "Discrete optimization methods in scheduling and computer-

aided design", Minsk: Republic of Belarus, Sept. 5–6, 2000.

[Cheremisinova, 2004] L.D.Cheremisinova. State Assignment of an Asynchronous Parallel Automaton.

In Journal of Computer and Systems Sciences International, 2004, vol. 43, No. 5, p. 743–750.

[Chevalier, 1980] G.Chevalier. Le Grafcet: les automatismes par le diagramme fonctionnel et la

technologie modulaire. Paris: Dunod, 1980.

[Cheremisinova, 1988] L.D.Cheremisinova, V.K.Vacilenock, E.V.Sheludko, L.V.Krasilnikova. The

system of logical design of control devices on the base of programmable controllers. Minsk: Institute

of Engineering Cybernetics of the of Belarus Academy of Sciences, 1988, 100 p. (in Russian).

[Cheremisinova, 1989] L.D.Cheremisinova. The methods of automaton realization of concurrent control

algorithms expressed on PRALU language. Minsk: Institute of Engineering Cybernetics of the of

Belarus Academy of Sciences, 1989, 58 p. (in Russian)

[Cheremisinova, 1988*] L.D.Cheremisinova. Minimization of finite-response sequential automata that

implement parallel logical control algorithms. In Automatic Control and Computer Sciences, 1988,

vol. 22, No. 4, pp. 69 – 74.

[Cheremisinova, 2004] L.D.Cheremisinova. Concurrency relation and automaton realization of logical

control algorithms. In Proceedings of the Fifth Intern. Conf. on Computer-Aided Design of Discrete

Devices, CAD DD'2004, v.1, Minsk: Rep. of Belarus, Nov.16–17, 2004, pp. 112 – 120.

Authors' Information

Liudmila Cheremisinova – The United Institute of Informatics Problems of National

Academy of Sciences of Belarus, principal recearcher, Surganov str., 6, Minsk, 220012,

Belarus; e-mail: cld@newman.bas-net.by

Major Fields of Scientific Research: Discrete mathematics, Logic design automation

