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Abstract: The problem of mapping a concurrent control algorithm onto a program structure for 

Programmable Logic Controller is discussed. The systematic method to derive Ladder Diagram 

programs from a parallel automaton that is a functional model of logic control device is presented. The 

mapping process is decomposed into a sequence of optimizing transformations of mathematical models 

of a parallel control algorithm specified in a formal language PRALU. The suggested procedures of 

optimizing the mathematical models are based on providing the proper control for a specific object 
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Introduction 

Sequential control allows processing sequential and parallel operations in a discrete mode with respect 

to time or events. It is used to coordinate different continuous functions and to control complex process 

sequences. The behavior of the control system under discussion is characterized by complex 

interaction, asynchronism and concurrency. The widespread case is considered when a complex 

requires control in which inputs and outputs are on/off signals. The functions of a control of such a 

system are concentrated in one block – logic control unit that should provide proper synchronization of 

interaction between the components. In recent years the use of Petri net formalism has been gaining 

popularity for abstract description of the behavior of concurrent systems [Karatkevich, 2007, 2015]. 

The success of the control of a multiple component system greatly depends on the efficiency of the 

synchronization among its processing elements. The functions of a control of such a system are 

concentrated in a logic control device that should provide a proper synchronization of interaction 

between the components. In order to represent clearly the interaction involved in concurrent engineering 

system it is necessary to describe formally its functional and structural properties. This is becoming the 

usual industrial way to represent the control logic on the logical control level. 
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There exist many languages for description of logical control algorithms suited for these purposes. They 

can be divided into two classes: the languages formalizing methods of description of system 

functionality applied in industrial practice and languages based on formal mathematical models 

[Cheremisinova, 2002]. Keeping a logical control algorithm representation in mind a special language 

PRALU [Zakrevskij, 1989, 1999] has been chosen for these purposes. PRALU language combines the 

best features of languages from the mentioned two groups: it is clear enough for a designer and at the 

same time it has its background in Petri net theory (expanded nets of free choice – EFC–nets 

investigated by Hack [Hack, 1972]). The language has means for representation of asynchronous, 

sequential and concurrent processes. One of the proposed standard forms of PRALU–algorithms 

released from technical details was named as a parallel automaton [Zakrevskij, 1984]. This form is well 

suited for the purposes of hardware implementation of PRALU–algorithms and can be easily got from an 

initial PRALU–algorithm by its transforming [Zakrevskij, 1999]. 

The programmable logic controllers (PLC) [Bolton, 2015] are being used in many places where some 

kind of control is needed to run a real-time technical system. PLC-s [PLC, 1993] are digitally operating 

electronic systems designed for the use in an industrial environment and they are now widely used in 

many technical “real world” applications such as complex petro-chemical plants, robotic centers, 

automobile production lines. 

The problem of design of logic control devices for distributed discrete-event systems is considered. The 

widespread case is considered when a technical system requires control in which inputs and outputs are 

on/off signals. The problem of mapping a parallel control algorithm onto a program structure for PLC is 

discussed. We use the most popular way of PLC programming based on the use of Ladder Diagram 

(LD) language. The functional mathematical model of LD program is suggested and it is shown that at 

the heart of the suggested method the asynchronous hardware realization of parallel automaton lies. 

The paper presents a systematic method to derive LD programs from a parallel automaton that is a 

functional model of logic control device. The mapping process is decomposed into a sequence of 

optimizing transformations of mathematical models of a parallel control algorithm. The proposed 

optimization procedures are based on providing the proper control for a specific object under the control. 

This possibility for optimization arises when considering the control unit behavior together with the 

behavior of the controlled object. 

Programmable Logic Controllers 

PLC is a special form of microprocessor-based controller that uses a programmable memory to store 

instructions and to implement functions such as logic, sequencing, timing, counting and arithmetic in 

order to control machines and processes. PLC-s were invented to replace the sequential electro-
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magnetic relay circuits. They work by looking at their inputs and depending upon their state, switching 

on/off their outputs. To get the desired behavior of a control device a designer has to write a program on 

some of the available languages that is then translated into a list of instructions that have one-to-one 

correspondence to each symbol of the language. 

Many programming languages have been developed for programming PLCs. Each manufacturer has its 

own language. To improve the software used in PLCs, the International Electrotechnical Commission 

(IEC) has defined a standard for programming languages which is called IEC 1131-3 [PLC, 1993]. The 

IEC 1131-3 standard tries to bring together the languages from the PLC and the computing worlds. The 

following is a list of programming languages specified by this standard: 

1) Ladder Diagram (LD) that has been developed to mimic relay logic; 

2) Sequential Function Charts (SFC) that is similar (but much more powerful) to flowcharts, it was 

developed to accommodate the programming of more advanced systems; 

3) Function Block Diagram (FBD) that represent PLC programs as connection of different function 

blocks; 

4) Structured Text (ST) that is a textual (PASCAL or BASIC like) programming language; 

5) Instruction List (IL) that is an assembly like language; 

The first three languages are graphical ones and the last two are textual languages. 

A very commonly used method of programming PLCs is based on the use of ladder diagrams 

[Bolton, 2015]. Writing a program is then equivalent to drawing a switching circuit. Each LD diagram is 

composed of two vertical lines representing the power rails. The power rails are connected as horizontal 

lines called as rungs of the ladder, between these two verticals. In drawing a ladder diagram, certain 

conventions are adopted: 

1) The vertical lines of the diagram represent the power rails between which circuits are connected. The 

power flow is taken to be from the left-hand vertical across a rung. 

2) Each rung on the ladder defines one operation in the control process. 

3) A ladder diagram is read from left to right and from top to bottom. 

4) When the PLC is in its run mode, the rungs of an LD program are executed until an end rung is 

reached. The procedure of going through all the rungs of the program is termed a cycle. 

5) Each rung must start with one or more inputs and end with at least one output. 

6) A particular device can appear in more than one rung of a ladder. A relay may switch on one or more 

devices. 
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PLC language instructions can be classified into two categories: logic instructions and block instructions. 

Practically all PLCs have the same set of logic instructions having one-to-one correspondence with coils 

and contacts of the relay circuit. Accordingly to that the program variables can be divided into logic 

(Boolean) (including input and output ones) and arithmetic variables. As we aimed to consider the 

control part of a technical system the set of logic instructions is of the main interest (the other operations 

are translated to logical ones when transforming a control algorithm into a parallel automaton 

[Cheremisinova, 1988]. Practically all PLCs has the same set of logic instructions, the typical set of logic 

instructions includes “examine if on (or off)”, “set on (or off)”, “set on (or off) and preserve”. Table 1 

shows the typical set of basic logic instructions (as in [Allen-Breadly, 1976]). An example of a LD-

program rung is shown in Figure 1. 

In the most basic form a PLC is a microprocessor-based controller that executes an application program 

by interpreting its instructions. When executing an program a PLC continuously repeats a single loop 

called a cycle which consist of 3 steps: sampling input signals, executing an program to update the 

PLC’s internal registers and delivering new output signal. 

We mentioned before that an LD program is a list of rungs. From a syntactic point of view we can 

decompose a rung into two parts: a front and a rear. A front corresponds to a logic formula over the rung 

inputs. An input can be normally open or close. The sequential and parallel connections of the inputs 

represent respectively conjunction and disjunction. So, the left part of the logic formula is a multilevel 

Boolean expression over AND, OR, NOT operations. A rear of a rung is one or more outputs connected 

in parallel. In a rear, an output can be preceded by a front circuit like in the example of Figure 1. 

 

Table 1. Basic logic instructions of LD language 

Name 
Graphic 
symbol 

Operation 
Result of instruction: 

is TRUE if 
Relay analog 

Load –|  |– Examine if on Input is TRUE Normally open contact

LoadNot –| ⁄ |– Examine if off Input is FALSE 
Normally closed 

contact 

Out –( )– Set on 
There is a path of TRUE  
instructions on the rung 

Relay coil 

OutBar –( ⁄ )– Set off 
There is a path of FALSE 
instructions on the rung 

Doesn't exists 

Set –(L)– Set on and preserve
There is a path of TRUE 
instructions on the rung 

 
Latching relay 

Reset –(U)– Set off and preserve
There is a path of TRUE 
instructions on the rung 
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Figure 1. An example of LD-program 

 

Ideally all rungs or as well as Boolean equations are independent and thus they should be evaluated 

simultaneously but in practice rungs are evaluated in a top-to-bottom order as they appear in a program. 

LD rung as well as a Boolean equation may be regarded as an if-then statement in programming 

languages. If-clauses are composed of logic instructions or compare instructions. Then-clauses are 

composed of output or arithmetic instructions. When a condition of an if-clause becomes true the 

corresponding then-clause is executed. 

To answer the question what are the values of variables, defined by Boolean expressions represented 

by a system of Boolean equations or LD-program we have to think about the scanning sequence. The 

first thing in the scan cycle is to read the values of input signal from PLC sensors into the memory. Next, 

the PLC executes a program starting from the top left to bottom, changing the values of Boolean 

variables and using these new values when executing then-clauses following just after their setting. 

Parallel and sequent automata 

The process of a control algorithm mapping into PLC program can be understood as a sequence of 

transformations of mathematical models of the control PRALU-algorithm. When solving the problem of a 

control algorithm implementation one faces the necessity of getting first a formal finite-state model of the 

algorithm called as a parallel automaton [Zakrevskij, 1984]. This automaton model has structural input 

and output states and abstract internal ones. An essential difference of parallel automaton model from 

sequential one is that it can be in more than one partial state simultaneously. In that case the partial 

states are called parallel. All parallel partial states, a parallel automaton is in at some moment, form its 
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global state. Any transition of automaton defines changes of partial states that cause the current global 

state change. As well as a customary sequential automaton parallel automaton may be of Moore type or 

Mealy type. 

For the purposes of PLC implementation of a control algorithm it is useful (though more difficult) to get a 

Moore type automaton. It is obtained by cutting long chains of the PRALU-algorithm on a set of strings 

(interpreted as automaton transitions) in the form: 

n : –knin  n / knout, 

where knin and knout are elementary conjunctions of Boolean variables, n and n are initial and terminal 

labels: subsets of natural numbers – states. The expression “-knin ” denotes the waiting operation of the 

PRALU-language: to wait until the term knin takes the value 1. “knout ” denotes the acting operation: to 

give such values to the variables from conjunction knout it to be equal to 1. knin and knout are interpreted 

as the input condition of the transition and the output signals respectively, n and n are interpreted as 

subsets of partial states si. Such a transition should be understood as follows: if the current global state 

of the parallel automaton contains all the partial states from n and the variables in the conjunction term 

knin assume values providing knin = 1, then (as the result of the transition) the automaton goes to the 

next global state involving from initial one by substituting partial states from n for the states from n. 

The values of inner and output variables of Moore type automaton are specified by partial states. Note 

that the conjunction knout is divided into |n| parts kniout: each kniout  knout corresponds to some partial 

state si  n. Taking into account the most used behavioral interpretation of output variables of initial 

PRALU-algorithm it can be said that automaton considered is inertial [Zakrevskij, 1999] over the set of 

its output variables, i.e. the variables that are absent in knout preserve their values. 

For instance, let us consider the process of transforming the following PRALU-algorithm (from 

[Zakrevskij, 1999]): 

1: – u  a b –u  2.3 

2: –v w  b c –w  bc  2 

    – v  a c  4.5 

3: – u w  d  6 

4: – u  ab  7 

5: –v w c  8 

6.7.8:u v ad  1 
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into a parallel automaton of Moore type: 

1: |1 – u |9  a b –u  2.3 

2: |2 –v w |10  b c –w |11  bc  2 

       – v |12  a c  4.5 

3: |3 – u w |13  d  6 

4: |4 – u |14  ab  7 

5: |5 –v w |15 c  8 

6.7.8:u v |16 ad  1 

After simplifying the automaton and renumbering its partial states [Cheremisinova, 2002] we have: 

 u       s1  s9 /a b 

u       s9  s2/bc. s3 /- 

v w   s2  s10 /b c 

w   s10  s2 /bc 

 v         s2  s4 /a. s5 /c 

 u w       s3  s6 /d 

 u         s4  s7 /ab 

v w      s5  s8 /c 

u v   s6.s7.s8  s1 /ad 

Traditionally, the next step on the way to control device hardware implementation is state assignment. A 

peculiarity of this process for parallel automaton is that there are parallel states in it. It was suggested 

[Zakrevskij, 1989] to code partial states with ternary vectors which should be non-orthogonal for parallel 

partial states (but orthogonal for non-parallel). After encoding partial states an initial parallel algorithm 

can be transformed from its abstract form into a structural one – sequent automaton that can be directly 

hardware implemented. 

A sequent automaton is a system of sequents [Zakrevskij, 2000] fi(V) |– ki, where fi(V) is a Boolean 

function over variables from V = X  Y  Z and ki is some elementary conjunction of variables from W 

= Y  Z, where X, Y and Z are sets of input, output and inner variables. Such an expression is specified 

semantically by the following manner: once the Boolean function fi(V) equals 1 then immediately after 
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that the variables from ki should be set to be such that ki equals 1. A set of values of all variables from V 

defines a total variable vector-state v of the sequent automaton. Below a sequent fi(V) |– ki is called 

active on the state vk if fi(vk) is true. 

Further sequent automata inertial in relation to a subset U  V will be considered. A sequent fi(V) |– ki of 

such an automaton defines the following relationship on the set U: if the current state v k of sequent 

automaton is such that some sequent is active on it then in the next state v k+1 all variables from U 

except for those mentioned in the conjunction ki keep their values. Thus the variables from U keep their 

values, that have got, until any active sequent changes them. This property implies the interpretation of 

acting operations of the PRALU-language and forces to implement all output variables with flip-flops as 

well as inner variables. 

Two types of sequent automata will be dealt with: a simple and a functional sequent automata 

[Zakrevskij, 1999]. The first one is a system of simple sequents ki‘ |– ki‘‘. The functional sequent 

automaton consists of the sequents having the form fi1(V) |– wi or fi0(V) |–wi, where wi  W and fi1(fi0) 

are in the disjunctive normal form. In fact such an automaton is a system of Boolean equations. Having 

in view a Moore type automaton any its transition n : –knin  n / knout will be converted into 1 + |n| 

simple sequents, i.e. it generates the following sequents: 

knin'  k | k,     ki | kniout,  i = 1, 2,…, |n|, 

where k and k are conjunctive terms defining unions of compatible codes of partial states from the 

sets n and n respectively, ki and kniout are conjunctive terms defining the code of the partial state 

si  n and output signals knout implied by si. 

Deriving LD realizable Boolean equations 

As we focus our discussion on design of a control device let us consider a control part of the LD 

program. Omitting technical details it can be said that the control part of LD program is an ordered set of 

logic equations Fi(V) = w
j, where wj

  W = Y  Z (wj
 = wj when  = 1 orwj when  = 0). Fi(V) 

defines multilevel Boolean expression over AND, OR, NOT operations. Omitting brackets in the 

expressions Fi(V) converts them into a sum of products form (disjunctive normal form). Thus a LD 

program can be represented syntactically by a functional sequent automaton. 

When PLC executes a program the discipline of changing internal states should be maintained by input 

signals. In other words, there must be a stable state on W for any input state on X. In a similar, an 

asynchronous sequent automaton finding itself in a stable state wk passes into another stable state wk+1 

after changing an input state xk. A transition between stable states could be fulfilled as a result of 

execution of one or more active sequents. The execution order of sequents defines a variant of a 
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sequence of intermediate states wik+1 that take place when leaving wk for wk+1. This order is random for 

asynchronous automata. 

As to the LD program, Boolean equations (or LD-rungs) are executed in turn and the result of their 

execution is used in the next equations. Strictly speaking, the derived sequence of intermediate states is 

not random – one can find it for any given wk  and xk. But to provide an automaton to function properly 

the assumption, that the sequence of changes of inner variable values (as the result of input state 

modification) is purely arbitrary, is sufficient for proper modeling control algorithm by LD program. Thus 

the first and the basic step that should be done to convert parallel automaton into LD program is to 

synthesize an asynchronous inertial functional sequent automaton. 

It is possible to synchronize changes of inner variables values during scanning the LD program by 

means of reduplication of inner variables. That is, one more inner variable zi’ is introduced for every 

variable zi  Z. Then zi  is used only in the left parts of Boolean equations, so it preserves invariably its 

value during the whole cycle of LD program scanning in top-to-bottom. zi’ is used only in the right parts 

of Boolean equations, so it can get new value in accordance with LD program flow. At the end of the LD 

program cycle zi is set to have a value of zi’ and these new values of inner variables are used to set 

values of output variables. Such synchronization redoubles the number of inner variables but makes it 

possible to use state assignment methods developed for automaton synchronous implementation. 

State assignment of asynchronous parallel automaton 

When automaton asynchronous implementation is considered the additional condition has to be fulfilled 

to avoid the influence of races between memory elements during hardware operation. One of the ways 

to avoid them is to order memory elements switches so as to eliminate critical races [Cheremisinova, 

2004]. The drawback of this approach seems to be the “density” of the codes obtained. 

By using PLC for control device implementation it seems to be convenient to use a trivial method of 

encoding the partial states – 1-hot encoding. For example, such a coding had been used for PLC 

implementation of Graphset [Chevalier, 1980]. In this case the number of encoding variables is equal to 

the number of internal partial states of an automaton. The code of any partial state of a parallel 

automaton will have the only unit component. Any other component will be 0 if it corresponds to a partial 

state incompatible with considered one or don’t care (“-”) if it corresponds to a partial state parallel to 

considered one. But for some moment it might be more than one memory elements set to 1 due to 

existence of parallel partial states. 

Considering a transition between two partial states it should be noted that it passes through one 

intermediate state encoded by the code with two unit components. This unstable state is alternated with 
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the force of the same input signal to resulting one. In general case a transition from n partial states to m 

ones takes place over n + m -1 unstable states. 

Having in mind an asynchronous implementation of parallel automaton it is desirable to agree on which 

of two output signals will be displayed during unstable states taking place in the transition n  n : one 

implied by n or the other one implied by n. For distinctness let us agree that the output signals begin 

to change over their values in the state imposing n immediately after switching on encoding variables 

of all partial states from n. Then only those states can cause the output variable settings that are at the 

end of a LD program scan. So, if there exists an unstable state that takes place and that is changed 

within a scan cycle it cannot do necessary output variable setting. A partial state si is an unstable if there 

exist the following two transitions in the automaton: 

n : –knin  n / knout ,  p : -kpin  p / kpout (si  n, si  p) 

having compatible (nonorthogonal) input conditions knin and kpin. If there exist such an unstable state the 

appropriate encoding variable should be doubled when implementing the automaton with LD program. 

Otherwise it is not necessary. 

Sequent automaton mapping into LD program 

Let us suppose that each partial state si of an automaton is encoded by inner variable zi. And let the 

global state and the input state xt of the automaton are such that the transition tn = n : –knin  n / knout 

takes place. When converting a parallel automaton to functional sequent one it should be paid attention 

to following. 

1. The inner variable zi (si  n) is switched on immediately after the transition tn becomes active. 

2. The inner variable zj (sj  n) is switched off only after all inner variables zi (si  n) take 

the values 1. 

3. The output variable yp preserves its value implied by si  n until the automaton reaches at least one 

of the partial states from n controlling yp. 

4. The output variable yq switches the proper value implied by sj  n immediately after reaching sj. 

For any variable wp  W we form two functions fp1 and fp0, which present in fact its on- and off-functions. 

Let us choose for every partial state sp sets Tpin and Tpfrom of all transitions into and from it respectively: ti 

= i : –kiin  i / kiout  Tpin  if sp  i  and ti  Tpfrom if sp  i . Then in accordance with what was said 

the functions fp1 and fp0 have the following general forms: 
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As to the output variables let us pick up all partial states implying the values 1 and 0 of the variable 

yq  Y into the sets Sqon and Sqoff respectively. Then the functions fq1 and fq0 will have the following 

forms: 
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Here Siq depends on si and yq: Siq = {sr / (yqC(sr))  (sr  j )  (tjTifrom), where C(sr) denotes a set 

of variables controlled by the partial state sr [Cheremisinova, 1988]. 

Minimization of the code length 

The shortcoming of 1-hot state encoding is that the number of introduced inner variables is overmuch. 

But it seems to imply a fast program having rare rungs (or equations). At the same time it should be 

taken into account that the number of encoding variables can be considerably decreased (sometimes to 

0) at the expense of using the values of some existing variables of an automaton as encoding ones. 

They can separate some incompatible partial states. 

The set X of input variables of the control device can be divided into two subsets X1 and X2: those 

arriving from an outside environment (from human operator, for example) and those from the object 

under the control. The variables from X1 can be considered as the inputs of the control system as a 

whole (with the controlled object) and, generally speaking, their behavior is unknown. The variables from 

X2 are the internal variables for the control system. Their values depend on the object under the control. 

How the values of these variables will change, one can predict if the behaviour of the object under the 

engineering system control is known. PRALU-language allows to describe together the behavior 

algorithms of the object and the control device [Cheremisinova, 1989]. In such a description of the whole 

control system, variables from X2 can be considered as inertial ones. Besides variables from X2 output 

variables can be added to the set U of inertial variables. Just inertial variables are allowed to use as 

encoding for partial state assignment. That is permissible if their values are known in any automaton 

state controlling these variables. The conjunction of the values, which these variables have, when the 

automaton is in a partial state, can be used as a part of its code. For these purposes the conjunction 

terms knin and knout of a parallel automaton transitions n : –knin  n / knout are expanded up to the 

conjunctions knin* and kn
* of the generated sequent knin*  kn

 | kn
*. The method  of calculating a set 

of all possible states on the set U includes defining [Cheremisinova, 1988*]: 

1) concurrency relation on the set of partial states; 
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2) sets (non-overlapping for parallel partial states) of variables from U controlled by partial states; 

3) set of eventual values of the variables from U that are controlled by every given partial state. 

The first problem is defined [Cheremisinova, 2004] on a dynamic model of a parallel automaton (or a 

control algorithm) – its “skeleton” called as -net [Zakrevskij, 1999]. When the concurrency relation has 

been found, for any partial state it can be said what partial states it is parallel to. A variable is called as 

“controlled” by a partial state sk if its value can be changed when automaton finds itself in sk and it may 

be changed in no partial state parallel to sk. The subset of all such variables for a partial state sk 

includes all variables under consideration except those changing their values in partial states parallel to 

sk. For the considered above parallel automaton partial states s2, s4, s5, s7 and s8 are parallel to s3 and 

s6; s4 and s7 – to s5 and s8. s1 control all output variables {a, b, c, d}; s3 and s6 – the only d; s4 and s7 – 

{a, b}; s5 and s8 – the only c. 

Total variable states are considered on a set U of variables the automaton is inertial in relation to it. 

Each possible global state sk* defines a set Sk* of partial states and appropriate total variable state uk* 

on the set of variables controlled by partial states from Sk*. This state uk* consist of non-orthogonal (by 

definition) variable states ui corresponding to partial states si  Sk*. In [Cheremisinova, 1988] a concept 

of initial and final variable states of transitions of parallel automaton was introduced. An initial variable 

state unb of a transition tn = n : –knin  n / knout is a vector of values that might have the variables 

controlled by partial states si  n when that transition takes place. The final variable state une of the 

transition differs from appropriate initial one in values of variables from knout. 

An initial variable state unb is a concatenation of component-vectors unjb of values, variables controlled 

by partial states sj  n might have. unb implies each of unjb (they are compatible). Each vector unb 

component unjb is defined by final variable states of transitions ti: i  i to the partial state snj  i and 

snj  i. The set of initial and final variable states of all automaton transitions gives the entire domain of 

the control system definition. If the variable state uj implicating component-vectors unjb of all initial 

variable states of all transitions tn: n  n, sj  n is found, it may be considered as a part of the code 

of sj on the set of variables controlled by it. 

Let us consider the example of the reciprocating motion from [Allen-Breadly, 1976] (Figure 2). The 

object is to start out at the right hand of the table, activating the limit switch r. When the “start” 

pushbutton (the appropriate variable s) is pressed, right to left motion should occur until the limit switch l 

is tripped. Then left to right motion occurs until the limit switch r is tripped. This cycle should continue 

until the limit switch r is tripped again after the “stop” (the appropriate variable e) pushbutton is pressed. 

At this point motion will stop until “start” is pressed again. The output signals L and R of the control 
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device are introduced to cause right to left and left to right motions correspondingly, as shown in 

Figure 2. 

 

Figure 2. Example of reciprocating motion. 

 

The following PRALU-algorithm describes the behavior of the control needed to provide such a 

reciprocating motion (the internal variable g is introduced to indicate the last of the pressings “start” or 

“stop”): 

Motion(s, e, l, r / L, R) 

1:  2.3 

2: – g  L – l L  R – r R  2 

3: – s  g – e g 3 

The following PRALU-algorithm describes the behavior of the whole control system: 

Motion(s, e, l, r / L, R) 

 l rgLR 

1:  2.3 

2: – gR |4  L r l – l |5 L –L |6  R l r – r |2 R  2 

3: – s |7  g – e |3 g 3 

Here X = {s, e, l, r}, Y = {L, R}, Z = {g} are the sets of input, output and internal variables. l rgLR 

specifies the values of the variables, the automaton is inertial to, immediately before the motion starting. 

The part of PRALU-algorithm describing the behavior of the object of the control is set off in bold face. 

The waiting operations “–L” and “–R” (not changing the control algorithm) have been introduced to do 

the control algorithm as LD program realizable without doubling inner variables. The variables l and r 

define the behavior of the object of control and they are internal for a control system as a whole, so their 

l r

L 
R
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exhaustive behavior can be defined as well as for internal and output variables of the control device: g, 

L and R. Thus the variables from U = {l, r, g, L, R } may be used as encoding ones for automaton partial 

states. 

The first column of Table 2 shows the obtained parallel automaton of Moore type realizing the behavior 

of the control system. The sets of initial and final variable states of transitions of the automaton on the 

set U are given having in mind that the partial states from {s2, s4 – s6} and {s3, s7} control the variables 

from U2 = {l, r, L, R} and U3 = {g} (the values of uncontrolled variables are marked as “+”). 

 

Table 2. Parallel automaton of Moore type 

The automaton transitions 
Initial states 

l  r  g L R 

Final states 

l  r  g L R 

t1:   s2: – g –R  s4     L 

t2:    r 

t3:    l 

t4:   s4 : – l s5   L 

t5:   s5 : –L  s6   R 

t6:   l 

t7:    r 

t8:   s6 : – r  s2   R 

t9:   s3 : – s s7g 

t10:   s7: – e  s3  g 

0 1 0 0 0 

0 1 + 1 0 

0 0 + 1 0 

1 0 + 1 0 

1 0 + 0 0 

1 0 + 0 1 

0 0 + 0 1 

0 1 + 0 1 

+ + 0 + + 

+ + 1 + + 

0 1 + 1 0 

0 0 + 1 0 

1 0 + 1 0 

1 0 + 0 0 

1 0 + 0 1 

0 0 + 0 1 

0 1 + 0 1 

0 1 + 0 0 

+ + 1 + + 

+ + 0 + + 

 

The partial states s2, s4, s5 and s6 (as well as s3 and s7) of the control automaton are pair-wise incompatible 

and their codes should be orthogonal. But we see that their initial states are parewise orthogonal with 

respect to variables from {l, r, L, R} ({g}). So we need no more additional variables to encode the 

automaton partial states. So, the following functional sequent automaton realizing realizes the parallel 

automaton (shown in the first column of Table 2): 
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 l r gLR | L 

      lr LR |L 

     lrLR | R 

     l rL R |R 

            sg  | g 

            e g  |g 

 

As follows from the parallel automaton description (Table 2) there exist no unstable partial states. So 

implementing the sequent automaton with LD program there is no need to duplicate the variables L and 

R that are used as inner ones. Then taking into account the sequential mode of LD execution we can 

simplify the sequent automaton by discarding some inner variables from sequents: 

 

l gR | L 

          l |L 

   rL | R 

          r |R 

         s | g 

         e |g 

 

As one could see from Table 1 any Boolean function can be realized by means of two LD instructions: a 

simple relay coil or latching relay (latch-unlatch). In the first case two sequents for the same variable (of 

a functional sequent automaton) is realized as a single rung of LD program, in the second case – as two 

rungs. 

Taking into account that the sequent automaton is inertial one over inner and output variables we can 

realize any pair of sequents defining wi and wi by means of one of two LD instructions. That is Set-

Reset (latching relay) instruction) or more preferable Out instruction (its relay coil analog). So, any pair 

of sequents wi = fi1 and wi = fi0 could be implemented as: 

wi = fi1  wifi0 or wi = (fi1  wi)fi0 

The appropriate LD program is shown in Figure 1. 
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Conclusion 

This paper presents the process of mapping control algorithm onto PLC program as a sequence of 

transformations of mathematical models of PRALU-algorithm. The task of minimization of PLC program 

(in the form of LD diagram) length is achieved as a result of solution of some optimization problems 

concerning transformations of PRALU-algorithm models. 
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